PTFE reinforced electrolyte membrane for high performance and durability in Proton Exchange Membrane Fuel Cell (PEMFC)

Subash C. Bhandari Advisor: Dr. Anima Bose

Date: 02/24/2024

UNIVERSITY of HOUSTON

Physics Research Day - 2024

DEPARTMENT OF PHYSICS

1. Introduction on Fuel Cell

2. Experiment

3. Results and Discussion

4. Conclusion

1. Introduction: Fuel Cell

UNIVERSITY of HOUSTON

1. Introduction: Proton Exchange Membrane Fuel Cell (PEMFC)

Proton Exchange Membrane Fuel Cell (PEMFC)

$2H_2 \rightarrow 4H^+ + 4e^-;$	$\Delta V_a = 0.00 V$
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$;	ΔV _c = 1.229 V
$2H_2+O_2\rightarrow 2H_2O\;;$	ΔV _o = 1.229 V
	$2H_2 \rightarrow 4H^+ + 4e^-;$ $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O;$ $2H_2 + O_2 \rightarrow 2H_2O;$

UNIVERSITY of **HOUSTON**

1. Introduction: Proton Exchange Membrane Fuel Cell (PEMFC)

Physics Research Day - 2024

HOUSTON

Chemical structure of state-of-the-art Nafion® monomer

General properties of PEM

- Excellent proton conductivity
- High electric resistivity
 - Barrier to gas crossover
 - Mechanically strong
 - Higher chemical stability

General properties of PEM

- Excellent proton conductivity
- High electric resistivity
- Barrier to gas crossover ٠
- Mechanically strong •
- Higher chemical stability ٠

***** Proton Transport Mechanisms

EnergyTechnol.2015,3,675-691

Physics Research Day - 2024

1. Introduction: Proton Exchange Membrane (PEM)

***** Proton Transport Mechanisms

Hydrophobic region Hydrophilic cluster Short narrow nanochannel **Dry state of PFSA** Water incorporated PFSA **Fully swollen PFSA**

EnergyTechnol.2015,3,675-691

UNIVERSITY of

HOUSTON

General properties of PEM

- Excellent proton conductivity
- High electric resistivity
 - Barrier to gas crossover
- Mechanically strong •
- Higher chemical stability ٠

Nafion[®] Membrane

Pros:

- Excellent proton conductivity
- Good chemical stability •
- Thermally stable up to 160 °C

Cons:

- Excessive swelling
- Gas permeability ٠
- Low mechanical strength •
- Expensive (~ 1000 \$/m²)

Vehicular Mechanism

Physics Research Day - 2024

Grotthus Mechanism

 $H^{\scriptscriptstyle +}$

2. Experiment

PTFE reinforced Nafion composite membrane:

- 1. Casting Nafion solution directly on porous PTFE Substrate (PTFE/Nafion)
- 2. Casting Nafion solution on modified-PTFE substrate (modified-PTFE/Nafion)

3. Result and Discussion: General Properties

- Reduced swelling ratio
 - Constrained by PTFE network
- Increased proton conductivity
 - Packed-acid mechanism

Enhanced mechanical strength
PTFE support

Single cell PEMFC performance in (a) H_2/O_2 and (b) H_2/air

3. Result and Discussion: PEMFC performance and Durability

Single cell PEMFC performance at various RH

Membrane durability test at constant current of 0.2 A with cell temperature of 90 °C and 30% RH

Compared to the state-of-the-art Nafion[®] membrane, modified PTFE/Nafion electrolyte membrane demonstrates;

- More than 57% lower swelling ratio
- Improved mechanical strength by 1.8-fold
- Improved PEMFC performance by 52% in O₂ and 35% in air
- Long term stability in harsh operating conditions of PEMFC

Current Lab Members

- Dr. Anima Bose
- Dr. Dinh Cong Tinh Vo
 - dari :Graduate Student
- Subash Bhandari
- Paul Byaruhanga

: Joint Graduate Student

: Postdoctoral Researcher

: Research Advisor

Thank you for your Attention !

UNIVERSITY of HOUSTON

Thermodynamic potential:

$$V_{Nernst} = \Delta V_o + \frac{\Delta S}{nF}(T - T_o) + \frac{RT}{nF} \ln(\frac{P_{H_2} P_{O_2}^{1/2}}{P_{H_2O}})$$

Fuel Cell Potential
$$(V) = V_{Nernst} - \eta$$

Over potential
$$(\eta) = \eta_{act} + \eta_{ohm} + \eta_{con}$$

$$\eta_{ohm} = iR_{internal}$$

 ΔS = Change in entropy n = number of electrons involved in the reaction F = Faraday's Constant ΔV_o = Equilibrium cell potential V_{Nernst} = Nernst Potential R = Gas Constant T = Operating Temperature P = Partial pressure