

Cross Sections for Cosmic Rays, XSCRC2024, CERN, 18/10/2024

Timeline of Direct Measurement of CRs from 2000

Great legacy from the past (<2000), here we focus on the latest ones. Not all experiments displayed (sorry). Many different experimental techniques employed, frequently focusing on some specific CR species or energy range.

CRs Directly from the International Space Station

International Space Station						
Altitude	~ 400 km					
Inclination	51°					
Period	93 min					
Construction	1998					
Dimensions	$73 \times 109 \text{ m}^2$					
Weight	420 t					

CALET

Launch 19/08/2015, H2-B Dim. 1.9 × 0.8 × 1.0 m³ Weight 650 kg Power 650 W

ISS-CREAM

Launch 14/8/2017 SpX, Falcon 9 Dim. 0.95 × 1.85 × 1 m³ Weight 1.3 t Power 600 W

AMS-02: Alpha Magnetic Spectrometer

CALET: Calorimetric Electron Telescope

What's Next: the Energy Frontier

Data in the last decade are based on much larger statistics than the past and revealed many new details.

- Significant structures above 100 GeV have been found in all hadronic species.
- A hardening above few hundreds of GeV, and a softening above 10 TeV. What's their origin?
- Why the *p*/He ratio has a slope **without features**?
- Why the sharp structure in $(e^- + e^+)$ at 1 TeV?

Experimental questions:

- \rightarrow Can we study all proton, nuclei and electron spectra at higher energies?
- → Can we study the knee with a direct cosmic ray experiment?

What's Next: HERD, Towards the Knee

What's Next : the Composition Frontier

- The galactic halo size is the principal "unknown" of the cosmic ray diffusion models.
- Unstable elements are free to decay in the halo and can be used to measure it.
- The ¹⁰Be decay ¹⁰Be \rightarrow ¹⁰B + $e^- + \bar{v}_e$ with a half-life of $t_{1/2} = 1.4$ My, is the most studied one.
- The interpretation of the data seems to be severely limited by isotopes production cross section knowledge.

Experimental questions

→ Can we measure isotopic composition of cosmic rays up to high energy? (in some sense, if pushed to enough high energies the XS problem would be solved).

What's Next: ¹⁰Be/⁹Be with HELIX

What's Next: the Antimatter Frontier

Antimatter is rare in cosmic rays, but it is important for the study of **new physics**.

- The positrons show an excess with a cutoff not compatible with cosmic ray production.
- Presence of a possible excess in p flux at ~10 GV. Modelling of astrophysical background is a limiting factor in the interpretation (uncertainties in propagation, production, and solar modulation).
- A signal in antiproton implies a corresponding antideuteron signal and viceversa.
- Antideuterons are believed to be a clean channel for indirect dark matter search at 1 GeV/n.
- Antihelium nuclei claimed by AMS-02, if confirmed, may have large impact.

Experimental questions:

- → Can we measure positrons structure above the **observed cutoff**?
- → Can we do an experiment with high sensitivity for antimatter search in cosmic rays?

What's Next: The AMS-02 Upgrade

The **AMS-02 Upgrade** consist in the additional installation of a large tracking plane (diameter 2.6m) on top of AMS to be installed in 2026. This additional detector will allow to enlarge the field of view of the experiment increasing by a factor 3 the collection power (nuclei, positrons, antideuterons).

What's Next: GAPS

- General Anti-Particle Spectrometer (GAPS) is a balloon-borne instrument.
- The detection of antiparticles is based on an innovative experimental technique:
 - antiparticles are stopped in the material and form exotic atoms.
 - characteristics X-ray are emitted from orbital transitions of the exotic atom.
 - Pion-"star" produced by the final annihilation of the antiparticle on the nucleus.
- Finalized, foreseen the first balloon campaign in Antarctica starting from the end of this year.
- Will measure \bar{p} and \bar{d} in the interval between 100 MeV/n and 250 MeV/n.

→ Other projects as the **ADHD**, and **GRAMS** have been proposed to profit of the same experimental principle but with very different designs. This is a new experimental field in its own.

P. Von Dotinchem, JENAA Workshop @ CERN 2024.

d or p

He

Ideas for the Next Generation: ALADInO

Location Installation Dimensions Det. weight Power Magnetic Field	Lagrange Point L ₂ >2030 Ø = 4.4 m, L = 2 m 6.5 t 3 kW 0.8 T		
Acceptance	>10 m ² sr Phys	sics objectives:	
Cal. thickness	61 X ₀	e [±] up to 10 TeV;	
	• (Cosmic ray comp. up to knee.	
R. Battiston <i>et al</i> 25 20 40 5 5 5 10 5 5 10 5 10 10 10 10 10 10 10 10 10 10	AMS-02 PRL 122, 041102 (2019) ALADINO 15 m ² sr yrs stat. uncertainty 10 ³ Energy (GeV)	per (2021). 10^{-3} BG - Astroph Unc. BG - Nuclear Unc. DM - CuKrKo ALADINO - 5 yrs 10^{-9} 10^{-1} 1 10 Kinetic Energy (GeV/n)	<complex-block></complex-block>

Ideas for the Next Generation: AMS-100

Conclusions

- Direct measurement of CRs is a precision measurement field.
- Many missions are currently taking data at the same time, several of which are on the ISS.
- Many new observations were made in the last decade, and many still need an understanding.
- For the development of the field an important dependence with ground experiment has emerged (cross section measurements), that is the subject of this workshop.
- New CR direct measurement projects in space and on ballons are under realization. They will
 expand the field in terms of addressing specific problems (as ex, ¹⁰Be/⁹Be), extending the energy
 range (as ex. towards the knee), or improving sensitivity (as ex. to antimatter search).
- Experiments for the next generation have been proposed. The effort is mainly dedicated in the increase of the TRL of new technologies, and to realize a pathfinder mission to test them with a strong physics case (antimatter).

Calorimeters/Spectrometers Comparative Performances

15

Future

	FERMI	PAMELA	AMS-02	CALET	DAMPE	HERD	ALADInO	AMS-100
Magnetic Field [T]		0.43 (PM)	0.14 (PM)				0.8 (SM)	1 (SM)
MDR (ΔR/R = 100%) [TV]		1	2-4				>20	100
Acceptance [m ² sr]		0.0021	0.5				>10	100
e/γ Energy resolution @100 GeV [%]	10	5.5	3	2	1.5	<1	2	<1*
e/γ Angular resolution @100 GeV [°]	0.1	0.3	0.3	0.2	0.1	<0.1	<0.1*	<0.01
e/p discrimination	10 ³	10 ⁵	10 ⁵	10 ⁵	10 ⁵	>106	>10 ⁵	>10 ^{5*}
Thickness [X ₀]	8.6	16.3	17	27	32	55	61	70
Acceptance [m ² sr]	1	0.06	0.09	0.104	0.3	>3	9	30
Acceptance [m ² sr]		0.0021	0.09				3	30

Not all experiments and techniques displayed (sorry).

(*) Educated guess.