Critical fluctuations from molecular dynamics with expansion

Volodymyr Kuznietsov

Research supervisor: Prof. Volodymyr Vovchenko

02.24.2024

Introduction	Results	Summary and discussions	Extras
• 00000	000		000
QCD matter			

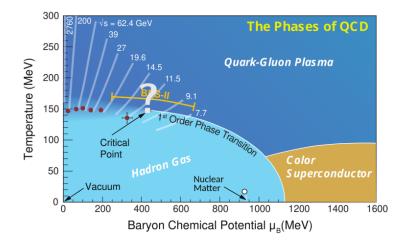


Figure from Bzdak et al., Phys. Rept. 2020 & 2015 Long Range plan

Introduction	Results	Summary and discussions	Extras
0000	000	00	000

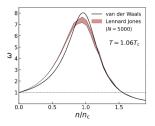
Fluctuations as CP signature

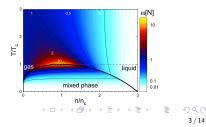
In GCE density cumulants shows singularity behaviour in the critical point.

$$\ln Z^{\text{gce}}(T, V, \mu) = \ln \left[\sum_{N} e^{\mu N} Z^{\text{ce}}(T, V, N) \right], \quad (1)$$

$$\kappa_n \cong \frac{\partial^n (\ln Z^{\text{gce}})}{\partial (\mu_N)^n}.$$
(2)

The real expression for $Z^{\rm gce}$ is unknown in QCD matter.





Introduction	Results	Summary and discussions	Extras
00000	000		000

Connection to the experiment

Theory

- Coordinate and/or momentum space
- In contact with the heat bath
- Conserved charges
- Uniform
- Fixed volume

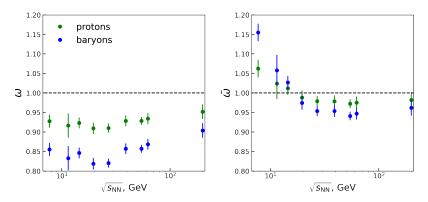
Experiment

- Momentum space
- Expanding in vacuum
- Non-conserved particle numbers
- Inhomogenous
- Fluctuating volume

Need microscopic description of fluctuations

Introduction	Results	Summary and discussions	Extras
000●0	000		000
STAR data			

Data: M. S. Abdallah et al., Phys. Rev. C 104, 024902 (2021)



Left panel – raw data, right panel – corrected for *B* cons., $\tilde{\omega} = \omega/(1-\alpha)$ What does deviation from the unity means? Could it be a critical point?

 Introduction
 Results
 Summary and discussions
 Extras

 0000
 000
 000
 000
 000

Lennard-Jones potential

The Lennard-Jones potential reads

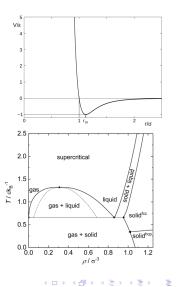
$$V_{\rm LJ} = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^6 - \left(\frac{\sigma}{r} \right)^{12} \right],$$
 (3)

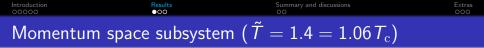
In reduced dimensionless variables it can be rewritten as

$$\tilde{V}_{\rm LJ} = 4[\tilde{r}^{-12} - \tilde{r}^{-6}],$$
 (4)

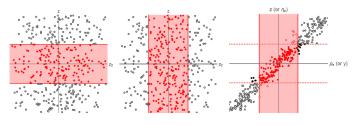
where the reduced variables are used: $\tilde{r} = r/\sigma$ and $\tilde{V}_{\rm LJ} = V_{\rm LJ}/\varepsilon$.

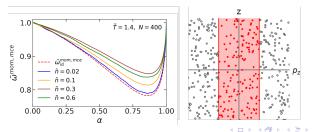
The LJ fluid contains a critical point in the 3D Ising universality class.





Signal disappears in momentum space





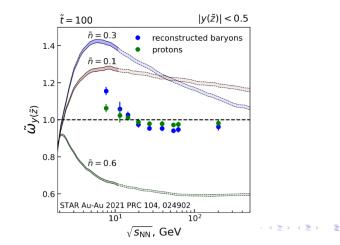
7/14

3

Introduction	Results	Summary and discussions	Extras
00000	O●O		000

Fluctuations for constant rapidity cut

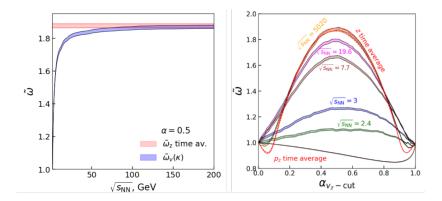
$$\alpha_y = \alpha_y(\sqrt{s_{\rm NN}}) = \frac{\langle N \rangle_y}{N_0}, \quad y_{z-{\rm cut}} = 0.5$$
(5)



Introduction	Results	Summary and discussions	Extras
00000	00●		000

Fluctuations for constant α

$$\alpha_y = \text{const} = \frac{\langle N \rangle_y}{N_0} = 0.5, \quad y_{z-\text{cut}} = y_{z-\text{cut}}(\sqrt{s_{\text{NN}}})$$
 (6)



・ロト・日本・日本・日本・日本・日本

Introduction	Results	Summary and discussions	Extras
00000	000		000
Summary			

- 1. Ergodic hypothesis is shown to work for 2nd-order fluctuations along the $\tilde{T} = 1.4 \simeq 1.06 T_c$ isotherm, including the vicinity of the critical point \rightarrow good for HICs
- 2. The collective flow effect is implemented and is shown to allow us to see the enhancement of fluctuations in the momentum space \rightarrow good for HICs measurements
- 3. Fluctuations in realistic rapidity acceptance |y| < 0.5 is studied as a function of collision energy and the maximum of fluctuations observed for $\sqrt{s_{\rm NN}} \simeq 5$ GeV \rightarrow good for upcoming HIC data

Introduction	Results	Summary and discussions	Extras
00000	000		000
Outlook			

- Comparing our results to hydrodynamics simulations.
- Assessment of the antiparticle contribution at higher energies.
- Higher-order cumulants (with bigger statistics).
- Study of the mixed phase with the expansion. Test of the ergodicity in the mixed phase.

THANK YOU FOR ATTENTION! Questions?

Introduction Results Summary and discussions Extras

Ergodicity and ensemble averaging

Time average [V. A. Kuznietsov et al., PRC 105, 044903 (2022)]

$$\langle A \rangle_{\tau} = rac{1}{ au} \int\limits_{ ilde{t}_{eq}}^{ ilde{t}_{eq}+ au} A(t) dt,$$
 (7)

versus ensemble average:

$$\langle A \rangle_M = \frac{1}{M} \sum_{i=0}^M A_i$$
 (8)

Ergodic hypothesis:

$$\lim_{\tau \to \infty} \langle A \rangle_{\tau} = \lim_{M \to \infty} \langle A \rangle_{M} \tag{9}$$

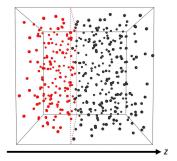
イロト 不得 トイヨト イヨト 三日

Introduction	Results	Summary and discussions	Extras
00000	000		O●O
Simulation s	etup		

$$m \frac{d^2 \tilde{\mathbf{r}}_{ij}}{d\tilde{t}^2} = -\overrightarrow{\nabla} \tilde{V}_{LJ}(\tilde{\mathbf{r}}_{ij})$$
(10)

- Three points on the phase diagram, $\tilde{n} = 0.1 \approx 0.3 n_c$, $\tilde{n} = 0.3 \approx 0.95 n_c$, $\tilde{n} = 0.6 \approx 2 n_c$, all for $T = 1.06 T_c$
- $N_{\rm ev}\simeq$ 32000 events at each density
- Initialize each event with random initial coordinates and momenta
- Run each event for long time $(\tilde{t} = 100)$, write snapshots to file at regular time intervals
- Calculate observables as event-by-event (ensemble) average

The simulations are performed on PhysGPU cluster. Code is available at: https://github.com/vlvovch/lennard-jones-cuda



Introduction	Results	Summary and discussions	Extras
00000	000	00	000

Time vs ensemble average

