

Cloud Resilience Unleashed: A Dual-Site Approach for HL-LHC era

HEPiX Spring 2024

Daniel Failing, CERN

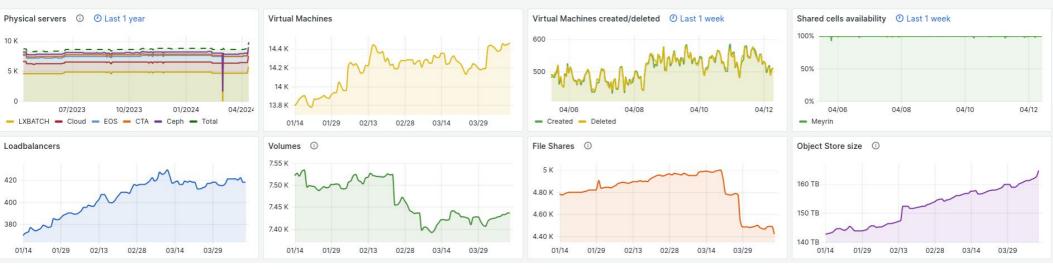
Outline

- CERN Cloud Overview
- Challenges and opportunities
- Prevessin Data Centre (PDC)
- Cloud Deployment in PDC
- Next Steps

CERN Cloud Infrastructure

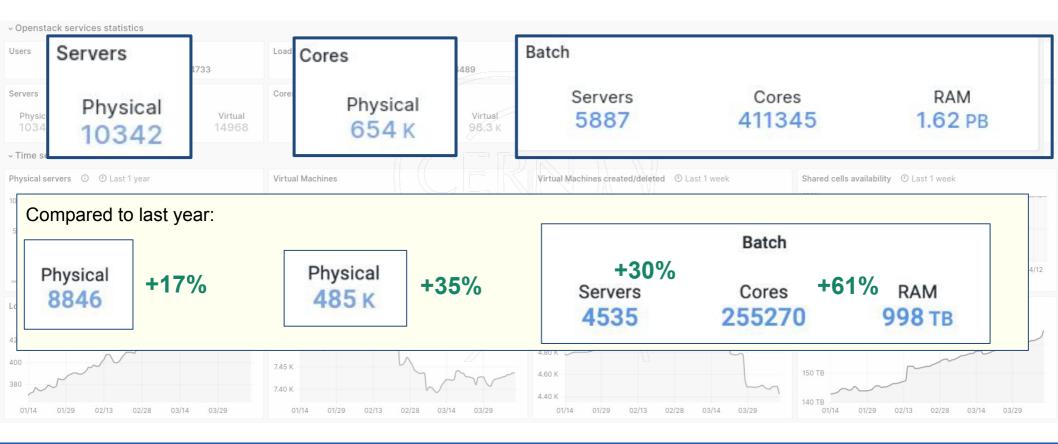
- Infrastructure as a Service
 - Production since July 2013
- RHEL/ALMA9
 - Based on RDO
 - x86_64 and Aarch64 architecture
- Meyrin Data Centre (MDC) + new Prevessin DC (PDC)
- Currently running Yoga* release
- Providing VMs/Bare-metal for users in the datacenter
 - Services, Personal VMs, Experiments, Batch

Component	S	Train	U	V	w	X	Yoga	z	Α	
OS	CC7				L8			E	EL9	
Hypervisors										
Barbican										
Nova										
Neutron										
Placement										
Horizon										
Cinder										
Manila										
Glance										
Mistral										
Keystone										
Rally										
Ironic										
Octavia										



CERN Cloud Overview

~ Openstack services statistics


Users Projects 3426 4733		Loadbalancers Images 418 6489		Volumes 7437	Volumes size 4.55 PB	File Shares 4418	File Shares size 2.24 PB	Object Store 592	Object Store 163 TB			
Servers				Cores			RAM			Batch		
Physical 10342	Physical in use 9794	Hypervisors 1767	Virtual 14968	Physical 654 K	Hypervis 119 K		Physical 2.88 PB	Hypervisors 418 TB	Virtual 222 TB	Servers 5887	Cores 411345	RAM 1.62 PB

Time series

CERN Cloud Overview

Cloud Infrastructure APIs

Challenges/Opportunities for the next years

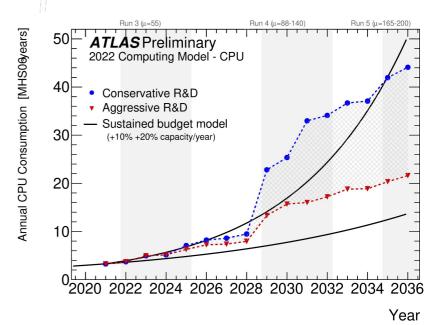
Challenges - BC/DR

- CERN IT Strategy as Provider include:
 - Recognise operational risks
 - Definition of policies for BC/DR
 - Enable business continuity and disaster recovery (BC/DR)
 - Resources + training for services
- Cold recovery tests for all services planned 2024
- New resources for Active/Active and Active/Standby operations

AS-IS
External
Assessment

Recognise operational risks

Today: IT disaster recovery and business continuity procedures are not adequate. Although failures are limited, the risk is significant to ongoing operations


'We don't have a proper disaster recovery and business continuity plan'

Presentation about BC/DR

Challenges - Computing

- LHC imposes increasing computing needs
 - More data throughput to our data centers
 - Expected CPU capacity growth not enough
- Physicists exploring new paradigms
 - Machine Learning and other techniques leveraging hardware accelerators (e.g. GPU)
 - New architectures like ARM64
- Moving towards a more heterogeneous cloud
 - Bring new features to the Cloud (e.g. MIG)
 - Adapt our operations (e.g. resource tracking)

Locations

Meyrin Data Centre

- 4 MW capacity
- Main room with UPSs
- Critical room on diesel generators

Containers Point8

• 0.5 MW without UPSs

Prevessin Data Centre

- 3 floors with up to 12 MW
- 75% in non-UPS racks
- Inaugurated <u>Q1/2024</u>

Prevessin Data Centre (PDC)

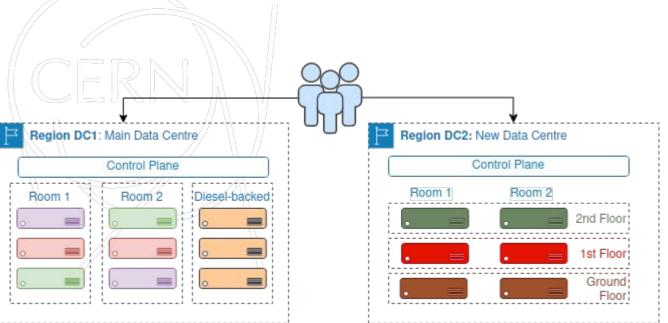
- Inaugurated <u>23 February 2024</u>
- Most hardware installed Q4/2023 + Q1/2024
- Compute
 - Additional capacity for next run(s) of the LHC and HL-LHC
 - Currently one floor: 4 MW
 - Extendable to 3 floors / 12 MW
- Services
 - Enable BC/DR recovery scenarios
 - Use remaining space for services

Context – PDC Deployment Cloud - Goals

- Focus is to enable users to deploy their BC/DR scenarios
- Base building blocks should facilitate and enable those
 - Fabric, Network, Storage, Compute and Database
- Keep in mind existing use-cases and future ones
- Use of a green field deployment
 - Review existing shortcomings
 - Opportunity for new features
 - No legacy constraints
- **Remove dependencies** between data centers to enable own BC/DR

Cloud Deployment in PDC

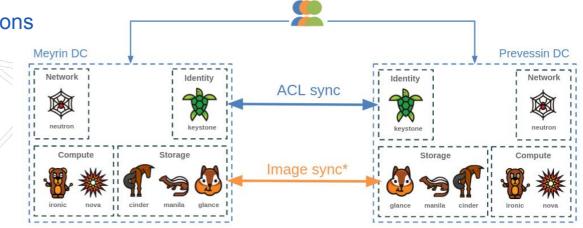
Fully independent region


- Complete break from existing deployment
 - Users will see a complete new set of APIs to talk with
 - Keep same project structure and ACLs in place
 - No need for data replication across sites
- Pros:
 - Enforces cross-site restrictions on applications and/or services
 - Allows upgrade rollout on sites
 - Covers a full stop of any of the DCs and any disconnection in between
- Cons:
 - Increased support effort on different service versions

2 independent regions (physical layout)

- Hypervisor Resources PDC: ~9000 cores / ~72TB RAM in ~100 hypervisors
 - Compared to old DC: ~60k cores / ~200TB RAM in ~1700 hypervisors

- Separated Control Plane
- Availability Zones:
 - match physical failure
 domain (power, net)
 - One per floor


Differences between regions

Feature	Meyrin DC	Prevessin DC		
Availability Zones	3 Compute 3 Storage	1 Compute & Storage		
Anti-/Affinity Filters	Host	Host, Rack, Room		
Networks	Provider	Provider & Private		
	Wiring the Future: Open Virtual Networking and Beyond Daniel Failing Amphithéatre Buffon, Laboratoire Astroparticule et Cosmologie (APC) de l'Université Paris-Cité 13:30 - 13:55			
separate pres	Floating IPs			
SDN Features	Load Balancers	Load Balancers		
Capacity (RAM)	250TB	72TB		
Capacity (on Diesel)	12TB	-		
UPS expected lifetime	15min	5min		

Tooling

- Custom scripts / automation
- ACL sync
 - Synchronize Projects and assignments across regions
 - Time based sync and on project creation
- Image sync
 - Copy public images between regions
 - Heavy operation, on-demand

Next Steps

- Foundations for BC/DR Use-cases are there
 - Services to perform their cold recovery tests (including us)
- Greenfield deployment also means new technologies.
 - Expertise to be gained for old DC
 - Scalability tests to validate new setup with scale of old DC
 - Extend old DC with those features
- Storage
 - Cross DC volume backups
 - Cross DC file shares
 - Talk from OpenInfra Summit Vancouver

Thank You!

All our open source code is available on: https://gitlab.cern.ch/cloud-infrastructure

Multiple contributors over the years helped to achieve this.

For contact: Daniel Failing - daniel.failing <at> cern.ch

