

Enabling LHC Run 3 data storage workflows at CERN HEPiX Spring 2024, Paris

Elvin Sindrilaru On behalf of the Storage and Data Management Group

- Overview of the storage services and workflows
- FTS File Transfer Service
- EOS Foundational storage service
- CTA CERN Tape Archive service
- Fun with OpenSSL and Alma 9

Storage services overview

Experiment workflows overview

File Transfer Service (FTS)

Open-source software designed for **large scale queueing** and **reliable execution of file transfers** - backbone of WLCG data transfer orchestration

WLCG Idwide LHC Computing Gr

26

scientific collaborations

ESCAPE

CS³MESH⁴EOSC

- **Capabilities:**
 - orchestrator of Third-Party-Copies (TPC) Ο
 - Ο
 - **streaming** support if TPC not possible tape storage operations via HTTP **Tape REST API**, XRootD etc. support for **Cloud** based storage Ο
 - Ο
 - X509 and token authentication \bigcirc
- **Diverse community of users**

scientific experiments and communities

scientific frameworks

RUCIO

16 April 2024

Data moved by CERN FTS (2023)

- 823 Million file transfers
- ~1.4 Exabytes of data

Volume Transferred / Number of Transfers

FTS multi-year trends

- Considerable increase in data volume transfers
- Constant number of transfers per year

Consequence of bigger raw data file sizes and RUN 3 restart

OAuth2/Scitokens in FTS

- OAuth2/SciTokens support
 - Important development and deployment effort across all services involved
 - **FTS**, Identity and Access Management (IAM) and storage endpoints
 - FTS supports both **X509** (certificates) and **tokens** as authorization mechanism
 - Demonstrated viability at scale during **Data Challenge '24** (Feb 2024)

FTS HTTP dominance and GridFTP phase-out

- FTS will switch off GridFTP support for ATLAS and LHCb by end of April
- HTTP is now the dominant transfer protocol
 - Strongly coupled with token support for TPC transfers
- Recommended FTS release v3.11.2
- Alma 9 support coming soon!

EOS & CTA Services @ CERN

EOS for Physics statistics and growth 2023

	Total space	Used space	Number of files
ATLAS	94.56 PB	79.58 PB	266 Mil
CMS	102.97 PB	77.67 PB	240 Mil
ALICE	116.73 PB	107.32 PB	840 Mil
LHCb	70.14 PB	44.43 PB	1.13 Bill
Public & AMS	134.25 PB	108.97 PB	589 Mil
ALICEO2	181.99 PB	162.66 PB	30.1 Mil
TOTAL	700.64 PB	580.63 PB	3095.1 Mil

Recommended deployment setup:

- EOS version: 5.2.22
- XRootD version 5.6.9
- OS: Alma 9.3

Elvin Sindrilaru | LHC Run 3 Data storage workflows at CERN

EOS transition to ALMA 9

- **RPM** packages also provided for:
 - Alma Linux 9 recommended, RHEL 9
 - Alma 8 and Fedora 38 (opportunistically)
 - CC7 (until June 2024)

16 April 2024

EOS for Physics usage statistics

- EOS instances served 5 Exabytes (+34%) of data and received ~0.7 Exabytes (+16%)
- Charts below show trends over the last 3 years

Export: Amount of bytes read

ÉRN

Ingestion: Amount of bytes written

EOS ingress protocol statistics

Most used protocol for writes in 2023: XRootD

Total writes per protocol and instance

CÉRN

Total reads per protocol and instance

16 April 2024

Most used protocol for reads in 2023: XRootD and FUSE

EOS egress protocol statistics

EOS for Physics network statistics

• During 2023, we were able to achieve more than 200 GB/s ingress and 500 GB/s egress

300 GB/s

200 GB/s

100 GB/s

0 B/s

01/01

• Overall delivered excellent performance and stability!

Cluster Network Rates (in) ③

250 GB/s max ~ current avg aliceo2.inratemib.erasure 28.9 GB/s 28.7 GB/s 170 GB/s 200 GB/s cms.inratemib 23.1 GB/s 27.7 GB/s 64.5 GB/s alice.inratemib 41.8 GB/s 5.36 GB/s 5.92 GB/s 150 GB/s ams02.inratemib 38.8 GB/s 3.89 GB/s 814 MB/s **Excellent EOSALICEO2 performance** 100 GB/s Ihcb.inratemib 35.7 GB/s 3.88 GB/s 1.32 GB/s enabled by erasure coding layouts atlas.inratemib 30.4 GB/s 13.8 GB/s 15.6 GB/s 50 GB/s public.inratemib 4.60 GB/s 4.53 GB/s 20.6 GB/s 0 B/s aliceo2.inratemib 0 B/s 4.80 GB/s 1.09 GB/s 01/01 01/03 01/05 01/07 01/09 01/11 Cluster Network Rates (out) ③ 600 GB/s max ~ ave current aliceo2.outratemib.erasure 340 GB/s 59.6 GB/s 43.9 GB/s 500 GB/s cms.outratemib 178 GB/s 73.4 GB/s 54.7 GB/s 400 GB/s public.outratemib 173 GB/s 30.0 GB/s 45.5 GB/s

01/04

01/07

01/10

alice.outratemib

ams02.outratemib

atlas.outratemib

Ihcb.outratemib

aliceo2.outratemib

157 GB/s

94.7 GB/s

66.2 GB/s

34.9 GB/s

9.96 GB/s

47.7 GB/s

27.8 GB/s

28.1 GB/s

6.65 GB/s

2.12 GB/s

13.6 GB/s

14.4 GB/s

19.3 GB/s

3.37 GB/s

0 B/s

EOS

EOS space optimisation - erasure coding

- Game-changing adoption of erasure coding layouts (a.k.a RAIN layouts) bringing:
 - Raw storage space optimisation 48 PB saved during 2023 in comparison to 2 replica layout!
 - Better transfer performance

EOS space optimisation - identify "stale" data

Goal: identify data not accessed in a long time as good candidates for tape migration
Information provided by the eos file inspector functionality

Elvin Sindrilaru | LHC Run 3 Data storage workflows at CERN

EOS contribution to Data Challenge '24

• EOS targets during the Data Challenge:

- Ensure **stability**, **availability** and required **performance** for exports to **T1s**
 - On top of existing activities!
- Deployment and configuration of SciTags for CMS instance

EOS/FTS contribution to Data Challenge '24

- **Deployment of HTTP tokens support** in all instances
 - **CERN EOS** instances handled the bulk of the traffic
 - FTS plot of transfer reports using X509 or tokens during DC '24

CTA - Tape Storage

- Archive boost during Heavy-Ion Run
- Staging boost during Year End Technical Stop (YETS) data duplication to T1/T2s

CÉRN

CTA - Run 3 data volumes

alice Last: 143 PB

CTA - Physics data volume

• CTA primary propose: provide reliable, long-term archival storage for physics experiments

ÉRN

ALMA 9 & OpenSSL 3 issues

- Slow with Alma9 (openssl 3.0.7)
 - Seen to be much slower for GSI connections
 - 0.15s to ~1.9s for an xrdcp of a tiny file
 - High CPU consumption
 - Call in OpenSSL 3 (DH_check) ~10 times slower than in OpenSSL 1
 - DH_check validates some Diffie-Hellman exchange parameters used during the GSI handshake
 - computationally intensive check if a number is prime (Typically a 3072 bit number p and also (p-1)/2 are checked)
- OpenSSL3 adjusted its prime checking functions (see openssl <u>#9272</u>) to be easier to use & harder to misuse

 98.97%XrdSecProtocolgsi::ParseClientInput			
 93.35%XrdSecProtocolgsi::ClientDoCert			
93.13%XrdCryptosslFactory::Cipher			
XrdCryptosslCipher::XrdCryptosslCipher			
92.30%EVP_PKEY_param_check			
evp_pkey_param_check_combined			
prime			

- Solution provided on the XRootD side
 - Recent xrootd-based servers will use the same DH parameters. If the client detects an exact match no specific DH_check is done.

Conclusions

- Storage and Transfer Services performance requirements for 2023 Run 3 have been successfully met!
- FTS service
 - Demonstrated viability of the **token authorization** during DC '24
 - Pioneered support for **SciTags** during DC '24
 - Transferred more than **1.7EB** during 2023
- EOS service
 - Achieved and exceeded experiment requirements
 - Erasure-coded files support proven in production (ALICEO2)
 - HTTP protocol gaining traction and GridFTP phase-out
- CERN Tape Archive
 - Proved its versatility in addressing both archiving and staging ops.
 - Proper bandwidth allocation and configuration can efficiently absorb peaks in demand

home.cern