

Selected Results from DAMPE

XSCRC2024 Cross Sections for Cosmic Rays @ CERN

(for the DAMPE collaboration)

18 October, 2024

DArk Matter Particle Explorer (DAMPE)

- Launched in Dec 2015
- Orbit: sun-synchronous, **500 km**
- Period: 95 min
- Payload: 1.4 Tonn
- Power: ~ 400 W
- Data: ~ 12 GByte / day

Collaboration

Andrii Tykhonov

DArk Matter Particle Explorer (DAMPE)

PSD

- Z identification up to Zn (Z=30)
- y anti-coincidence signal

STK

- Position solution ~50 micron
- Absolute Charge (Z) identification

BGO

- $31 X_0$ thickest in space
- e/γ detection up to **10 TeV**
- p/ions up to 50 GeV PeV

NUD

Additional e/p rejection capability

DAMPE collab., Astropart. Phys. 95 (2017) 6-24

γ angular resolution **0.5°**–**0.1°** (GeV – TeV)

Plastic Scintillator Detector (PSD)

Calorimeter (BGO)

Silicon-Tungsten Tracker Converter (STK)

Neutron Detector (NUD)

Scientific goals

Andrii Tykhonov

Beam tests at CERN PS & SPS • Beams: e & p few GeV — 250 (400) GeV; Ions 40 GeV/n, 75 GeV/n. • Energy resolution: ~1% (e/y) at >= 100 GeV, 20-30 % (p/ions)

Energy calibration

Energy quenching

• Quenching — nonlinear fluorescence response of BGO for large ionisation energy Derived from beam test and flight data, implemented in the detector response model

• 10 GeV/n: **2.5% (5.7%)** for Carbon (Iron) • 1 TeV/n: ~1%

$e^{+}+e^{-}$

Andrii Tykhonov

with standard particle ID

 Confirms hardening at ~ 500 GeV Detection of softening at ~14 TeV

- (A-dependence cannot be excluded)

Incident energy (GeV)

p+He

• Link between direct/indirect CR measurements Hint of new spectral hardening at ~150 TeV

p, He - new results

Andrii Tykhonov

Helium flux (2023)

Proton flux

(2023)

ML-based analysis

A. Tykhonov et al. Astropart. Phys. (2023)

A. Ruina et al. pos.sissa.it/444/170/ (2023)

B/C, B/O

Detection of spectral hardening at ~ 100 GeV/n Indication of change of the CR diffusion coefficient?

Secondaries: Li, Be, B

Andrii Tykhonov

C, N, O

10⁵ Kinetic Energy [GeV]

Incident Energy [GeV]

Ne, Mg, Si, Fe

Andrii Tykhonov

All-particle

Andrii Tykhonov

DAMPE Sys. err. ATIC-02 **NUCLEON-KLEM NUCLEON-IC** SOKOL HAWC LHAASO-KM2A **TAIGA-HiScore** TUNKA-133 Array IceTop QGSJet-II-04 IceTop SIBYLL2.1

- Composition-weighted:
 - Instrument acceptance
 - Energy response matrix
- Different composition models considered:
 - Recchia-Gabici (RG)
 - Hoerandel (poly-gonato)
 - HAWC model
 - Zatsepin-Sokolskaya (ZS)

Measurement over ~ 4 energy decades

ML based tracking enables clean and unbiased particle identification critical for *proton* and *helium* cross section measurement with DAMPE:

Hadronic cross sections

• He-BGO — first probe of helium-ion cross sections up to $\sqrt{s} \sim 100$ GeV

arXiv:2408.17224v1

Hadronic cross sections

Andrii Tykhonov

Funded by

See talk of Paul Coppin!

arXiv:2408.17224v1

Conclusions

DAMPE Status

- In-flight operation 2015 now
- Excellent performance & stability

Physics Program

Unique for multi-TeV Cosmic Rays (CR)

 e⁺ +e⁻ — direct observation of TeV-break • p & He — approaching the PeV frontier • B/C & B/O — observation of ~100 GeV/n break • Observation of hardening in secondaries (Li, Be, B) • First results on heavier elements (C, O, Ne, Mg, Si, Fe) First probe of inelastic cross sections up to 10 TeV

Conclusions

DAMPE Status

- In-flight operation 2015 now
- Excellent performance & stability

Physics Program

• Unique for multi-TeV Cosmic Rays (CR)

 e⁺ +e⁻ — direct observation of TeV-break • p & He — approaching the PeV frontier • B/C & B/O — observation of ~100 GeV/n break • Observation of hardening in secondaries (Li, Be, B) • First results on heavier elements (C, O, Ne, Mg, Si, Fe) First probe of inelastic cross sections up to 10 TeV

To be continued

Thank You!