Relevance of cross sections for indirect dark matter detection

Background image: ESO Central image: Fermi-LAT

Cross sections for Cosmic Rays @ CERN, October 16-19 2024

Mattia Di Mauro

Istituto Nazionale di Fisica Nucleare INE DI TORINO

•Introduction about dark matter (DM) evidences and searches

-
- •Indirect search of DM
	- •Gamma rays and Neutrinos
	- •Positrons
	- •Antiprotons
	- •Anti-D (anti-He3)

• **XS e+e-:** *Phys.Rev.D* ¹⁰⁵ (2022) 12, 123021 Orusa, DM, Korsmeier, Donato • **XS gamma:** *Phys.Rev.D* ¹⁰⁷ (2023) 8, 083031 Orusa, DM, Korsmeier, Donato

-
-
-
- **XS pbar:** *Phys.Rev.D* ⁹⁷ (2018) 10, 103019 Korsmeier, Donato, DM
- **Dbar**: Di Mauro, Ruiz, Jueid, Fornengo, Bellini in preparation -

<https://github.com/dimauromattia/CRXS>AstroP XS <https://github.com/ajueid/CosmiXs> DM spectra

Dark matter: gravitational evidences

Comprises majority of mass in Galaxies Missing mass on Galaxy Cluster scale (Zwicky (1937))

Large halos around Galaxies Rotation Curves Rubin+(1980)

Almost collisionless Bullet Cluster

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

Non-Baryonic

Big-Bang Nucleosynthesis, CMB Acoustic Oscillations WMAP(2010), Planck(2015)

A plethora of dark matter candidates

•No Standard Model particle matches the known properties of dark matter •Weakly interacting massive particle, or WIMP, among the most popular

-
- candidate

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN Mattia Di Mauro INFN

$\langle \sigma(\text{DM}\text{ DM} \rightarrow \text{SM}\text{ SM})v \rangle \sim 3 \times 10^{-26} \text{cm}^3/\text{s}$

Dark matter searches

7

• Antiprotons, antinuclei, positrons, gamma rays and neutrinos are the

- rarest CRs and the most studied for DM indirect detection.
- exceed by at least 1 odg the secondary one for K < 1GeV/n.

• Antinuclei are particularly promising because the DM production could

Cosmic-ray propagation

https://www.michaelkorsmeier.com/home/CRs.php

Antiprotons AMS-02 data and DM

- The AMS-02 data reach a precision of about 3-6%.
- Errors of cross section data and theoretical models should reach about this precision.
- This is particularly relevant for CR physics and searches for DM signals.

$$
q_{ij}(T_{\bar{p}}) = \int_{T_{\text{th}}}^{\infty} dT_i \ 4\pi n_{\text{ISM},j} \ \phi_i(T_i) \ \frac{d\sigma_{ij}}{dT_{\bar{p}}}(T_i, T_{\bar{p}})
$$

$$
\sigma_{\rm inv}=E\frac{d^3\sigma}{dp^3}(\sqrt{s},x_{\rm R},p_{\rm T})
$$

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

Secondary antiproton source term

$$
\frac{d\sigma_{ij}}{dT_{\bar{p}}}(T,T_{\bar{p}})=p_{\bar{p}}\int d\Omega\,\,\sigma_{\rm inv}^{(ij)}(T_i,T_{\bar{p}},\theta)
$$

Antiproton production channels

• About 50% from pp and 50% from pHe, Hep, HeHe

$$
\sigma_{\text{inv}}^{\text{Galaxy}} = \sigma_{\text{inv}}(2 + \Delta_{\text{IS}} + 2\Delta_{\Lambda})
$$

Phys.Rev.D 97 (2018) 10, 103019 Korsmeier, Donato, DM

pp—> anti-p X

Ep=6.5 TeV

Antiproton production cross sections: data

Phys.Rev.D 97 (2018) 10, 103019 Korsmeier, Donato, DM

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

Antiproton data from AMS-02 are between 10-1000 GeV —> sqrt(s) = 5-50 GeV (NA61, AMBER,…)

-
- **• The uncertainty for the He part is about 15-20%**

Antiproton production cross sections: results

Phys.Rev.D 97 (2018) 10, 103019 Korsmeier, Donato, DM

• *pp—>anti-n X —>anti-p Y* usually taken to be the same of pp—>anti-p X. • NA49 proceeding found an isospin asymmetry at the level of 20-30% at xf=0. **• This is the main source of uncertainty in antiproton production cross**

-
-
- **sections.**

Antineutron production channel

Phys.Rev.Res. 2 (2020) 2, 023022, 163 Boudaud et al.

Final uncertainty

P-bar excess in AMS-02 data

 w/o DM

Phys.Rev.Res. 2 (2020) 4, 043017 Heisig et al.

 $\vert m_{\rm DM}\,\rm [GeV]$ $\left|\braket{\sigma v}{[10^{-26}\,\mathrm{cm}^3\mathrm{/s}]}\right|$ $\left|\Delta\chi^2_{\rm tot}\right|$ local sig. global sig.

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

with ${\rm DM}$

Positron excess interpretations

Dataset and production channels

e+ data from AMS-02 are between 1-1000 GeV —> sqrt(s) = 1-50 GeV

¹⁸ *Phys.Rev.D* ¹⁰⁵ (2022) 12, 123021 Orusa, DM, Korsmeier, Donato Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

See Luca Orusa's talk tomorrow

Fit to the data

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

NA49 \sqrt{s} = 17.3 GeV, π ⁺ 10^2 $10³$ $(E_{\text{q}}^{\text{eq}})$ = $(10^{-3} - 10^{-2})$
 $(E_{\text{q}}^{\text{eq}})$ = $(10^{-3} - 10^{-2})$ $E_{\rm dp^3}^{\rm d^3\sigma}$ [mb/(GeV²)]
 10^{-2} 10^0 $p_T = 0.05 \text{ GeV}$ p_T = 1.0 GeV $p_T = 0.25 \text{ GeV}$ p_T = 1.5 GeV 10^{-2} $p_T = 0.5$ GeV 10^{-4} 10^{-3} 0.2 0.2 Residual Residual 0.1 **大楼大学的人的人的人** 0.1 0.0 0.0 -0.1 $\frac{2}{2}$ - 0.2 $\frac{1}{0.0}$ -0.1 $\frac{2}{1}$ - 0.2 $\frac{1}{0.0}$ 0.4 0.5 0.2 0.3 0.6 0.1 0.5 $\ensuremath{{X_R}}$

• Cross section is predicted from 10 MeV to 10 TeV with an uncertainty of about 5-7% at the

- energies relevant for AMS-02 positron flux.
- This is currently NOT the main limiting factor for the dark matter search with cosmic-ray positrons.
- The theoretical uncertainties related to the possible pulsar interpretation is much larger.

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

Phys.Rev.D 105 (2022) 12, 123021 Orusa, DM, Korsmeier, Donato

Gamma rays from dark matter annihilation

Features in γ -ray and cosmic-ray spectra

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

Galactic Center

Milky Way Halo

Isotropic contributions

Galaxy Clusters

Dark Matter simulation: Pieri+ 2011PhRvD..83b3518P

Gamma-ray spectrum

<https://github.com/ajueid/CosmiXs> DM spectra

Standard picture for gamma-ray analysis

Galactic interstellar emission

- The models usually used are divided into:
	- *Bremsstrahlung, π0, ICS, isotropic component, Sun/Moon/Loop I and the Fermi bubbles*.
- The residuals are roughly at the level of 20-25% of the data.

The GeV Excess in the Galactic Center (GCE)

- **Bright** and highly significant.
- **Spatially symmetric** around the Galactic center: $dN/dV \propto r^{-2.5}$ compatible with a gNFW profile.
- **Energy spectrum peaked at a few GeV** —> DM annihilating into a bottom-antibottom (bb) M_{DM}=40 GeV.
- **Annihilation cross** section roughly equal to the thermal cross section is needed.

The properties of the GCE depend on the choice of the interstellar emission model.

Fit to existing data

• We use an average of the production cross section of charged pions.

-
- We fit this average to multiplicity and LHCf data.
- *to confirm our findings.*

•Future measurements on the double differential cross section are needed

Results for the gamma-ray emissivity

- The final uncertainty is at the level of 10-20%.
- We provide predictions for the XS from 10 MeV to 100 TeV as tables.
- Future data for the invariant cross sections are needed.
- Uncertainties related to the other aspects of the interstellar emission are likely larger than XS ones.

Dark Matter search with VHE/UHE Neutrinos

-
- There is very likely a Galactic and extragalactic contribution but the exact composition is debated.
- Production cross sections can be calculated in analogy to gamma/e+.
	- XS will affect the ATM background component.

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

• IceCube has measured an astrophysical of neutrinos whose origin is still not clear.

Indirect detection of DM with antinuclei

- First theorised by Donato, Fornengo, Salati (*Phys.Rev.D* 62 (2000) 043003).
-
-

• Dark matter signal much larger than secondary production for K<1GeV/n. • The main reason is the conservation of baryonic number for astro contribution.

- Predictions for the production of antiD and antiHe3 are typically based on coalescence models.
- These models assume that antinuclei are produced if anti-nucleons are close enough in momentum and coordinate space.
- Recently models based on a Wigner formalisms have been introduced.

• We tune the parameters of the coalescence models on the ALEPH datapoint for

- Dbar production.
- We use simple coalescence models and Wigner formalism.
- In particular we also use the Argonne function which is completely fixed on scattering data and deuteron properties.

New predictions for antiD from DM

32 **<https://github.com/ajueid/CosmiXs>DM spectra**

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN Cross sections for Cosmic Rays @ CERN, October 16-19 2024

Conclusions about data precision vs DM discovery potential

• DATA NEED (current theory uncertainties) astro background and DM signal)

• DARK MATTER DISCOVERY POTENTIAL (relative difference between

 $XS|$ known is a precision of at least 20%. DM search limited by the uncertainties of interstellar emission models.

The current excess in the data is about 20%. DM Search limited by XS and absence of AMS0-02 covariance matrix.

XS known is a precision of 10%. DM search limited by precise estimate of the pulsar flux and limits from gamma rays.

XS known is a precision of at least 20%. DM search limited by the poor statistics of the IceCube data.

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

JUST A VERY QUALITATIVE ESTIMATE!!

- 1. Measuring *Dbar XS* or multiplicities at sqrt(s) between 5 to 100 GeV (NA61, AMBER,…).
- 2. Measuring the *pbar* Lorentz-invariant XS from *nbar decay with at most 5% uncert.*.
- 3. Measuring the *pbar* Lorentz-invariant XS from *p-He* for sqrt(s) = 5-100 GeV *with at most 5% uncert.*
- 4. Measuring the *pi0* Lorentz-invariant XS from *p-p and pHe* for sqrt(s) = 5-1000 GeV.
- 5. Measuring the *pbar* Lorentz-invariant XS from **Hyperon** decay for *p-p and p-He* for sqrt(s) = 5-100 GeV *with at most 5% uncert.*

Backup slides

ASSESSMENT REPORTS AND READY AND READY A LIGAR DE TOUS COMPANY AND HANDA DE TOUS DE LA CARRE DE TOUS CARRE DE LA CARRE DE LA CARRE DE LA CARRE DE LA
ANY 1872 CARRE DE LA CARR

- Hyperons contribute about 30-40% of the prompt pp channel. • This contribution has an uncertainty of about 10-20%.
-
-
- The contribution of hyperons is usually taken as a rescaling of the pp. • This is probably a subdominant uncertainty of about 5-10%.

Hyperon production channel

$$
\frac{\mathrm{d}^3 N_{\rm d}}{\mathrm{d} p_{\rm d}^3} = S \int \frac{\mathrm{d}^3 r_{\rm d} \mathrm{d}^3 r}{(2\pi)^6} \,\mathrm{d}^3 q \,\mathrm{.}\, \mathcal{D}(
$$

$$
\mathcal{D}(\vec{r},\vec{q}) = \int d^3\xi e^{-i\vec{q}\cdot\vec{\xi}} \varphi_{\rm d}(\vec{r}+\vec{\xi}/2) \varphi_{\rm d}^*(\vec{r}-\vec{\xi}/2).
$$

 $W_{\rm pn} = H_{\rm pn}\left(\vec{r}_{\rm p},\vec{r}_{\rm n}\right)$

$$
\varphi_{\rm d}(\Delta r) = \left(\pi d^2\right)^{-3/4} e^{-\Delta r^2/(2d^2)} \qquad H_{\rm pn}(\vec{r}_{\rm p}, \vec{r}_{\rm n}) = h(\vec{r}_{\rm p}) h(\vec{r}_{\rm n})
$$

 $\mathcal{D}(\Delta r, q = \Delta p/2) = 8e^{-r^2/d^2}e^{-q^2d^2}$

Wigner formalism

 $\mathcal{P}(\vec{r},\vec{q})\cdot W_{\text{pn}}\left(\vec{p}_{\text{d}}/2+\vec{q},\vec{p}_{\text{d}}/2-\vec{q},\vec{r}_{\text{p}},\vec{r}_{\text{n}}\right)$

$$
G_\text{pn}\left(\vec{p_\text{d}}/2+\vec{q},\vec{p_\text{d}}/2-\vec{q}\right)
$$

$$
\frac{d^3N_d}{dp_d^3} = \frac{3}{(2\pi)^6}\left(\frac{d^2}{d^2+4\sigma^2}\right)^{3/2} \int d^3q \, e^{-q^2d^2} \, G_{np}(\vec{p_d},\vec{q})
$$

$$
\sigma_{inv}^{Galaxy} = \sigma_{inv}(2 + \Delta_{IS} + 2\Delta_{\Lambda})
$$

$$
\Delta_{\text{IS}} = \frac{c_1^{\text{IS}}}{1 + (s/c_2^{\text{IS}})^{c_3^{\text{IS}}}} \quad \Delta_{\Lambda} = 0.81 \left(c_1^{\Lambda} + \frac{c_2^{\Lambda}}{1 + (c_3^{\Lambda}/s)^{c_4^{\Lambda}}} \right)
$$

$$
\sigma_{inv}(\sqrt{s}, x_R, p_T) = \sigma_{in} (1 - x_R)^{C_1} \exp(-C_2 x_R) \quad \sigma_{inv}(\sqrt{s}, x_R, p_T) = \sigma_{in} RC_1 (1 - x_R)^{C_2}
$$
\n
$$
\times [C_3(\sqrt{s})^{C_4} \exp(-C_5 p_T) \quad \times [1 + \frac{X}{\text{GeV}} (m_T - m_p)]^{\frac{1}{C_3 X}}, \quad F_r(p_T, x_R) = (1 - x_R)^{c_8}
$$
\n
$$
+ C_6(\sqrt{s})^{C_7} \exp(-C_8 p_T^2)].
$$
\n
$$
\times \exp\left[-c_9 p_T - (\frac{|p_T - c_{10}|}{c_{11}})^{c_{12}}\right]
$$
\n
$$
\times \exp\left[1 + C_5 \left(10 - \frac{\sqrt{s}}{\text{GeV}}\right)^5\right] \text{ elsewhere}
$$
\n
$$
R = \begin{cases}\n1 & \text{if } \sqrt{s} \ge 10 \text{ GeV} \\
\left[1 + C_5 \left(10 - \frac{\sqrt{s}}{\text{GeV}}\right)^5\right] & \text{elsewhere} \\
\times \exp\left[C_6 \left(10 - \frac{\sqrt{s}}{\text{GeV}}\right)^2 & f^{pA} = A^{D_1} \left[A^{D_2} \left(1 + \frac{N}{A} \Delta_{IS} \right) F_{pr0}(x_f) + F_{tar}(x_f) \right] & + C_{16} \exp\left(-\left(\frac{|x_R - c_{17}|}{c_{18}}\right)^{c_{19}}\right)\right].\n\end{cases}
$$

$$
\times [C_3(\sqrt{s})^{C_7} \exp(-C_5 p_T) \times [1 + \frac{\Lambda}{\text{GeV}}(m_T - m_p)]^{C_3 \times}, \qquad F_r(p_T, x_R) = (1 - x_R)^{c_8}
$$

+ $C_6(\sqrt{s})^{C_7} \exp(-C_8 p_T^2)$.

$$
\times \exp\left[-c_9 p_T - (\frac{|p_T - c_{10}|}{c_{11}})^{c_{12}}\right]
$$

$$
\times \exp\left[-c_9 p_T - (\frac{|p_T - c_{10}|}{c_{11}})^{c_{12}}\right]
$$

$$
\times \exp\left[c_6(10 - \frac{\sqrt{s}}{\text{GeV}})^5\right] \text{ elsewhere}
$$

$$
F_r(p_T, x_R) = (1 - x_R)^{c_8}
$$

$$
\times \exp\left[-c_9 p_T - (\frac{|p_T - c_{10}|}{c_{11}})^{c_{12}}\right]
$$

$$
\times \left[c_{13} \exp(-c_{14} p_T^{c_{15}} x_R) +
$$

$$
+ c_{16} \exp\left(-(\frac{|x_R - c_{17}|}{c_{18}})^{c_{19}}\right)\right].
$$

$$
\sigma_{\rm in} = c_{\rm in,1} + c_{\rm in,2} \log(\sqrt{s}) + c_{\rm in,3} \log^2(\sqrt{s})
$$

XS Parameterizations

Phys.Rev.D 97 (2018) 10, 103019 Korsmeier, Donato, DM *Phys.Rev.D* 105 (2022) 12, 123021 Orusa, DM, Korsmeier, Donato

MARIA AND THE TANK OF THE CARD OF

$$
\sigma_{\text{inv}} = \sigma_0(s) c_1 \left[F_p(s, p_T, x_R) + F_r(p_T, x_R) \right] A
$$

$$
F_p(s, p_T, x_R) = (1 - x_R)^{c_2} \exp(-c_3 x_R) p_T^{c_4}
$$

× exp $\left[-c_5 \sqrt{s/s_0} \right]^{c_6} \left(\sqrt{p_T^2 + m_\pi^2} - m_\pi \right)^{c_7 \sqrt{s/s_0}^{c_6}}$

$$
A(s) = \frac{1 + \left(\sqrt{s/c_{20}}\right)^{c_{21} - c_{22}}}{1 + \left(\sqrt{s_0/c_{20}}\right)^{c_{21} - c_{22}}}\left(\sqrt{\frac{s}{s_0}}\right)^{c_{22}}
$$

In the above equations, the kinetic variables x_F and \sqrt{s} refer to the nucleon-nucleon CM frame. We do not claim https://arxiv.org/abs/2203.13143

FIG. 11. Results of the fit on the NA49 data [89] invariant cross section for the inclusive π^+ production in $p+C$ collisions. We show the NA49 data together with our fit results as a function of x_F for some representative values of p_T . Shaded Cross sections for Cosmic Rays @ CERN, October 16-19 2024 39 hands show the 1σ uncertainty band. Mattia Di Mauro INFN

XS from heavier nuclei

- In the Galaxy, nuclei interactions $(p + A, A + p,$ and $A + A$) give a significant contribution to the production of secondary particles.
- We used the data of NA49 for the production of π + in p+C collisions at Ep = 158 GeV and $K+$ in p+C collisions at $Ep = 30$ GeV.

We model the inclusive Lorentz invariant cross section of the $A_1 + A_2 \rightarrow \pi^+ + X$ scattering by:

$$
\sigma_{\text{inv}}^{A_1 A_2}(\sqrt{s}, x_F, p_T) =
$$
\n
$$
f^{A_1 A_2}(A_1, A_2, x_F, D_1, D_2, D_3) \sigma_{\text{inv}}^{pp}(\sqrt{s}, x_R, p_T),
$$
\n(25)

where A_1 and A_2 are the mass numbers of the projectile and target nucleus, respectively, and D_1 , D_2 , and D_3 are three fit parameters. Explicitly, the factor $f^{A_1A_2}$ is defined by:

$$
f^{A_1 A_2}(x_F) = A_1^{D_1} A_2^{D_1} \left[A_1^{D_2} F_{\text{pro}}(x_F) + A_2^{D_2} F_{\text{tar}}(x_F) \right],\tag{26}
$$

with $F_{\text{pro}}(x_F)$ and $F_{\text{tar}}(x_F)$ given by

$$
F_{\text{pro/tar}}(x_F) = \frac{1 \pm \tanh(D_3 x_F)}{2}.
$$
 (27)

γ rays produced by inverse Compton scattering

IACTs

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 40 Mattia Di Mauro INFN

HAWC

HAWC results for Geminga and Monogem PWNe

• HAWC detected an extended emission from Geminga and

- Monogem PWNe for **E>5 TeV**.
- *• In the vicinity of the PWN, the diffusion coefficient D Galaxy.*

must be about 500 times smaller than the average in the

A few pulsars dominate the positron flux

Orusa et al. JCAP 12 (2021) 12, 014.

Cosmic-ray antiprotons

Gamma rays from dark matter annihilation

Gamma-ray lines: Two-body annihilation into photons

Box-shaped spectra: Photons from cascade decay

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

Continuum emission: Prompt Photons from neutral pion decay

Gamma rays from dark matter annihilation

Box-shaped spectra

- Cascade-decay into monochromatic photons
- already at tree level

Internal Bremsstrahlung (IB) • radiative correction to processes with charged final

- states
- Generically suppressed by $O(\alpha)$

$$
\chi\chi \rightarrow
$$

$$
\cdot \; \bar{f} f \gamma
$$

Gamma-ray lines

- from two-body annihilation into photons
- forbidden at tree-leve, generically suppressed by $O(\alpha^2)$

 $\chi\chi\to\gamma\gamma$

Theory for the gamma-ray flux from Dark matter

Paper III

- emission from DM.
- The diffusion process has a much smaller effect that energy losses in the GC.
- The bremsstrahlung component is also negligible.

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

• We use a model that accounts for prompt and ICS

Paper III

- We use the same analysis as in **Reinert and Winkler 2018**.
	- A combined fit to AMS-02 and Voyager p, AMS-02 and Pamela anti-p, AMS-02 B/C is performed.

• The addition of best-fit DM for the GCE with bottom channel worsens the fit with a delta chi-square of 44 (6σ worsening). • We have used L=3kpc.

Cosmic-ray and radiation experiments

• Currently, there are precise experiments of cosmic ray and radiation. • The future will be even more interesting!

Uncertainties in the GCE flux

•**Macias et al. 2016-2020:**

•The GCE is better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess.

•Given its non-spherical nature, they argue that the GCE is not a dark matter phenomenon but rather associated with the stellar population

-
- of the Galactic bulge and nuclear bulge.

Most recent papers

- *Leane et al. 2019 and Chang et al. 2019:* the NPTF can misattribute to point sources or DM un-modeled point sources imperfection in the modeling of data.
- •*Zhong et al. 2019* applied a wavelet method with 4FGL, and **do not find any evidence** of a faint population of un-modeled sources.
- •*Buschmann et al. 2020:* They use a state-of-the-art model IEM find that the NPTF results continue to favor the interpretation that **the GCE excess is due, in part, to unresolved astrophysical point sources**.
- *List et al. 2019:* we find that the NN estimates for the flux fractions from the background templates are consistent with the NPTF; however, **the GCE is almost entirely attributed to smooth emission**.

The situation is thus rather confusing and dark matter has recently gained interest.

Cross sections for Cosmic Rays @ CERN, October 16-19 2024 Mattia Di Mauro INFN

Characteristics of the GCE: Summary

Spectrum peaked at a few GeV

No energy dependence of spatial morphology.

gamma=1.25

The GCE is approximatively spherically symmetric.

 $E^2\frac{dN}{dE}$ [MeV/cm²/s] 10^{-}

