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What is QCD?
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Introducing Lattice QCD

We go from 4D Minkowski spacetime to 4D Euclidean spacetime
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QCD Phase Diagram

What do we know?
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and lattice calculations that
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Problem Statement

Q: Is Deep Learning able to tell us how broad the crossover is? Can it do that using
only the lattice configurations and with complete ignorance of the physics behind,
doing it without imposing our preconceived notion of a pseudo-order parameter?

| A: Probably yes. |

‘ Q: How will we use Deep Learning to solve the problem?

A: learn from simple, well-known statistical models, then move to complex models:

 2D/3D Ising and Heisenberg models

 Transfer our knowledge to pure gauge lattice QCD configurations

 Build a deep learning model to study system with quarks
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Understand pure-gauge critical behavior

{focead) Pure gauge simulation for different lattice sizes
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L usesaatenis
What is Deep Learning ?

output of a neuron =
nonlinear function of
weighted sum of inputs

e i How does the CNN work?

weighted sum
z= Z w;y; + ,Ll, output value freLU

7 (offset, “bias”)
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Implementation for 2D/3D Ising and Heisenberg Models

Generating configuration files: Monte Carlo simulation for different statistical models

‘ Supervised training
Build DL model ‘ Feed conf files to the model ‘ Train the model ‘ Test the model

Use the trained model to predict the phase of a different set of configurations, for example
one thousand configuration files per temperature

Model prediction per configuration:0< P < 1
Doing statistics on the 1000 predictions

(0 0.0% Ferromagnetic » Average prediction per configuration <P>
P = : » » Standard deviation prediction (error bars)
1 100% Ferromagnetic > Variance in prediction o2
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Classical 3D-Heisenberg Model Results X-Component Only

We got very good results for:
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Conclusions and future work

Conclusions:

O The classification tasks for complex statistical models needs building CNN networks
O The average prediction mimics the behavior of an order parameter

» we can use it to get insight in systems for which we don’t have a real order parameters
O The variance in prediction is a very good indicator for the location of the phase transition

» we can use it in systems for which we do not know the value of the transition temperature

Future work:

1 Build a model to do classification tasks the in the pure gauge sector

1 Build a model to do the classification task in a QCD system that includes fermions
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Thank You
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