

# Simulation studies of the luminosity detector for the ePIC experiment at the EIC

## Physics Research Day - 2024

## Aranya Giri

Experimental High Energy Physics Lab. Department of Physics, University of Houston



Advisor – Prof. Rene Bellwied Co-Advisor – Dr. Dhevan Gangadharan

Date - 24<sup>th</sup> Feb, 2024

## Background



Fig. Diagram showing the matter composition

#### Observed Hadrons(Nucleons)



Fig. Picture showing the quark model of Baryons and meson, collectively hadrons.

| Fundamental Force Particles Particles Force Carrier Belative          |                            |                                          |                |                  |
|-----------------------------------------------------------------------|----------------------------|------------------------------------------|----------------|------------------|
| Force                                                                 | Experiencing               | Particle                                 | Range          | Strength*        |
| <b>Gravity</b><br>acts between<br>objects with mass                   | all particles<br>with mass | graviton<br>(not yet<br>observed)        | infinity       | much<br>weaker   |
| Weak Force<br>governs<br>particle decay                               | quarks and<br>leptons      | $W^{\dagger}, W^{-}, Z^{0}$<br>(W and Z) | short<br>range |                  |
| Electromagnetism<br>acts between<br>electrically charged<br>particles | electrically<br>charged    | γ<br>(photon)                            | infinity       | ¥                |
| Strong Force**<br>binds quarks together                               | quarks and gluons          | g<br>(gluon)                             | short<br>range | much<br>stronger |

Fig. Chart of four fundamental forces in nature



## Deep Inelastic Scattering Timeline





DIS Feynman Diagram

https://www.desy.de/h1zeus/combined\_results/index.php?do=proton\_structure\_fits2010\_herapdf1.5\_figures



## The Electron Ion Collider



Fig. EIC Schematic diagram showing different components.





## The EIC Project – Kinematic Range



Fig. The x-Q2 range for e+A collisions for ions larger than iron (yellow) compared to existing world data.

https://doi.org/10.48550/arXiv.2103.05419



## The EIC project – DIS processes under investigation





- e- : electron
  - p : proton
- v : neutrino
- h : hadrons
- X : final state particles
- W : W Boson
- $\gamma$  : photon

https://indico.cern.ch/event/1005703/contributions/4221944/attachments/2184743/3923506/Schienbein\_dis1\_2021.pdf https://doi.

https://doi.org/10.1016/j.nuclphysa.2022.122447



## Luminosity Detector - Introduction

Rate of an event during collision (R) = L  $\cdot$  cross-section ( $\sigma_p$ ) of the associated process

Luminosity is the maximum no. of collisions that can be produced in the collider per cm<sup>2</sup> per sec



$$L = f N^2 / 4 \pi r^2$$

https://www.lhc-closer.es/taking\_a\_closer\_look\_at\_lhc/0.luminosity





## Luminosity Detector – Bremsstrahlung Radiation

Radiation due to elastic scattering of electron near strong electric field ( p / Nu ).



- $E_p$  Outgoing p energy
- $E_e^{}$  Outgoing e<sup>-</sup> energy
- $E_p$  Incoming p energy
- E<sub>e</sub> Incoming e<sup>-</sup> energy
- $E_{\gamma}$  BH photon energy

At EIC, precision ~ 1% & High Luminosity ~  $10^{33-34}$  cm<sup>-2</sup> s<sup>-1</sup>









## Luminosity Detector at ePIC



Fig. ePIC Pair Spectrometer Luminosity Detector pictorial design



## Luminosity Detector in DD4hep

Point Exit Window Luminosity Pair Spectrometer Z = -18.5 m DD4hep Implementation Collimator Z = -22.6 mIon-Beam Crabbing M Sweeper Magnet Z = -62.5 m Analyzer Magnet Z = -66.5 mCALs + Trackers Z = -70.5 m Vacuum chamber with conversion foil inside

Fig. Current ePIC Luminosity Detector design with e<sup>-</sup> and p beam pipes and magnets built by Dhevan G., Aranya G. & Justin C. in DD4hep. The placement of different component not fixed, changes according to experimental needs.

https://arxiv.org/pdf/2106.08993.pdf



Interaction

## **Calorimeter - Introduction**

Calorimeters are blocks of instrumented material in which particles to be measured are fully absorbed and their energy transformed into a measurable quantity.



Fig. Electromagnetic shower propagation inside a electromagnetic calorimeter.

Inspiration of Design : [1] 10.1088/1742-6596/404/1/012023

## Calorimeter - W-ScFi



- Sampling Electromagnetic Calorimeter (CAL)
- Detectors and absorber separated  $\rightarrow$  only part of the energy in absorber is detected.
- Absorber Hard Material like Pb, W
- Active Part Scintillating fibers, crystals
- Excellent Spatial resolution but limited energy resolution
- Spaghetti CAL ~ W-Scintillator Fibers
- Alternating Layer of Y|| and X|| fibers

Inspiration of Design : [1] 10.1088/1742-6596/404/1/012023



## Calorimeter - W-ScFi



Inspiration of Design : [1] 10.1088/1742-6596/404/1/012023



## W-SciFi CAL – Energy Resolution



Fig. Standalone energy resolution of PS CALs, e- hit directly at a CAL.

## W-SciFi CAL – Simulation results

| Energy Resolution<br>(Stochastic term) | 8.8%    |
|----------------------------------------|---------|
| Position Resolution                    | 1.6 mm  |
| Moliere Radius                         | 14.5 mm |
| Shower Depth                           | 8.1 mm  |







## Thank You





## Notations

#### **Kinematics of Inelastic Scattering**



 $https://www.hep.phy.cam.ac.uk/\!\sim\!thomson/partIII particles/handouts/Handout_6_2011.pdf$ 



## Notations



• In the Lab. Frame:

$$p_1 = (E_1, 0, 0, E_1) \quad p_2 = (M, 0, 0, 0)$$
  

$$q = (E_1 - E_3, \vec{p}_1 - \vec{p}_3)$$
  

$$\rightarrow \quad y = \frac{M(E_1 - E_3)}{ME_1} = 1 - \frac{E_3}{E_1}$$



So y is the fractional energy loss of the incoming particle

0 < y < 1

• In the C.o.M. Frame (neglecting the electron and proton masses):

v is the energy lost by the incoming particle

https://www.hep.phy.cam.ac.uk/~thomson/partIIIparticles/handouts/Handout\_6\_2011.pdf



## Notations



https://www.slideserve.com/yama/do-gluons-carry-proton-spin-toward-resolving-the-spin-crisis



## The EIC Project – Physics Questions to Address







https://www.slideserve.com/yama/do-gluons-carry-proton-spin-toward-resolving-the-spin-crisis



## The EIC Project – Physics Questions to Address

#### Behavior of quarks in nuclear medium



Fig. 1. A plot of the EMC data as it appeared in the November 1982 issue of *CERN Courier*. This image nearly derailed the highly cited refereed publication (Aubert *et al.* 1983) because the editor argued that the data had already been published.







## The EIC Project



https://indico.jlab.org/event/344/contributions/10582/attachments/8367/11951/QNP2022-EIC-Horn-v1-nb.pdf



## The EIC Project

