

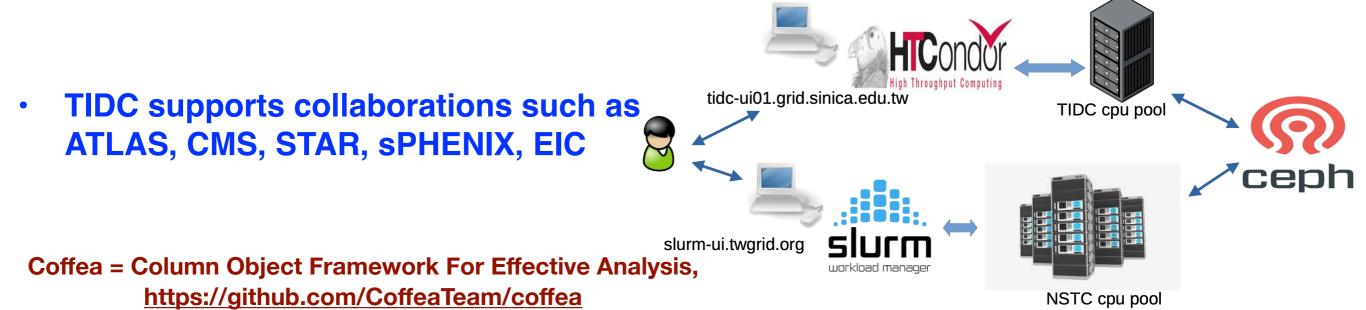
ASGC Site Report

Eric Yen, Felix Lee

Academia Sinica Grid Computing Centre (ASGC) Taiwan

HEPiX Spring 2024 Paris, France 15 April 2024

ASGC Overview


- Founded for participating WLCG and supporting the research collaborations
 - Being/serving WLCG Tier-1 center from Dec 2005 to Oct 2023
 - Migrating to WLCG Tier-2 center for ATLAS after Q3 2023
- ASGC is providing big data analysis and computing services for the R&E communities in Taiwan as a core facility
 - Funded by both Academia Sinica and National Science and Technology Council
 - Primary scientific collaborations: WLCG (ATLAS, CMS), AMS, Gravitational Wave, ICECube/ Neutrino, EIC, QCD, CryoEM, condense matter, etc.
 - Based on the core technologies of WLCG
- System efficiency as well as Al workload are the 3rd focus

ATLAS T2 Site Status

- Migration to ATLAS T2 site after Oct. 2023
- Successfully migrated to EOS from DPM with help from ATLAS in 2023
- Computing Resource of Federated Taiwan Tier-2 (2024):
 - 17,500 HEPSpec06 (1,864 CPUCores)
 - GPU would be available after validation of new computing models (ATLAS, CMS)
- Storage Resource (2024) of ASGC T2: 5 PB
 - EOS has been available for ATLAS
- Connecting to LHCONE by new ASN 18217 through ESNet at Chicago (StarLight) since Jan 2024
 - More connections with LHCONE at SG, JP, AMS or LA are under construction
 - Daily outgoing data volume could reach to 12.5TB (48TB/week) in March 2024
- Ready for production if no further issue arises
 - Site functionality has been validated by daily Hammercloud jobs
- Data efficiency is the only issue now ! Esp. between ASGC and US T2 sites
 - IPv6 + MTU issue had been identified in March
 - IPv4 has kernel level MTU probing supported
- ASGC will keep up the HGTD (High Granularity Timing Detector) DB services together with the ATLAS Taiwan team

CMS T3

- Operated by ASGC from 2022
- In collaboration with TIDC (Taiwan Instrumentation and Detector Consortium) and local CMS groups (NTU and NCU)
- Analysis facility (HW is provisioned by TIDC)
 - Both Condor/UI and Crab/ARC-CE are available
 - CephFS shared filesystem: 3TB/group by default
 - EOS by xrootd and fuse: 1PB
 - Condor cluster
 - 768 cores(AMD EPYC 7713) + 768 cores (Intel CPU E5- 2650 v4)
 - Supporting user's access to CMS data or CRAB jobs submission
 - JupyterLab
- User training and support are also provisioned
 - e.g., using Coffea with template for columnar analysis @ASGC

ASGC Science Cloud Infrastructure (DiCOS)

- Resource: 10,000 CPUCores, GPU Boards- A100x52, V100x48, 3090x56
- OpenStack Cloud: for core services and on-demand worker nodes maintained by Openstack-ansible
 - Multiple cells/Region for various configurations and capabilities
 - e.g. Neutron Compute, Nova Compute, ...
 - Single hypervisor type: KVM
 - #hypervisors: 100+
 - #VMs: 500+, dynamic provisioning
 - Networking: flat and segmented
- Containerized Resources managed by Kubernetes framework for software on-demand services and part of core services

100Gb/s

Storage

- User cluster:
 - batch, interactive GUI jobs: remote Jupyterlab, virtual desktop
 - GPU Cloud
- Core Services: distributed cloud cores; ElasticSearch + Kiba
- High availability is enabled (managed by HELM)
- UI: Web UI/Terminal; JupyterLab
- Linux Strategy
 - Migrating to AlmaLinux9 from CentOS7 in 2024 WLCG Tier-1/2

Internet

10Gh/s

Distributed

Computing

Boarder

GPGPU

Cloud Pool

100Gb/s

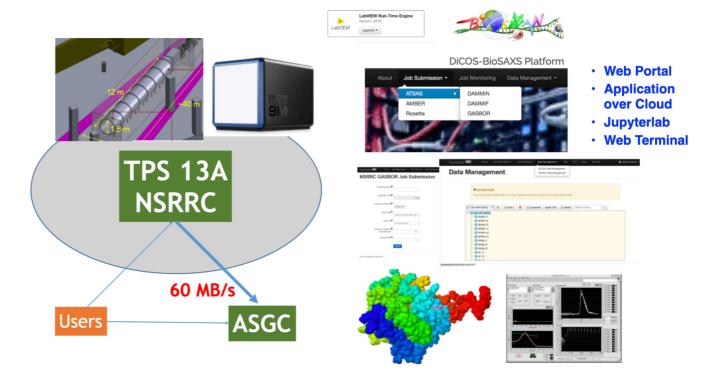
Storage

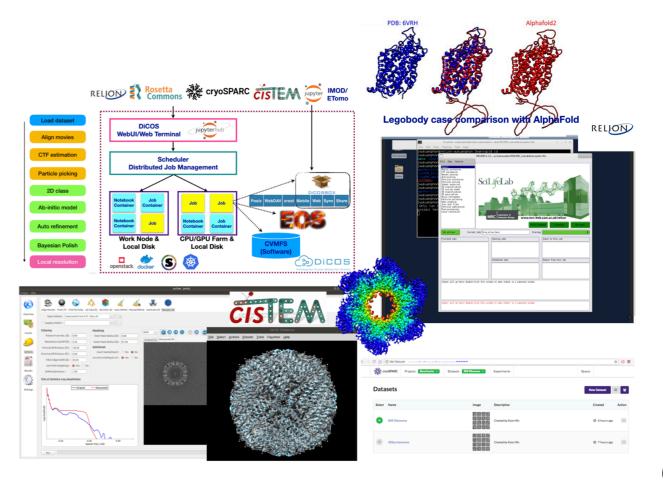
Pool

ceph

TWAREN/

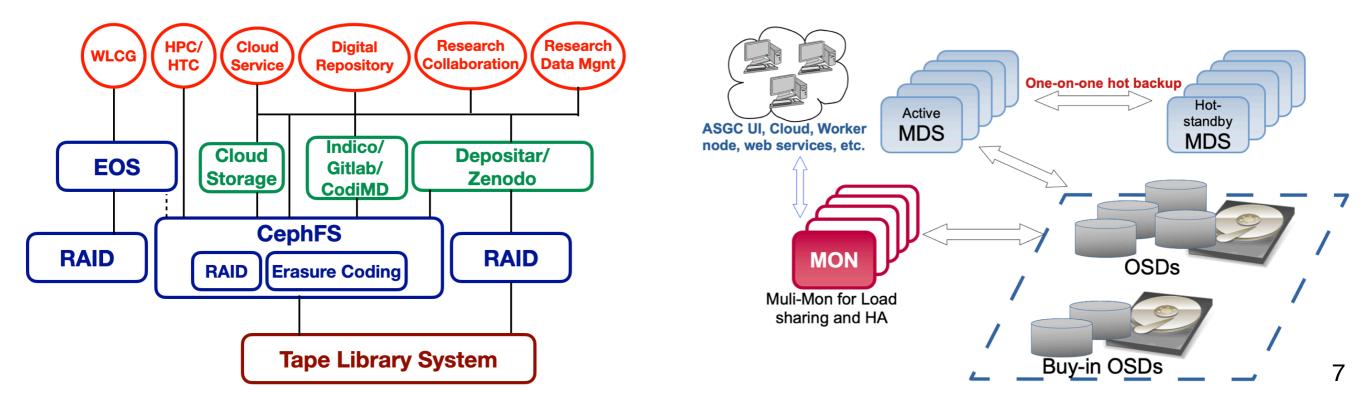
100Gb/s Backbone

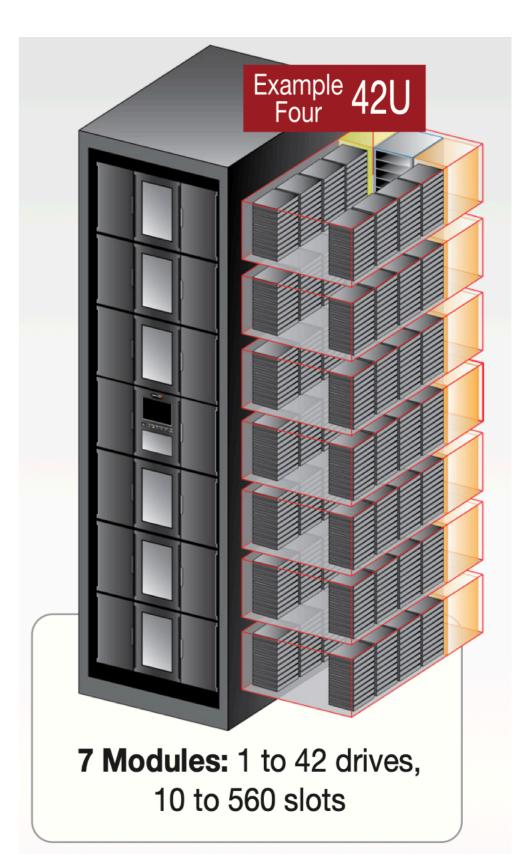

CPU


Cloud Pool

By T3 Building Blocks (Infiniband)

Cross-Facility Data Processing for Structural Biology (CryoEM & X-Ray)


- Customized automated data analysis
 pipeline
 - Cloud Service : better scalability, efficiency, performance
 - Integration & Optimization: data pipeline and workflow (computing model)
 - Reduced latency between experiment facility (data source) and data analysis facility
 - Integrating required software, application framework, storage and analysis workflow
 - Reduced latency between data and training model
 - Web Service: developing Web App, Web Portal or Science Gateway
 - Generalization and new service creation
 - On-the-fly data transmission
- Example : Structural Biology: NSRRC (BioSAXS) and Taiwan Protein Project (CryoEM Core Facility)
- ASGC Science Cloud
 - Application platform + Computing Infrastructure + Workflow Integration + Efficiency Optimization
 - AlphaFold, RosettaFold, RosettaFold Diffusion, DiffDock


ASGC Science Cloud Storage Architecture

- Scalable and reliable online storage system based on Ceph mainly
- Ceph Configurations: ~10PB
 - 6 MDS + 6 hot-standby (one-on-one backup); 7 MONs
 - 462 OSDs, 51 hosts.
- Services
 - 3 TB/PI Group setup by default; PI could extend the space through management UI flexibly
- Reached 2GB/s R/W throughput so far
- Tape-based remote backup system (12PB) will be established and integrated in 2Q24
- Providing big pool for HPC, HTC, AI and various applications concurrently
- Ceph capacity will be growing to 13PB by end of 2024
 - Plan to procure new 4PB disk servers for Ceph System in 2024 and 2025 respectively

Tape Library System Will be Online by end of June 2024

- Serving as 2nd layer remote backup system
 - For cold data, or 2nd-copy backup
 - For backup of users' core data on Ceph
 - Long-term storage services
 - Reliability of ASGC services will be increased
- Scalability: capacity on demand
 - Max 7 modules x 6u, 42 drives, 560 tape slots
 - LTO-9 tape: 1.44PB (native)/3.6PB (compressed) per module (80x 18TB/tapes)
 - Installed capacity: 12PB
- Tape drive performance: 300 400 MB/s using fibre network
- Integration and services: based on EOS and CTA
- Tape-related data services should be operational by end Q2 2024.

Energy Saving

- Reliability enhanced by intelligent monitoring and control is the key approach
- Retirement of legacy hardware
- Improvement of AHU efficiency, including the top-flow cold air
 - Anomaly detection
 - Well-prepared backup plan
- Energy-sensitive operation
 - Plan for power efficiency hardware: e.g., ARM CPU
 - Power saving
 - 20% power usage reduction in 2023 Effective on 3 CPU clusters (> 3,000 CPUCores) from May 2023
- Overall, 20% DC power usage decreased in 2023

OS Migration Plan

- e-Science Local clusters & resources:
 - Making AlmaLinux9 computing resource available by end of April 2024
 - Part of worker nodes will be upgraded from CentOS first
 - User can test their code on AlmaLinux9 worker nodes.
 - After the CentOS7 EOL, start migrating all the computing resources to AlmaLinux9.
 - Depending on user application migration status
 - May also help user to migrate their code to Singularity images, in case some users are not able to migrate their codes to AlmaLinux9 in time or some incompatibilities remain.
 - Few application servers are using Ubuntu LTS
- WLCG resources: subject to the availability of Grid middleware and the WLCG strategy

Future Plan

- Resource plan in 2024
 - New Intel computing server x1 with 256 Cores
 - New NVIDIA GPU: 4090 x1
 - More storage for Ceph: +4PB
 - New WN: +2,000 CPUCores
- Tape Library: 12PB tape space managed by CTA/EOS will be available in Q3 2024
- Facilitating AI applications on Science
 - Physics-based, data-oriented analytics
 - Application & development environment
- Efficiency optimization enabled by AI will be improved
 - On Thermal, power, application, system (computing, data, networking, security), user support, etc.
- Soc are ongoing