Relevance of cross sections for indirect dark matter detection

Background image: ESO Central image: Fermi-LAT

Cross sections for Cosmic Rays CERN, October 16-19 2024

Mattia Di Mauro

Istituto Nazionale di Fisica Nucleare NE DI TORINO

- Indirect search of DM
 - Gamma rays and Neutrinos
 - Positrons
 - Antiprotons
 - Anti-D (anti-He3)

- **XS pbar:** *Phys.Rev.D* 97 (2018) 10, 103019 Korsmeier, Donato, DM
- **Dbar**: Di Mauro, Ruiz, Jueid, Fornengo, Bellini in preparation -

Introduction about dark matter (DM) evidences and searches

https://github.com/dimauromattia/CRXS AstroP XS https://github.com/ajueid/CosmiXs DM spectra

• XS e+e-: Phys.Rev.D 105 (2022) 12, 123021 Orusa, DM, Korsmeier, Donato XS gamma: Phys.Rev.D 107 (2023) 8, 083031 Orusa, DM, Korsmeier, Donato

Dark matter: gravitational evidences

Large **halos** around Galaxies Rotation Curves Rubin+(1980)

Comprises majority of mass in Galaxies Missing mass on Galaxy Cluster scale (Zwicky (1937))

> Almost collisionless Bullet Cluster

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

Non-Baryonic

Big-Bang Nucleosynthesis, CMB Acoustic Oscillations WMAP(2010), Planck(2015) Mattia Di Mauro INFN

- candidate

A plethora of dark matter candidates

No Standard Model particle matches the known properties of dark matter Weakly interacting massive particle, or WIMP, among the most popular

$\langle \sigma(\text{DM DM} \rightarrow \text{SM SM})v \rangle \sim 3 \times 10^{-26} \text{cm}^3/\text{s}$

Dark matter searches

- Antiprotons, antinuclei, positrons, gamma rays and neutrinos are the rarest CRs and the most studied for DM indirect detection.
- Antinuclei are particularly promising because the DM production could exceed by at least 1 odg the secondary one for K < 1GeV/n.

Cosmic-ray propagation

https://www.michaelkorsmeier.com/home/CRs.php

- The AMS-02 data reach a precision of about 3-6%.

Antiprotons AMS-02 data and DM

$$q_{ij}(T_{\bar{p}}) = \int_{T_{\rm th}}^{\infty} dT_i \ 4\pi \, n_{\rm ISM,j} \, \phi_i(T_i) \, \frac{d\sigma_{ij}}{dT_{\bar{p}}}(T_i, T_{\bar{p}})$$

$$\sigma_{\rm inv} = E \frac{d^3 \sigma}{dp^3} (\sqrt{s}, x_{\rm R}, p_{\rm T})$$

	Analytic Parametrization	Monte Carlo Event Generator
Procedure	 Parametrization of the (Lorentz invariant) cross section Fit to experimental data 	 Tuning of the MC event generator to the relevant experimental data Generation of data
	 Integration over production angle 	 Extraction of the final cross section
Examples	 Antiprotons: [Tan&Ng '83; Winkler '17; Korsmeier '18] Positrons: [Dermer '86, Orusa '22] Nuclei: [GALPROP; DRAGON] 	 Antiprotons: [AAfrag/QGS-Jet (Kachelriss '17)] Positrons: [Kamae '05] Nuclei: [FLUKA (della Torre Luque '22)]

Secondary antiproton source term

$$\frac{d\sigma_{ij}}{dT_{\bar{p}}}(T, T_{\bar{p}}) = p_{\bar{p}} \int d\Omega \ \sigma_{\rm inv}^{(ij)}(T_i, T_{\bar{p}}, \theta)$$

Antiproton production channels

Phys.Rev.D 97 (2018) 10, 103019 Korsmeier, Donato, DM

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

About 50% from pp and 50% from pHe,Hep,HeHe

$$\sigma_{\rm inv}^{\rm Galaxy} = \sigma_{\rm inv}(2 + \Delta_{\rm IS} + 2\Delta_{\Lambda})$$

Antiproton production cross sections: data

pp—> anti-p X

Experiment	\sqrt{s} [GeV]	$\sigma_{ m scale}$
NA49	17.3	6.5%
NA61	7.7, 8.8, 12.3, 17.3	5%
Dekkers et al.	6.1, 6.7	10%
BRAHMS	200	10%

	\sqrt{s}	[GeV]	$\sigma_{ m scale}$	I-A	I-B	II-A	II-B	Ref.
NA49	1	7.3	6.5%	×	×	×	×	[35]
LHCb		110	6.0%		×		×	[25]

Ep=6.5 TeV

Phys.Rev.D 97 (2018) 10, 103019 Korsmeier, Donato, DM

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

Antiproton data from AMS-02 are between 10-1000 GeV —> sqrt(s) = 5-50 GeV (NA61, AMBER,...)

Antiproton production cross sections: results

Phys.Rev.D 97 (2018) 10, 103019 Korsmeier, Donato, DM

- The uncertainty for the He part is about 15-20%

- sections.

Antineutron production channel

• pp — > anti-n X — > anti-p Y usually taken to be the same of pp — > anti-p X. NA49 proceeding found an isospin asymmetry at the level of 20-30% at xf=0. This is the main source of uncertainty in antiproton production cross

Final uncertainty

Phys.Rev.Res. 2 (2020) 2, 023022, 163 Boudaud et al.

P-bar excess in AMS-02 data

w/o DM

Phys.Rev.Res. 2 (2020) 4, 043017 Heisig et al.

 $\langle \sigma v \rangle \left[10^{-26} \, \mathrm{cm}^3 / \mathrm{s} \right]$ $\Delta\chi^2_{\rm tot}$ local sig. global sig.

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

with DM

20.3(27.2)	233.1(236.3)
16(18)	16(18)
76	66
0.91	0.74
6.9	3.2
2.6σ	1.8σ
1.8σ	0.5σ

Mattia Di Mauro INFN

geomagnetic

 $\mathcal{R}\left[\mathrm{GV}
ight]$

50 100

Positron excess interpretations

Dataset and production channels

Phys.Rev.D 105 (2022) 12, 123021 Orusa, DM, Korsmeier, Donato Cross sections for Cosmic Rays @ CERN, October 16-19 2024

See Luca Orusa's talk tomorrow

Experiment	$\sqrt{s} \; [{ m GeV}]$		$\sigma_{ m inv}$	n	F
NA49	17.3	(π^{\pm},K^{\pm})	\checkmark	-	[67
ALICE	900	(π^+,K^\pm)	\checkmark	-	[
\mathbf{CMS}	900,2760,7000,13000	(π^{\pm},K^{\pm})	\checkmark	-	[72]
Antinucci	3.0, 3.5, 4.9, 5.0, 6.1, 6.8	(π^{\pm})	-		
	2.8, 3.0, 3.2, 5.3, 6.1, 6.8	(K^+)	-	\checkmark	
	4.9, 5.0, 6.1, 6.8	(K^-)	-		
NA61/SHINE	$E 6.3, \ 7.7, \ 8.8, \ 12.3, \ 17.3$	(π^{\pm},K^{\pm})	-	\checkmark	

e+ data from AMS-02 are between 1-1000 GeV -> sqrt(s) = 1-50 GeV

NA49 \sqrt{s} = 17.3 GeV, π^+ 10² -10³ $\begin{bmatrix} E^{q_{3}\alpha} \\ e^{db_{3}} \end{bmatrix} \begin{bmatrix} mp/(Ge^{2}) \\ 10^{1} \\ 10^{0} \\ 10^{-1} \end{bmatrix}$ $E_{dp^{3}\sigma}^{d^{3}\sigma}$ [mb/(GeV²)] 10⁻⁰1 $p_{T} = 0.05 \text{ GeV}$ $p_T = 1.0 \text{ GeV}$ p_{T} = 0.25 GeV $p_{T} = 1.5 \text{ GeV}$ 10^{-2} $p_T = 0.5 \text{ GeV}$ 10^{-4} 10-3 0 Residual 0.2 0.1 Residual ·******* 0.1 0.0 0.0 -0.1-0.2+ 0.0 -0.1 0.2 0.4 0.5 0.1 0.3 0.6 X_R

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

Fit to the data

Mattia Di Mauro INFN

- energies relevant for AMS-02 positron flux.
- This is currently NOT the main limiting factor for the dark matter search with cosmic-ray positrons.
- The theoretical uncertainties related to the possible pulsar interpretation is much larger.

• Cross section is predicted from 10 MeV to 10 TeV with an uncertainty of about 5-7% at the

Phys.Rev.D 105 (2022) 12, 123021 Orusa, DM, Korsmeier, Donato

Gamma rays from dark matter annihilation

Features in γ-ray and cosmic-ray spectra

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

Galactic Center

Milky Way Halo

Isotropic contributions

Galaxy Clusters

Dark Matter simulation: Pieri+ 2011PhRvD..83b3518P

Gamma-ray spectrum

https://github.com/ajueid/CosmiXs DM spectra

Standard picture for gamma-ray analysis

Galactic interstellar emission

- The models usually used are divided into:
 - Bremsstrahlung, π⁰, ICS, isotropic component, Sun/Moon/Loop I and the Fermi bubbles.
- The residuals are roughly at the level of 20-25% of the data.

The GeV Excess in the Galactic Center (GCE)

- Bright and highly significant.
- **Spatially symmetric** around the Galactic center: $dN/dV \propto r^{-2.5} \rightarrow compatible$ with a gNFW profile.
- Energy spectrum peaked at a few GeV —> DM annihilating into a bottom-antibottom (bb) M_{DM}=40 GeV.
- Annihilation cross section roughly equal to the thermal cross section is needed.

The properties of the GCE depend on the choice of the interstellar emission model.

- We fit this average to multiplicity and LHCf data.
- to confirm our findings.

Fit to existing data

• We use an average of the production cross section of charged pions.

•Future measurements on the double differential cross section are needed

Results for the gamma-ray emissivity

- The final uncertainty is at the level of 10-20%.
- We provide predictions for the XS from 10 MeV to 100 TeV as tables.
- Future data for the invariant cross sections are needed.
- Uncertainties related to the other aspects of the interstellar emission are likely larger than XS ones.

Dark Matter search with VHE/UHE Neutrinos

- There is very likely a Galactic and extragalactic contribution but the exact composition is debated.
- Production cross sections can be calculated in analogy to gamma/e+.
 - XS will affect the ATM background component.

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

IceCube has measured an astrophysical of neutrinos whose origin is still not clear.

Channel	$\phi_0^{\mathrm{best}}(imes 10^{-15} \mathrm{f.u.})$	$\gamma^{ m best}$	$\tau^{\rm best}(imes 10^{28} { m s})$	$m_{ m DM}^{ m best}$ (7
$ u_e \nu_e $	0.88	2.43	6.92	501.1
$\tau^+\tau^-$	0.77	2.42	1.91	569.3
W^+W^-	0.77	2.42	0.63	575.4
$b\overline{b}$	0.86	2.43	0.14	776.2
$t\overline{t}$	0.83	2.43	0.30	676.0

Indirect detection of DM with antinuclei

- First theorised by Donato, Fornengo, Salati (Phys.Rev.D 62 (2000) 043003).

 Dark matter signal much larger than secondary production for K<1GeV/n. • The main reason is the conservation of baryonic number for astro contribution.

- Predictions for the production of antiD and antiHe3 are typically based on coalescence models.
- These models assume that antinuclei are produced if anti-nucleons are close enough in momentum and coordinate space.
- Recently models based on a Wigner formalisms have been introduced.

- We tune the parameters of the coalest Dbar production.
- We use simple coalescence models and Wigner formalism.
- In particular we also use the Argonne function which is completely fixed on scattering data and deuteron properties.

• We tune the parameters of the coalescence models on the ALEPH datapoint for

New predictions for antiD from DM

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

32 https://github.com/ajueid/CosmiXs DM spectra

Conclusions about data precision vs DM discovery potential

 DATA NEED (current theory uncertainties) astro background and DM signal)

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

• DARK MATTER DISCOVERY POTENTIAL (relative difference between

JUST A VERY QUALITATIVE ESTIMATE!!

DM disc.

The current excess in the data is about 20%. DM Search limited by XS and absence of AMS0-02 covariance matrix.

XS known is a precision of 10%. DM search limited by precise estimate of the pulsar flux and limits from gamma rays.

XS known is a precision of at least 20%. DM search limited by the uncertainties of interstellar emission models.

XS known is a precision of at least 20%. DM search limited by the poor statistics of the IceCube data.

50

37,5

- Measuring *Dbar XS* or multiplicities at sqrt(s) between 5 to 100 GeV (NA61, AMBER,...).
- Measuring the *pbar* Lorentz-invariant XS from *nbar decay with at most 5% uncert*.
- Measuring the *pbar* Lorentz-invariant XS from *p-He* for sqrt(s) = 5-100 GeV *with at most 5% uncert*.
- Measuring the *pi0* Lorentz-invariant XS from *p-p and pHe* for sqrt(s) = 5-1000 GeV.
- Measuring the *pbar* Lorentz-invariant XS from Hyperon decay for *p-p* and *p-He* for sqrt(s) = 5-100 GeV with at most 5% uncert.

Backup slides

Hyperon production channel

- The contribution of hyperons is usually taken as a rescaling of the pp. Hyperons contribute about 30-40% of the prompt pp channel. \bullet This contribution has an uncertainty of about 10-20%. lacksquare
- lacksquare
- This is probably a subdominant uncertainty of about 5-10%. \bullet

$$\frac{\mathrm{d}^{3} N_{\mathrm{d}}}{\mathrm{d} p_{\mathrm{d}}^{3}} = S \int \frac{\mathrm{d}^{3} r_{\mathrm{d}} \mathrm{d}^{3} r \, \mathrm{d}^{3} q}{(2\pi)^{6}} \cdot \mathcal{D}($$

$$\mathcal{D}(\vec{r},\vec{q}) = \int \mathrm{d}^{3}\xi e^{-i\vec{q}\cdot\vec{\xi}}\varphi_{\mathrm{d}}(\vec{r}+\vec{\xi}/2)\varphi_{\mathrm{d}}^{*}(\vec{r}-\vec{\xi}/2).$$

 $W_{\rm pn} = H_{\rm pn} \left(\vec{r}_{\rm p}, \vec{r}_{\rm n} \right)$

$$\varphi_{\rm d}(\Delta r) = \left(\pi d^2\right)^{-3/4} e^{-\Delta r^2/(2d^2)} \qquad \qquad H_{\rm pn}\left(\vec{r}_{\rm p}, \vec{r}_{\rm n}\right) = h\left(\vec{r}_{\rm p}\right)h\left(\vec{r}_{\rm n}\right)$$

 $\mathcal{D}(\Delta r, q = \Delta p/2) = 8e^{-r^2/d^2}e^{-q^2d^2}$

Wigner formalism

 $\mathcal{P}(\vec{r}, \vec{q}) \cdot W_{
m pn} \left(\vec{p}_{
m d} / 2 + \vec{q}, \vec{p}_{
m d} / 2 - \vec{q}, \vec{r}_{
m p}, \vec{r}_{
m n}
ight)$

$$G_{\rm pn} \left(\vec{p}_{\rm d} / 2 + \vec{q}, \vec{p}_{\rm d} / 2 - \vec{q}
ight)$$

$$\frac{d^3 N_d}{dp_d^3} = \frac{3}{(2\pi)^6} \left(\frac{d^2}{d^2 + 4\sigma^2}\right)^{3/2} \int d^3 q \, e^{-q^2 d^2} \, G_{np}(\vec{p}_{\rm d}, \vec{q}),$$

Phys.Rev.D 97 (2018) 10, 103019 Korsmeier, Donato, DM

$$\sigma_{\mathrm{inv}}^{\mathrm{Galaxy}} = \sigma_{\mathrm{inv}}(2 + \Delta_{\mathrm{IS}} + 2\Delta_{\Lambda})$$

$$\Delta_{\rm IS} = \frac{c_1^{\rm IS}}{1 + (s/c_2^{\rm IS})^{c_3^{\rm IS}}} \quad \Delta_{\Lambda} = 0.81 \left(c_1^{\Lambda} + \frac{c_2^{\Lambda}}{1 + (c_3^{\Lambda}/s)^{c_4^{\Lambda}}} \right)$$

$$\begin{aligned} \sigma_{\rm inv}(\sqrt{s}, x_{\rm R}, p_{\rm T}) &= \sigma_{\rm in}(1 - x_{\rm R})^{C_1} \exp(-C_2 x_{\rm R}) \quad \sigma_{\rm inv}(\sqrt{s}, x_{\rm R}, p_{\rm T}) = \sigma_{\rm in}RC_1(1 - x_{\rm R})^{C_2} \\ &\times [C_3(\sqrt{s})^{C^4} \exp(-C_5 p_{\rm T}) \\ &+ C_6(\sqrt{s})^{C^7} \exp(-C_8 p_{\rm T}^2)]. \\ &\times \left[1 + \frac{X}{\rm GeV}(m_T - m_p)\right]^{\frac{1}{C_3 X}}, \\ &+ C_6(\sqrt{s})^{C^7} \exp(-C_8 p_{\rm T}^2)]. \\ &\times \exp\left[-c_9 p_T - \left(\frac{|p_T - c_{10}|}{c_{11}}\right)^{c_{12}}\right] \\ &\times \left[1 + c_5\left(10 - \frac{\sqrt{s}}{\rm GeV}\right)^5\right] \quad \text{elsewhere} \\ &\times \exp\left[C_6\left(10 - \frac{\sqrt{s}}{\rm GeV}\right)^2\right] \\ &\times \exp\left[C_6\left(10 - \frac{\sqrt{s}}{\rm GeV}\right)^2\right] \\ &+ c_{16} \exp\left(-\left(\frac{|x_R - c_{17}|}{c_{18}}\right)^{c_{19}}\right)\right]. \end{aligned}$$

$$\times [C_{3}(\sqrt{s})^{C^{\gamma}} \exp(-C_{5}p_{T}) \\ + C_{6}(\sqrt{s})^{C^{\gamma}} \exp(-C_{8}p_{T}^{2})]. \\ \times \left[1 + \frac{\Lambda}{\text{GeV}}(m_{T} - m_{p})\right]^{C_{3}^{\chi}}, \\ F_{r}(p_{T}, x_{R}) = (1 - x_{R})^{c_{8}} \\ \times \exp\left[-c_{9}p_{T} - \left(\frac{|p_{T} - c_{10}|}{c_{11}}\right)^{c_{12}}\right] \\ \times \exp\left[-c_{9}p_{T} - \left(\frac{|p_{T} - c_{10}|}{c_{11}}\right)^{c_{12}}\right] \\ \times \left[1 + C_{5}\left(10 - \frac{\sqrt{s}}{\text{GeV}}\right)^{5}\right] \text{ elsewhere} \\ \times \exp\left[c_{6}\left(10 - \frac{\sqrt{s}}{\text{GeV}}\right)^{2}\right] \\ \times \exp\left[c_{6}\left(10 - \frac{\sqrt{s}}{\text{GeV}}\right)^{2}\right] \\ \times \left[c_{13}\exp(-c_{14}p_{T}^{c_{15}}x_{R}) + c_{16}\exp\left(-\left(\frac{|x_{R} - c_{17}|}{c_{18}}\right)^{c_{19}}\right)\right]. \\ \times (x_{R} - x_{R,\min})^{2}\right] \\ \times \left[x_{R} - x_{R,\min}\right]^{2}$$

$$\sigma_{\rm in} = c_{\rm in,1} + c_{\rm in,2} \log(\sqrt{s}) + c_{\rm in,3} \log^2(\sqrt{s})$$

XS Parameterizations

Phys.Rev.D 105 (2022) 12, 123021 Orusa, DM, Korsmeier, Donato

$$\sigma_{\rm inv} = \sigma_0(s) c_1 \left[F_p(s, p_T, x_R) + F_r(p_T, x_R) \right] A$$

$$F_{p}(s, p_{T}, x_{R}) = (1 - x_{R})^{c_{2}} \exp(-c_{3} x_{R}) p_{T}^{c_{4}} \qquad (8)$$
$$\times \exp\left[-c_{5} \sqrt{s/s_{0}}^{c_{6}} \left(\sqrt{p_{T}^{2} + m_{\pi}^{2}} - m_{\pi}\right)^{c_{7} \sqrt{s/s_{0}}^{c_{6}}}\right]$$

$$A(s) = \frac{1 + \left(\sqrt{s/c_{20}}\right)^{c_{21} - c_{22}}}{1 + \left(\sqrt{s_0/c_{20}}\right)^{c_{21} - c_{22}}} \left(\sqrt{\frac{s}{s_0}}\right)^{c_{22}}$$

XS from heavier nuclei

- In the Galaxy, nuclei interactions (p + A, A + p, and A + A) give a significant contribution to the production of secondary particles.
- We used the data of NA49 for the production of π + in p+C collisions at Ep = 158 GeV and K+ in p+C collisions at Ep = 30 GeV.

We model the inclusive Lorentz invariant cross section of the $A_1 + A_2 \rightarrow \pi^+ + X$ scattering by:

$$\sigma_{\rm inv}^{A_1A_2}(\sqrt{s}, x_F, p_T) = (25)$$

$$f^{A_1A_2}(A_1, A_2, x_F, D_1, D_2, D_3) \ \sigma_{\rm inv}^{pp}(\sqrt{s}, x_R, p_T),$$

where A_1 and A_2 are the mass numbers of the projectile and target nucleus, respectively, and D_1 , D_2 , and D_3 are three fit parameters. Explicitly, the factor $f^{A_1A_2}$ is defined by:

$$f^{A_1A_2}(x_F) = A_1^{D_1} A_2^{D_1} \left[A_1^{D_2} F_{\text{pro}}(x_F) + A_2^{D_2} F_{\text{tar}}(x_F) \right],$$
(26)

with $F_{\text{pro}}(x_F)$ and $F_{\text{tar}}(x_F)$ given by

$$F_{\rm pro/tar}(x_F) = \frac{1 \pm \tanh(D_3 x_F)}{2}.$$
 (27)

In the above equations, the kinetic variables x_F and \sqrt{s} refer to the nucleon-nucleon CM frame. We do not claim https://arxiv.org/abs/2203.13143

FIG. 11. Results of the fit on the NA49 data [89] invariant cross section for the inclusive π^+ production in p+C collisions. We show the NA49 data together with our fit results as a function of x_F for some representative values of p_T . Shaded bands show the 1σ uncertainty band.

y rays produced by inverse Compton scattering

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

IACTs

HAWC

HAWC results for Geminga and Monogem PWNe

- Monogem PWNe for **E>5 TeV**.
- In the vicinity of the PWN, the diffusion coefficient D Galaxy.

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

HAWC detected an extended emission from Geminga and

must be about 500 times smaller than the average in the

A few pulsars dominate the positron flux

	AMS-02 errors	Total flu
ModA	1.3/2.9/3.3	1.0/1.8
ModB	3.5	1.9
ModC	3.9	3.0
ModD	5.4	3.5
ModE	1.0	1.0

Cosmic-ray antiprotons

Gamma rays from dark matter annihilation

Box-shaped spectra: Photons from cascade decay

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

Gamma rays from dark matter annihilation

Box-shaped spectra

- Cascade-decay into monochromatic photons
- already at tree level

Internal Bremsstrahlung (IB) radiative correction to processes with charged final

- states
- Generically suppressed by 0(α)

$$\chi\chi \rightarrow$$

$$-ar{f}f\gamma$$

Gamma-ray lines

- from two-body annihilation into photons
- forbidden at tree-leve, generically suppressed by **Ο(**α²)

 $\chi\chi \to \gamma\gamma$

Paper III

Theory for the gamma-ray flux from Dark matter

- We use a model that ac emission from DM.
- The diffusion process has a much smaller effect that energy losses in the GC.
- The bremsstrahlung component is also negligible.

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

• We use a model that accounts for prompt and ICS

Paper III

- We use the same analysis as in **Reinert and Winkler 2018.**
 - A combined fit to AMS-02 and Voyager p, AMS-02 and Pamela anti-p, AMS-02 B/C is performed.

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

Antiprotons vs GCE

The addition of best-fit DM for the GCE with bottom channel worsens the fit with a delta chi-square of 44 (6σ worsening). • We have used L=3kpc.

Cosmic-ray and radiation experiments

Currently, there are precise experiments of cosmic ray and radiation. • The future will be even more interesting!

Uncertainties in the GCE flux

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

49

•Macias et al. 2016-2020:

- of the Galactic bulge and nuclear bulge.

• The GCE is better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess.

• Given its non-spherical nature, they argue that the GCE is not a dark matter phenomenon but rather associated with the stellar population

Most recent papers

- evidence of a faint population of un-modeled sources.
- in part, to unresolved astrophysical point sources.
- almost entirely attributed to smooth emission.

The situation is thus rather confusing and dark matter has recently gained interest.

• Leane et al. 2019 and Chang et al. 2019: the NPTF can misattribute to point sources or DM un-modeled point sources imperfection in the modeling of data.

• Zhong et al. 2019 applied a wavelet method with 4FGL, and do not find any

• Buschmann et al. 2020: They use a state-of-the-art model IEM find that the NPTF results continue to favor the interpretation that the GCE excess is due,

• List et al. 2019: we find that the NN estimates for the flux fractions from the background templates are consistent with the NPTF; however, the GCE is

Characteristics of the GCE: Summary

Spectrum peaked at a few GeV

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

No energy dependence of spatial morphology.

The GCE is approximatively

spherically symmetric.

gamma=1.25

Mattia Di Mauro INFN