
Lessons learnt from large scale data processing with
CVMFS

HEPIX, April 2024

Matt Harvey
HPC Production Engineer

2

JUMP TRADING

• Privately-owned proprietary trading firm, established 1999

• Focus on algorithmic and high-frequency trading

• World-wide operations
• 12 offices across US, EU, Asia, Pacific

• >700 employees

3

HPC at Jump

Jump’s Research Environment
(HPC / “The Grid”)

• The platform where we develop and optimize
trading strategies

• Sophisticated data-intensive and compute-
intensive research workflows

• Technologically competitive with some of the
largest publicly known research systems in the
world

• Thousands of servers
• Hundreds of petabytes of storage
• Fast network interconnects
• Keeps growing: more hardware every year

Fabric logical diagram
Image Credit: Olli-Pekka Lehto

Data Archive
• Realtime-updated repository

of all market data
• Data captured from

exchanges around the
globe

• Derivative products for end-
users

Ten Years of Archive Growth

1

10

100

1000

20
13

-01
-01

20
14

-01
-01

20
15

-01
-01

20
16

-01
-01

20
17

-01
-01

20
18

-01
-01

20
19

-01
-01

20
20

-01
-01

20
21

-01
-01

20
22

-01
-01

20
23

-01
-01

20
24

-01
-01

Archive Growth - PB

Doubling ~2 years, currently growing at ~1.5PB/week
substantial day-on-day volatility

Archive infrastructure
• Before 2022, stored on conventional on-prem GPFS filesystem

• Continual capacity management issues

• Cost-inefficient

• Could not scale to multiple colos

• The Legacy Archive was an obstacle to growth
• Re-architect to use commercial object storage

A New Design: Tiered Archive
• Able to run existing work-loads unmodified

• POSIX filesystem presentation

• Decoupled from HPC fabric / filesystems
• Accessible outside of HPC environment

• Able to accommodate >10x growth in capability
• capacity, bandwidth

• Non-requirements:
• Read-write mounts on compute nodes
• Concurrent writes on the same file
• Global consistency and file locking

9

The Tiered Archive
Three puzzle pieces:

1. Filesystem presentation: POSIX-like to allow existing apps to keep working

2. Read Path: Cloud storage backed by many layers of cache

3. Write Path: Pipeline to add new data to the system at scale

The Tiered Archive
Three puzzle pieces: CVMFS?

1. ✅ Filesystem presentation: POSIX-like to allow existing apps to keep working

2. ✅ Read Path: Object storage backed by many layers of cache

3. ❌ Write Path: Pipeline to add new data to the system at scale

Tiered Archive: CVMFS

12

Describes how to use CVMFS with “external” data
ie not stored in content-addressable form

High performance write path

• CVMFS “grafting” to separate data and metadata write paths
• Data is uploaded directly to cloud storage

• Doesn’t use CVMFS content-addressable storage

• cvmfs-rsync
• diff src and dest, upload changes to object store

• Capture file metadata

• cvmfs_swissknife ingestsql
• Send metadata to gateway for addition to repo

13

Problems and Solutions

14

Grafting throughput

15

• Grafting is a point of serialization
• Need to optimise critical path performance
• Can now achieve a floor time of < 300ms, down from 2+ sec.
• Fixed scenarios leading to grafts of minutes duration

Read cache hierarchy
• Use Varnish HTTP cache

https://varnish-cache.org/
• NVME caches in each HPC

cluster
• Bridges cluster network and DC

ethernet
• Measured 30GiB/s per server

• NVME+HDD caches in each DC
• Cache tiers horizontally scalable

as required

16

Colo varnish

Cluster varnish

https://varnish-cache.org/

Scaling out

17

Cluster
varnish

Cluster
varnish

Cluster
varnish

Cluster
varnish

Colo varnish Colo varnish

Read cache efficiency
• Shard data across all caches

• Use rendezvous hashing
https://en.wikipedia.org/wiki/Rendezvous_h
ashing

• Failure of a cache causes traffic to be
equally redistributed

• Shard at 24MiB chunks, not whole object
* Supported in CVMFS as compile time
addition

• Added health-checking code to
accommodate cache instance failures

18

https://en.wikipedia.org/wiki/Rendezvous_hashing
https://en.wikipedia.org/wiki/Rendezvous_hashing

Object immutability
• CVMFS has direct mapping from filepath -> object key

• Changing a file requires cache invalidation
• Expensive, race-prone

• Solution:
• Object key = path/.filename.<content shasum>
• Add file path/filename to CVMFS as:

• File: path/.filename.<content shasum>
• Symlink: path/filename -> .filename.<content shasum>

• Changing a file -> new dot file, flipped symlink (atomic)

19

Symlink lookups
* Dot-scheme is symlink heavy

• FUSE does not cache symlink
lookups by default

• Enabling it exposed bug when
symlink target changes – kernel
cached value not expired

• Fixed with CVMFS, libfuse,
kernel fuse patches

20

Low read performance

Reads are slow: ~500MB/s

• Reads in chunks of 24MiB

• Downloads, sha1sums multiplexed onto a single thread

• Local disk cache must be populated before returning read
• Write-limited on local disk

• Data ends up in page cache twice

• In our case, hit rate of local caching very low

21

Cache bypass “direct” read

22

• Completely bypass CVMFS download path

• Map each fuse_read() to an HTTP GET
• Multithreaded
• No sha1summing

• No local cache
• rely on page cache, fast network and varnish

• Tune kernel readahead and increase fuse message size
• 128 kiB ->1MiB
• Requires minor kernel patches (RHEL8)

Cache bypass “direct” read

23

8x parallel reads, randomly selected files between 0 and 2GiB, 1MiB reads
CVMFS cache in shmem
500MiB -> > 3GiB/s

Catalogue load inefficiencies

• Every directory is represented by a sqlite database stored in an
object.

• Catalog loads could stall all fuse operations
• Very bad if historical data where catalog not in cache

• Wide compute nodes very likely to encounter the issue

• Single-threaded catalog decompression could peg a core

24

25

Catalogue load improvements

Fixed locking, multithreaded decompression

Startup time down from ~90s to ~5s

128 core AMD system

Observability

• Export internal counters, operation latencies via telegraf

26

Thank you

Questions?

mharvey@jumptrading.com

27

Infiniband fabric-aware routing

28

Varnish caches have multiple HBAs
Shard over all caches, but client routes via the best interface
Reduces P-values, fabric congestion

