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* Develop the approaches to
o ldentify
o Intervene
o Disrupt

Networks that facilitate procurement and sale of lllicit,
Substandard, and Falsified Medicinal Products (ISFMP)
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Background: What are ISFMP?

e lllicit, Substandard, and « Examples include toxic or

Falsified Medical Products iIneffective:
(ISFMP) include medical o Prescription drugs
products which are: - Dietary supplements

o Stolen o Face masks

o Diverted o Vaccines

o Price-gouged o Testing Kits

o Unregistered

o Unlicensed

o Counterfeit
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Background: Why are ISFMP a problem?

Counterfeit drugs
account for
approxmately $755 il %R Gotine™

or a go a
pharmaceutical annually
market

Production and sale
of ISFMP

ecompromise a health
The emergence of system
long-term drug sundermine the production

resistance and procurement of
legitimate drugs

*pose a public health
hazard

*erode public trust
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Background: ISFMP Detection Challenges

» Current strategies to tackle counterfeit drug trade (to the
best of our knowledge)

o do not integrate
— the plurality of internet-available data
— intervention approaches
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Method: Finding "Weak”

Think of how an

investigator uses

a working wall to
solve a case...

Collect
Evaluate OSINT
Find motifs
Learn
topological
i i properties
Disseminate Aogregate Link prediction h
Operation et Monte Carlo 0
Financial dynamics
Communication [1 ]
Inference Cluster Learn physical Cascading

properties failures

—

Random
[1] X. Wang and J. Liu, “A layer reduction based community detection algorithm on multiplex damage

networks,” Physica A: Statistical Mechanics and its Applications, vol. 471, pp. 244—-252, Apr. 2017,
doi: 10.1016/j.physa.2016.11.036.

[2] “Breaking Bad,” High Bridge Productions, Gran Via Productions, Sony Pictures Television, Jan.
20, 2008.
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Al-SNIPS: Pipeline
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lllustration of the AlI-SNIPS pipeline after completion of the core functionality milestone.

T. A. Burt, N. Passas, and I. A. Kakadiaris, “Al-SNIPS: A Platform for Network Intelligence-Based Pharmaceutical Security,” AAAI, vol. 37, no. 13, pp. 16407-16409, Jun. 2023, doi

10.1609/aaai.v37i13.27061.
Changing the way pgagle look at comppérs
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AI-SNIPS: Input

* Case « Aggregate of all ISFMP case
o Required (1 attribute) attributes encountered to date
— One or more URLs suspected of _
ISFMP activity * Most not currently used to link
o Optional (47 attributes) sellers

— Seller PIl, case notes, outcomes _
» One Case represents * New attributes can be added

> One node in the output network upon stakeholder request

o One row in the stakeholder-provided
lead sheet

* One lead sheet consists of
o Rows: cases
o Columns: attributes



Al-SNIPS: Output

Output Output, Optional
e Clustered Cases * Cluster Descriptors
_ Cases that had no similarities - Summarize the most
with other cases (i.e., no prominent cluster similarities
edges) are discarded » Metrics from network analysis
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* Natural period of about

two weeks In the

availability of ISFMP

items

o Emerges regardless of

lead type or initial
scraping date

Results

response status
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Results (2)

« Small-world (or scale-free)
behavior in the network'’s
degree distribution p(k)

— Implies the existence of a
scaling law between seller
connectivity and network size

Degree distribution p(k) of clustered nodes (degree k = 1, unweighted)
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Results (3)

* The average unweighted
degree of similar seller groups
IS approximately 3 \

1071+ \R

Degree distribution p(k) of clustered nodes (degree k = 1, unweighted)
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Results (4)

* The average unweighted

fjegree of similar seller groups SPAN
IS approximately 3
. . ’) Affiliate
— Agrees with other studies that ¢ marketer
. - U
pharmaceutical affiliate programs (customen
often consist of interactions e ca
. — affiliate programs
between three dependent entity == ¢ TR N ED
types at a single point in time ooment R are.
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Results (5)

 Clustered nodes distribution supports
that most ISFMP seller groups come
in pairs of two (= 60%) (might be an
artifact...)

— Heavy tail implies a handful of the

groups are much larger and probably

involved in spamming/pharmaceutical
affiliate programs (PAP)
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Future Research Work

» Dynamics  } Module
o Disruptions

L
o Validation } ayers
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Conclusions

* AI-SNIPS hopes to incorporate strategies from physics
and machine learning into pharmaceutical security

* Validation of network disruption strategies is the hardest
(and most time-consuming) part

* Important to address the root causes and global conditions
that lead to pharmaceutical counterfeiting to make true
progress
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