

Wiring the Future: Open Virtual Networking and Beyond

Daniel Failing, CERN

Outline

- CERN Cloud Overview
- Context
- Requirements
- New features with OVN
- OVN short overview
- Beyond / Plans

CERN Cloud Infrastructure

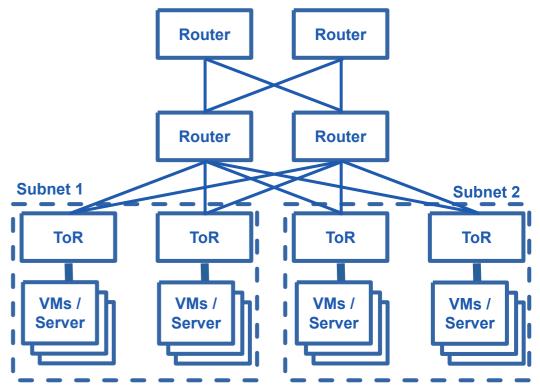
- Infrastructure as a Service
 - Production since July 2013
- RHEL/ALMA9
 - Based on RDO
 - x86_64 and Aarch64 architecture
- Meyrin Data Centre (MDC) + new Prevessin DC (PDC)
- Currently running Yoga* release
- Providing VMs/Bare-metal for users in the datacenter
 - Services, Personal VMs, Experiments, Batch

MDC

PDC

CERN Cloud Overview

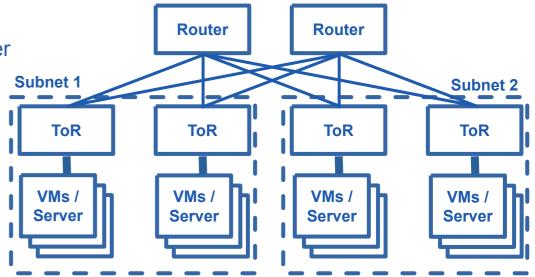
Cloud Infrastructure APIs


Context – PDC Deployment Cloud - Goals

- Focus is to enable users to deploy their BC/DR scenarios
- Base building blocks should **facilitate** and enable those
 - Fabric, Network, Storage, Compute and Database
- Keep in mind **existing** use-cases and **future** ones
- Use of a green field deployment
 - Review existing shortcomings
 - Opportunity for new features
 - No legacy constraints

Context – Current setup MDC

- VMs connect via LinuxBridge
- All VMs in the same public network
 - Full Dual-Stack IPv4 / IPv6
- Separated Subnets / Segmented
- Mantra: "Everything in same network"
 - except e.g. tech./control networks


Context – New requirements / Old limitations

- Add ability to migrate VMs between hypervisors in different subnets
- New hypervisors can easily host over 100 VMs
 - some performance issues seen in current setup with higher VM count
- LinuxBridge implementation upstream marked experimental / unsupported
- Different teams ask for
 - Private Networks
 - Security Groups (Firewall rules on HV level)
 - Floatings IPs

PDC Network / DataCenter architecture

- For better scalability, network is divided into multiple
 Subnets with up to 1000 IPv4s (for now) + IPv6
- Top-of-Rack switch (ToR) only Layer 2
 - passing traffic outside subnet to Router
- Very similar architecture to other DC

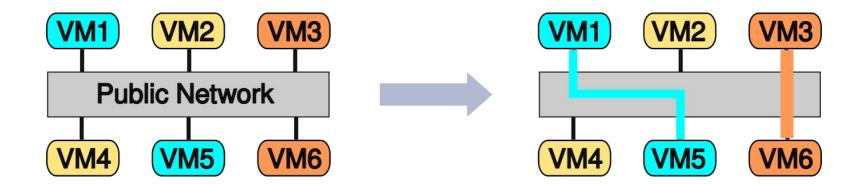
Upstream Network Setups

- Network Service: Openstack Neutron
- Support for multiple vendors:
 - LinuxBridge
 - currently in use for other DC, marked experimental now
 - OpenVSwitch (OVS)
 - > widely used
 - Open Virtual Network (OVN)
 - more flexible, widely used and recommended upstream
 - hardware vendor specific drivers
 - > potential vendor lock-in, typically only for hardware switches/routers

Open Virtual Networking (OVN)

Reasons for OVN

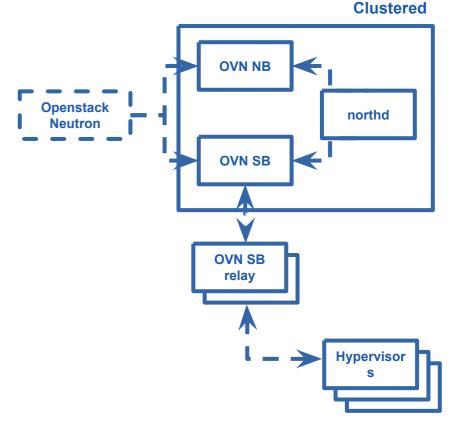
- Teams asked for
 - Private Networks
 - ✓ Security Groups (Firewall rules)
 - ✓ Floatings IPs (under evaluation)
- Add Ability to migrate VMs between hypervisors in different subnets
 - ✓ Yes, across subnets with VMs in private networks for now only
- Aligning software stack with upstream OpenStack
 - ✓ OVN supported upstream
 - ✓ Migration path possible


Different network types in PDC

- Public/Provider network (from start)
 - Keep existing functionality to simplify on-boarding
 - Reduce in-house patches by leveraging Neutron "Segments"
 - one subnet per 16 servers (approx 1000 IPv4 + IPv6)
- **Private** networks (Q2/2024)
 - Overlay network with OVN
 - Geneve tunnel between hypervisors

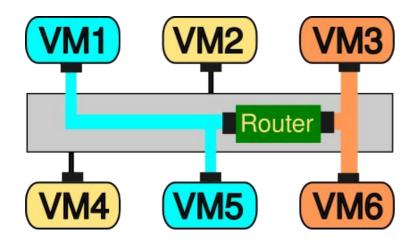
Private Networks

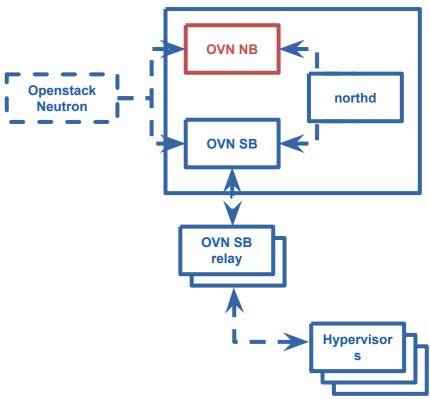
- Isolated tunneled network creatable by user
- (Virtual) Routers to connect to other private or public networks
- For now limited to VMs in the setup


Security Groups

- Firewall for VMs on hypervisor level
- Allow certain groups of servers to talk to each other
- Whitelist approach
- Break of current mantra: "Everything can communicate with everything"
- Experience to be gained for large-scale deployment
 - Performance
 - User feedback

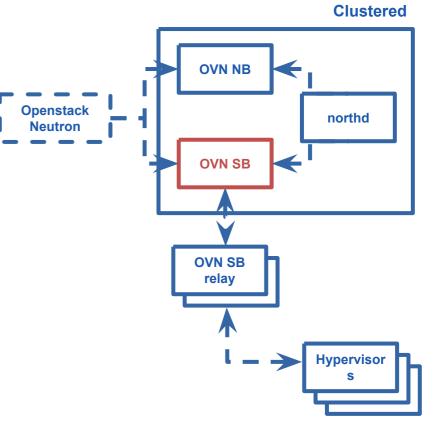
OVN Components


- OVN Northbound (NB) DB
 - ➢ "Port", "Router", "Switch"
- OVN Southbound (SB) DB
 - Hypervisor, Flow rules
- OVN northd
 - Translation between NB and SB
- OVN SB Relay
 - Relay/Cache for scaling



OVN Northbound

- Stores global abstract network view
- OVN NB: "Port", "Router", "Switch"

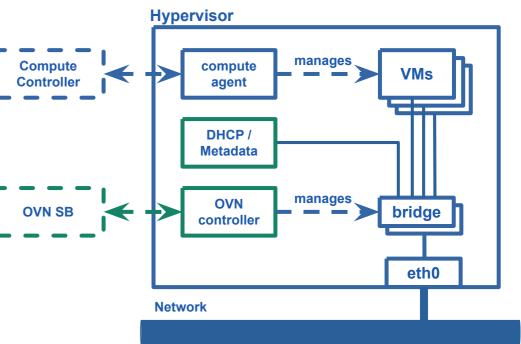


Wiring the Future: Open Virtual Networking and Beyond | HEPiX 18 April 2024 | Daniel Failing

Clustered

OVN Southbound

- OVN SB: Hypervisor, Flow rules
- Example FlowRule routed packet:
 - packet from port A
 - verify IP/MAC
 - check TTL
 - modify SRC IP
 - check firewall
 - send out port Z



CERN

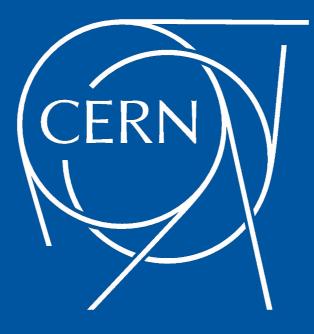
Hypervisor

- OVN Controller + OpenVSwitch (OVS)
- Central OVN Network DB for configuration
 - Flow rules in local OVS bridge
- DHCP, Metadata for VMs in Hypervisor
- Public networks leaves eth0 directly
- Private networks tunneled to target host

Beyond / Plans

- Short term:
 - validating functionality with users
 - scalability test and gain confidence
- Migrate existing setup (old DC) to OVN (~15000 VMs, ~1700 hypervisors)
 - Migration path not straightforward
- Better integration with routers (e.g. BGP, EVPN)
 - Floating IPs
 - Even greater flexibility to move VMs

Thank You!



All our open source code is available on: https://gitlab.cern.ch/cloud-infrastructure

Multiple contributors over the years helped to achieve this.

For contact: Daniel Failing - daniel.failing <at> cern.ch

