Lessons learnt from large scale data processing with
CVMES

Matt Harvey

HPC Production Engineer

JUMP TRADING

* Privately-owned proprietary trading firm, established 1999
* Focus on algorithmic and high-frequency trading

» World-wide operations

« 12 offices across US, EU, Asia, Pacific

» >700 employees

—
| | — -
- . -

Y L ol U Lo TV = v
BRRU QT ST RN P v @RI SUN BT ¢

Jump’s Research Environment
(HPC / “The Grid”)

The platform where we develop and optimize
trading strategies

Sophisticated data-intensive and compute-
intensive research workflows

Technologically competitive with some of the

largest publicly known research systems in the
world

Thousands of servers
Hundreds of petabytes of storage

Fast network interconnects Fabric logical diagram

. Image Credit: Olli-Pekka Lehto
Keeps growing: more hardware every year

Data Archive

» Realtime-updated repository
of all market data

« Data captured from
exchanges around the
globe

» Derivative products for end-
users

Ten Years of Archive Growth

Archive Growth - PB
1000

100

Doubling ~2 years, currently growing at ~1.5PB/week
substantial day-on-day volatility

Archive Iinfrastructure

 Before 2022, stored on conventional on-prem GPFS filesystem
+ Continual capacity management issues
» Cost-inefficient
» Could not scale to multiple colos
- The Legacy Archive was an obstacle to growth

- Re-architect to use commercial object storage

A New Design: Tiered Archive

* Able to run existing work-loads unmodified
+ POSIX filesystem presentation

» Decoupled from HPC fabric / filesystems
 Accessible outside of HPC environment

* Able to accommodate >10x growth in capability
- capacity, bandwidth

* Non-requirements:
- Read-write mounts on compute nodes

« Concurrent writes on the same file

* Global consistency and file locking

The Tiered Archive

Three puzzle pieces:

1. Filesystem presentation: POSIX-like to allow existing apps to keep working
2. Read Path: Cloud storage backed by many layers of cache

3. Write Path: Pipeline to add new data to the system at scale

The Tiered Archive

Three puzzle pieces: CVMFS?
1. Filesystem presentation: POSIX-like to allow existing apps to keep working

2. Read Path: Object storage backed by many layers of cache

3. X Write Path: Pipeline to add new data to the system at scale

Tiered Archive: CVMFS

Accessing Data Federations with CVMF'S

Derek Weitzel', Brian Bockelman', Dave Dykstra?, Jakob Blomer?,
Ren Meusel’

! University of Nebraska - Lincoln Holland Computing Center, US

* Fermilab, Batavia, IL, US

% CERN, Geneva, CH

E-mail: dweitzel@cse.unl.edu

Abstract. Data federations have become an increasingly common tool for large collaboration
such as CMS and Atlas to efficiently distribute large data files. Unfortunately, these typicall

Describes how to use CVMFS with “external” data
ie not stored in content-addressable form

High performance write path

- CVMFS “grafting” to separate data and metadata write paths

- Data is uploaded directly to cloud storage

* Doesn’'t use CVMFS content-addressable storage

» cvmfs-rsync
- diff src and dest, upload changes to object store

« Capture file metadata

- cvmfs_swissknife ingestsql

- Send metadata to gateway for addition to repo

Problems and Solutions

Grafting throughput

» Grafting is a point of serialization
* Need to optimise critical path performance
- Can now achieve a floor time of < 300ms, down from 2+ sec.

 Fixed scenarios leading to grafts of minutes duration

Read cache hierarchy

Cloud Storage
(S3-like)

« Use Varnish HTTP cache

* NVME caches in each HPC

cluster
- Bridges cluster network and DC
ethernet
- Measured 30GiB/s per server it o
- NVME+HDD caches in each DC HEEA I EA
» Cache tiers horizontally scalable ¥ T § s

aS required Nlrmmmmeseeest Seeeiiin.... f:"" :

https://varnish-cache.org/

Scaling out

Cloud Storage

‘wumpbc2 |

(S3-like)

“JumpDCt

“f p
1 o
(] .vﬂH_E A
P mwn O
L=
..%B [S VS o
S0 &
0o¢Z QO
1 s T
A‘ 1 '
RN 8
@ 2 (2 <
.CﬁlU [WUA)
I 1
..mo “_: (SR TH (VI
| ' © nw_ - = =
W T Lo
’
-f p
.1 o
.1 .v..mE A
= m%u O
..&B .m, [N o
SE|5 = T
58| L0
- e e e e e e e
Q. Qo T TTTTTTT T
c |
5 s a
'w Q
2 <m 22y =y
b (&) [m < (&)
o =0 D=2
&) =] [SRS (v
o ' = - als
T Lo
«— LI
’
Y " 2
2 EY <
2 P
AR ©
= [SRS (v
25 15 - I
og|lo
1 ’ TTTTTTTTTTETTTTTTT
1 '
] —]
m 2
o e w -
FEO 1T EDe
-] V5 VU‘ Q
g O Vol O W o
e ! § ~ T
\ o)
. a
[.- —~ a
\ =z m%\ <t
= c & =2 &
S| g a
LI —
S8 |1 -
- U
Q. Qo7 T T TTTTTT T
m |
m ‘o gy Q
g <o i f e o
o WG V7 'E o0l <
—_ P [m «
[e) o0 - Q
&) [[RV o
L |5 - xI
)

.
Seccccccae=? ,

.
Seccccccea=? ,

. -
\ Secccccacas

. -
\ Secccccacas

.
Seccccccea=? ,

. -
\ Secccccccae

.
Seccccccae=” ,

. -
\ Secccsccnas

Read cache efficiency

- Shard data across all caches

» Use rendezvous hashing

« Failure of a cache causes traffic to be
equally redistributed

- Shard at 24MiB chunks, not whole object

* Supported in CVMFS as compile time
addition

- Added health-checking code to
accommodate cache instance failures

https://en.wikipedia.org/wiki/Rendezvous_hashing
https://en.wikipedia.org/wiki/Rendezvous_hashing

Object immutability

« CVMFS has direct mapping from filepath -> object key

» Changing a file requires cache invalidation

- Expensive, race-prone

» Solution:

* Object key = path/.filename.<content shasum>
* Add file path/filename to CVMFS as:

* File: path/.filename.<content shasum>

« Symlink: path/filename -> .filename.<content shasum>

- Changing a file -> new dot file, flipped symlink (atomic)

Symlink lookups

* Dot-scheme is symlink heavy

+ FUSE does not cache symlink
lookups by default

- Enabling it exposed bug when
symlink target changes — kernel
cached value not expired

» Fixed with CVMFS, libfuse,
kernel fuse patches

CVMFS Fuse operation rates

TM ops/s
750K ops/s

500K ops/s

gnd |1
e |11
1

10:08 10:10 10:12 10:14 10:16 0:18 10:20

CVMFS Fuse operation rates
600K ops/s
400K ops/s

200K ops/s

Dlone (e ..._..|.-..--............I"illliiill||||||iulll"|||umi..llllli|i|||||||iil||i|._.
10:04 10:06 10:08 10:10 10:12 10:14 10:16

Low read performance

Reads are slow: ~500MB/s
» Reads in chunks of 24MiB
» Downloads, sha1sums multiplexed onto a single thread

* Local disk cache must be populated before returning read

* Write-limited on local disk

- Data ends up in page cache twice

* In our case, hit rate of local caching very low

Cache bypass “direct” read

» Completely bypass CVMFS download path

* Map each fuse read()toan HTTP GET
 Multithreaded

* No sha1summing

* No local cache

* rely on page cache, fast network and varnish

* Tune kernel readahead and increase fuse message size
- 128 kiB ->1MiB
* Requires minor kernel patches (RHELS)

Cache bypass “direct” read

= Home Dashboards Linux - Produ... Default Serve... Viev * 2

1 All v t fpip6-compute0155 ~ Application FATAL errors @ OOM Killer ® oomd Killer (=3 Timesync Change []

Interface bandwidth utilization (fpip6-compute0155)

30 Gb/s
27.5 Gb/s
25 Gb/s
22.5 Gb/s
20 Gb/s
AR H
15 Gb/s
12.5 Gb/s
10 Gb/s
7.50 Gb/s
5 Gb/s
2.50 Gb/s

O b/s

8x parallel reads, randomly selected files between 0 and 2GiB, 1MiB reads
CVMEFS cache in shmem
500MiB -> > 3GiB/s

Catalogue load inefficiencies

- Every directory is represented by a sqlite database stored in an
object.

» Catalog loads could stall all fuse operations
 Very bad if historical data where catalog not in cache

* Wide compute nodes very likely to encounter the issue

» Single-threaded catalog decompression could peg a core

Catalogue load improvements

CPU Utilization CPU Utilization

S [.
| \ ‘ ',. :}'\‘ ‘\ {‘“ | W\;‘ Ar A \‘\ N . I/
AW/ W e

\‘I A

CPU Utilization

o
o
2
©
—
=
=
o
O

A

12:45 12:50 12:55 13:00 13:05 13:10 13:15 13:20 13:25 13:30 13:35
Mear Last * Max Min

12:45 12:50 12:55 13:00 13:05 13:10 13:15 13:20 13:25 13:30 13:35 13:4C

A
Name

iowait 0.645% 0.298% 5.45% 0% iowait 0.195% 0.0206% 6.92% 0.000797%

user 54.0% 42.8% 94.8% 4.96% user 82.8% 83.8% 94.2% 21.8%

system 2.80% 160% 9.96% 0.791% system 4.01% 7.68% 13.0% 1.24%

irq 1.41% 1.49% 2.28% 0.878% irq 1.89% 1.55% 2.60% 0.954%

128 core AMD system Fixed locking, multithreaded decompression

Startup time down from ~90s to ~5s

Observability

» Export internal counters, operation latencies via telegraf

= Home > Dashboards > Linux - Grid VMF

1 hour
read() bytes Catalog hit rate Data hit rate
100% 100%
768 MiB/s A A VAN MW AW AN
640 MiB/s

512 MiB/s

- 12:40 12:50 13; 2: 12:30 12:40 12:50 13:00
384 MiB/s
Errors read() sizes

256 MiB/s|

0
o I I I II I I I II I II I

- I I |1 ll-lllll IIIII' I I | IIII
12:35

12:05 12:10 1215 12:20 12:25 12:30 12:40 12:45 12:50 12:55 13:00

2 150 13:00
read() calls read() - IMB+

read() - 512KB to IMB read() - Less than 512KB

10ms

T

1210 12:20 12:40 12:50 1220 12:30 1220 12:30 : X 1210 1220 12:30
stat() readlink() open() opendir()
300 ms

100 ms
200 ms.
100 ms

50ms
[— - [—
1210 12:20

;! -3 12:20 12; 12:40 12:50 13:00
stat() calls readlink() calls open() calls opendir() calls

20K

10K
|| ||||“| | | ||| |||||||
AL ot A,
:(2:10

150K

400
1K
“II
w1 e il A
T T O it sttt {1 A1 A e T

12:1C 2:20 12:30 12:40 12:50 13:00

12:10 1220 12:30 12:40 12:50

12:10 12:20 12:3(12:40 12:50 13:00

Thank you

Questions?

mharvey@jumptrading.com

Infiniband fabric-aware routing

Client 2MB Hit - Fusion

Client 2MB Hit - Fusion

14ms 1 ms

2024-01-1210:17:00
P99 9ms
P99 470ms
P95 3ms
P90 2.30ms
P50 500ps

Varnish caches have multiple HBAs
Shard over all caches, but client routes via the best interface

Reduces P-values, fabric congestion

2024-01-12 11:57:00

P99.9
P99
P95
P90
P50

7.50 ms
3.30ms
210 ms
170 ms
200 ps

