PANDORA Project

Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics

Purpose:

- Systematic measurement of photo-nuclear reactions for stable nuclei up to the Fe-Ni mass region
- Photo-absorption cross section and p, n, α , γ decay branching ratios in the GDR region
- Development of theoretical models
- Description of the energy and mass evolution of UHECR nuclei by photo-nuclear reactions in intergalactic space as well as the evaluation of nuclear model uncertainty

Organization

- >100 international collaborators
- experimental facilities: RCNP, iThemba LABS, ELI-NP, ...
- theoretical models: AMD, large scale shell model, mean field models (RPA/EDF), ab initio model
- UHECR propagation simulations

White paper: A. Tamii et al., EPJA59, 208 (2023) UHECR simulation: E. Kido et al., Astropart. Phys. 152, 102866 (2023).

Issues in Photo-nuclear Reaction Data and Predictions of light nuclei

- Lack of data especially for charged particle decays
- Large inconsistency among experimental data
- Insufficient predicting power of theoretical models

Challenges to theoretical models

Nuclear Structure

- stronger shell effect
- nuclear deformation
- nucleon correlations:
 - α clustering, *np* pairing, tensor correlation,...

Decay Calculation

- direct and pre-equilibrium decay process in addition to statistical (compound) decays
- isospin selection rule in α -decay

 $^{13}C(\gamma, xn)$ data and model predictions

Even the α -decay branching ratio from IVGDR in ¹⁶O is not known yet!

Modern Techniques for Photo-Nuclear Reaction Measurement two complimentary methods

Virtual photo excitation by proton scattering (RCNP, iThemba)

- Missing mass method by Coulomb excitation
- good for inclusive cross section applicable for p,α,γ decays
- Real photo excitation (ELI-NP)
 - Real photon beam by laser-Compton scattering
 - individual decay channels good for absolute normalization applicable also for *n* and *xn* decays in addition to p,α,γ

3

Targets

measurement of 10-20 target nuclei with theoretical model developments in coming 5-7 years

 $\sigma_{\rm abs}$ distribution and decay branching ratios within 10% accuracy

first cases, alpha decay, reference target

Target nuclei

- ¹²C, ¹⁶O, and ²⁷Al
 ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B
- (²⁰Ne), ²⁴Mg, ²⁸Si, ³²S, (³⁶Ar), ⁴⁰Ca N=Z nuclei, α -cluster effect, deformation
- ²⁶Mg, ⁴⁸Ca, ⁵⁶Fe
- ^{13}C , ^{14}N , ^{51}V
- ¹⁸O, ⁴⁸Ca, ⁶⁴Ni

N>Z nuclei

light nuclei

odd and odd-odd nuclei

 (γ, xn) , multi-nucleon emission

measured in the first exp. at RCNP (2023)

First PANDORA Experiment at RCNP, Oct. 2023

Grand Raiden Spectrometer (Left)

LaBr3 gamma detectors (red)

SAKRA silicon strip detectors

¹²C Excitation Energy (MeV) by Grand Raiden