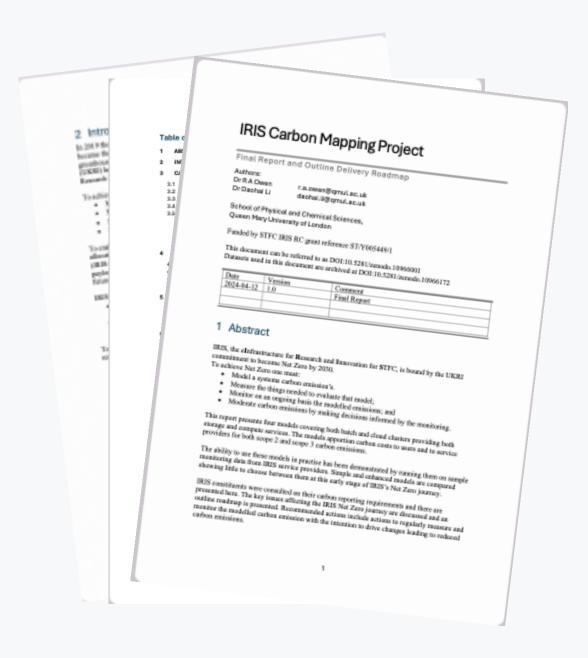

Carbon Costs in IRIS & UKRI NetZero DRI

https://doi.org/10.5281/zenodo.7692451


Speaker: Dr Alex Owen

r.a.owen@qmul.ac.uk

https://doi.org/10.5281/zenodo.10966001

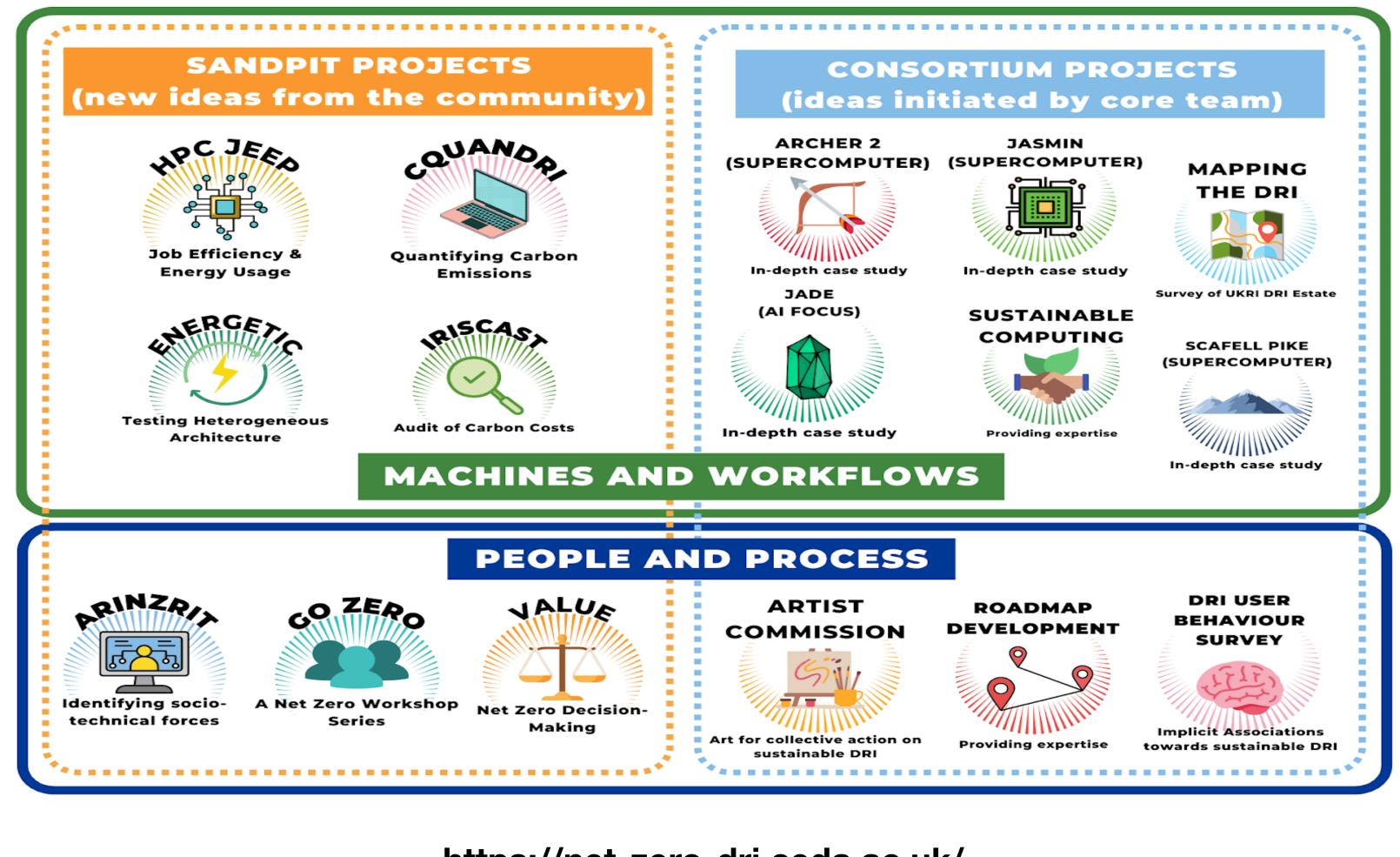
eInfrastructure for Research and Innovation for STFC

https://www.iris.ac.uk/

IRIS is a cooperative community brining together (mainly) STFC computing interests

Formed bottom up by science communities and compute providers

Works closely with STFC but run by the community


IRIS Science Director is
Prof J Hays
who is also
IRISCAST Project PI
IRIS-CMP Project CI

UKRI DRI Net Zero by 2040

UKRI Net Zero DRI Scoping Project

https://net-zero-dri.ceda.ac.uk/

https://doi.org/10.5281/zenodo.8199984

Measuring Carbon

NetZero and the

Audit of Carbon Costs

Jon Hays (QMUL)
Nic Walton (Cambridge)
Adrian Jackson (Edinburgh)
Alison Packer (STFC)

Alex Owen (QMUL)
Alex Ogden (Cambridge)
Anish Mudaraddi (STFC)

Dan Traynor (QMUL)
Derek Ross (STFC)
Alexander Dibbo (STFC)
Jon Roddom (STFC)
Martin Summers (STFC)
Jacob Ward (STFC)
Dan Whitehouse (Imperial)
Alastair Basden (Durham)

6 Month Project Funded within UKRI Net Zero Scoping Project

What is IRISCAST?

IRISCAST is the IRIS Carbon Audit SnapshoT

24 Hour snapshot across multiple 'IRIS Facilities'

The Challenge

The Project

Estimate carbon costs for scientific computing across a broad heterogeneous landscape

Identifying the key drivers for carbon costs

Identifying the hurdles and barriers

Communicating the carbon costs to drive change

Working coherently across different communities

Work together coherently across different facilities with different remits, tooling, and capabilities.

Learn by doing!

Document the gaps, the barriers and the issues, drive requirements for future work and decision making

Communicate across our communities and build a foundation for future action

Carbon Model

$$C_t^p = C_a^p + C_e^p$$

Carbon Cost (C) for a period (p) is sum of active carbon (a) and embedded carbon (e)

$$C_a^p = CM_e^p \left(E_{nodes}^p + E_{network}^p + E_{cooling}^p + E_{power}^p + E_{facility}^p \right)$$
 Carbon Intensity of Power (Grid)

Measure Energy Usage (E) Obtain Carbon Grid Intensity (CM)

$$C_e^p = \sum_{t=0}^{\text{nodes}} \sum_{t=0}^{p} \frac{C_{\text{enode}}}{L_{\text{node}}} + \sum_{t=0}^{\text{networks}} \sum_{t=0}^{p} \frac{C_{\text{enetwork}}}{L_{\text{network}}} + \sum_{t=0}^{\text{facility items}} \sum_{t=0}^{p} \frac{C_{\text{efacility}}}{L_{\text{facility}}}$$

Inventory of Equipment Obtain Embedded Carbon Estimate Lifetime (L)

Carbon Model

Model a range of scenarios

Measuring computer energy usage is the easy bit.

Cooling energy usage/PUE less well known.

Computer embedded carbon figures hard to find.

Other equipment embedded carbon figures even more hard to find.

		Scenario	
Factor	Low	Medium	High
Carbon Intensity (gCO ₂ /kWh)	50	175	300
PUE	1.1	1.3	1.6
Server Embodied Carbon (KgCO ₂)	400	-	1100
Server Lifespan (years)	3	5	7

		Total carbon footprint estimate (kgCO2)				
		(Per	(Percentage active carbon)			
Server		PUE Low	PUE Medium	PUE High		
embodied carbon	Server lifespan	Carbon Intensity Low	Carbon Intensity Medium	Carbon Intensity High		
	3	1950 (55%)	5293 (83%)	10186 (91%)		
Low	5	1600 (67%)	4943 (89%)	9836 (95%)		
	7	1449 (74%)	4792 (92%)	9685 (96%)		
	3	3483 (31%)	6826 (65%)	11719 (79%)		
High	5	2519 (42%)	5862 (75%)	10755 (86%)		
	7	2106 (51%)	5449 (81%)	10342 (90%)		

IRISCAST 24 hour snapshot roughly 1-4 people on 12 hour return Jet

Potential to reduce carbon emissions by an order of magnitude!

Learning By Doing

Facilities

Cambridge IRIS HPC/Cloud STFC SCD Cloud STFC SCARF QMUL GridPP Tier 2 Imperial GridPP Tier 2 DiRAC (Durham)

Build a Community

24 Hour Snapshot at Six Facilities

Summary Inventories

Node Model	Quantity
Dell PowerEdge R640	118
Mellanox SN2410	4
APC APDU9953	12

Node Model	Quantity
PowerEdge R410	68
PowerEdge R410	60
PowerEdge R430	15
PowerEdge R440	30
PowerEdge R6525	24
ProLiant SL2x170z G6	12
SYS-6028TP-HTR	24
X9DRT	
Unknown (Generic Server)	8
Facility Inventory at Imperial	

Node Specifi	_	
CPU	RAM	Quantity
AMD Epyc 7502	256GB	246
Intel Gold 6126	192GB	164
Intel E5-2650v4	128GB	201
Intel E5-2650v3	128GB	88
Network Switches		-
E-vility Inventory at ST	FC SCARF	

	公警
HI I	
Audit of	Carbon Cos

	Speci	_	
Model	CPU	RAM	Quantity
Dell PowerEdge C6320	x2 Intel Xeon CPU E5-2690 v4 @ 2.60GHz	256 GB DDR4- 2400MHz ECC	60

	Node Specifica	tion
Model	CPU	RAM
Dell PowerEdge C6420	x2 Intel Xeon Gold 5120 CPUs	512 GB
Dell PowerEdge C6525	x2 AMD EPYC 7H12	1024 GB

CPU	RAM	Quantity
Intel Xeon 4108	96GB	96
	512	138
	512	238
	-	74
Intel 6130		10
Various		
Various	Various	94
Intel 6148	192GB	1
Various	Various	12
Various	Various	105
	Various	-
	Intel Xeon 4108 AMD Epyc7452 AMD Epyc7452 Intel 6130 Various Various Intel 6148 Various Various Various	Intel Xeon 4108 96GB

Energy Vs **Power**

For active carbon we need to know about ENERGY usage

APC PDU's SNMP query PowerNet-MIB::rPDU2DeviceStatusEnergy.1

Hoctowatthour (100 wh) units

Time Stamped Energy usage is more robust than instantaneous power

APC port n

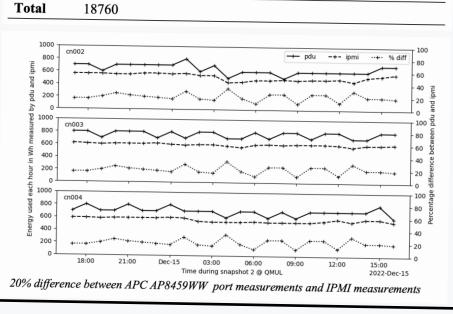
SNMP query

PowerNet-MIB::rPDU2OutletMeteredStatusEnergy.n

/ ipmi-oem dell get-power-consumption-data

IPMI query (ipmitool)

ipmitool sensor list


Probably Power Measurements Energy is better!

PDU Vs **IPMI**

IPMI approx 20% low cf PDU Except at QMUL where 1.5% (APDU9953)

More questions than answers: Check your calibrations!

System	Facility (kWh)	PDU (kWh)	IPMI (kWh)	TurboStat (kWh)	No. of Nodes
QMUL	1299	1299	1279	1214	118
CAM DUR	261 8154	- 8154	261 6267	-	59 876
STFC CLOUD	3831	-	3831	-	721
STFC SCARF	4271	4271	3292	-	571
IMP	944	-	944	-	117
T 4 1	10560				

Audit of Carbon Costs

Re test at QMUL

with AP8459WW

per port PDU 20% difference! Precision of ipmitool output identified as a problem by Durham. They may have a patch!

Tools

at each

Level

Facility Level:

Cooling energy usage/PUE generally poorly known

		- I		Node Le	vel	
Facility	Enclosur	e Level		Device	Protocol	Tool
Name	Device	Protocol	Tool	BMC	IPMI	free-ipmi
QMUL	PDU	SNMP	Net-SNMP	BMC	Redfish	Prometheus
Cambridge	-	SSH	SSH	BMC	IPMI	unknown
Durham	PDU	3311		DMC	IPMI	ipmitool
DiRAC STFC	PDU	SNMP	LibreNMS	BMC	11 1411	•
Cloud	-511	SNMP	LibreNMS	BMC	IPMI	ipmitool
STFC	PDU	SINIVIE	Diores	-1.60	IPMI	ipmitool
SCARF	_	_	-	BMC		1
Imperial	_		.1	1 JUICC	AST sites. Not	tabiy using

Comparison of predominant data collection methods at IRISCAST sites. Notably w intelligent Power Distribution Units (PDUs) and Baseboard Management Controllers (BMCs).

Job Level:

SLURM queues can report Job Energy usage

Turbostat and other RAPL tools?

High Level Feedback

Carbon Equivalent per month

Low Level Feedback

Figure of merit ——— Carbon Equivalent per Job

- 1. Future DRI procurement to include a score based on embedded carbon costs and equipment energy usage.
- 2. New computer hardware to include energy measurement capability such as IPMI (or per port PDUs) and require the supplier to provide best estimates of embedded carbon costs.
- 3. Measure energy used by cooling infrastructure and the computing infrastructure.
- 4. Facilities to keep an inventory of equipment including embedded carbon cost and idle power draw.
- 5. Monthly (or other periodic) reporting of carbon usage by facilities based on 3 and 4 above. Roll into standard grant reporting regime.

- 6. Collect per job (or VM) energy usage by using tools like Slurm (correctly configured). Combined this with embedded carbon from inventory and electricity carbon intensity to feedback job carbon cost to the end user to drive improvements in user code and workflow.
- 7. Identify user communities and the authors of community codebases so that useful feedback can be given to them to drive the development of more efficient code and workflows.

ROADMAP:

Milestones on the journey to net zero, organised into three delivery pathways

Actions

Recommendations

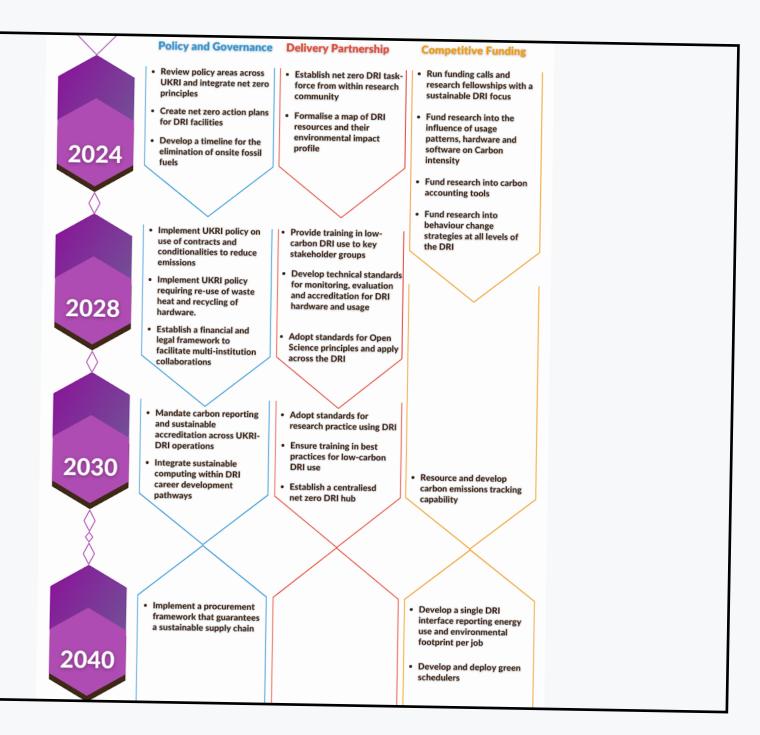
Evidence

DELIVERY PARTNERSHIP

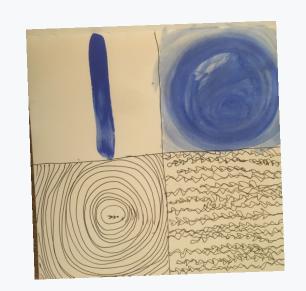
TOOLKIT:

A comprehensive suite of options, based on detailed technical recommendations, which can help us on the journey to net zero, collected into six thematic areas.

https://doi.org/10.5281/zenodo.8199984


Grant call to lead the follow on implementation activity closed this week

Lets see what happens next...


UKRI DRI Net Zero Scoping Roadmap

https://doi.org/10.5281/zenodo.8199984

UKRI DRI Net Zero Scoping Toolkit

Box 2.1.A: Six Strategic Themes that make up the toolkit

- Mission Focus: continuous assessment and focus on the mission of achieving sustainability; active measures to counter the risk of enhanced demand negating efficiency gains.
- Recognition of shared responsibility: mandate and empower all staff (from student to CEO) to take proportionate action to drive change and reduce the environmental impact of their work; community building; encourage discussion among colleagues and learn from others to foster positive changes in behaviour.
- Action-based-research: work must start now with commitment appropriate to the climate emergency while recognising that there will be a need for regular checks and adjustments; focus on progress not perfection; small steps; learn from experience.
- 4. Work with peers and suppliers: through contracts, conditionalities, and understanding mutual benefits, to develop a low carbon supply chain [essential in the longer term]
- Build and Share Knowledge: providing leadership, support and advice for business cases and large procurements feeding into reporting; central hub for information and institutional knowledge [also likely to create short term results]
- 6. **Green Software Engineering**: creating a body of expertise around green software engineering, providing training, developing tools, metrics, expert assessment, and standards to transform current approaches to writing code, and supporting codes running in data centres, such that GSE becomes the norm rather than an optional

https://doi.org/10.5281/zenodo.8199984

Alex Owen (QMUL)
Jon Hays (QMUL)

Daohai Li (QMUL) Alex DIbbo (STFC)

Motivation: How should IRIS work towards NetZero DRI?

Models and Tools

Outline Delivery Roadmap

Allocate Carbon Costs to User Payloads

	Scope 2 – Energy	Scope 3 – Carbon
Payload	$E_p = E_f^t \cdot \frac{R_p}{R_f} \cdot \frac{t_p}{t}$	$C_{ep} = \frac{R_p}{R_f} \cdot t_p \cdot Q_{ef}$ Where: $Q_{ef} = \sum_{x=1}^{items} \frac{C_{ex}}{T_x}$
Idle	$E_{idle}^{t} = E_f^t - \sum_{p=1}^{payloads} E_p$	$C_{e \ idle}^t = t \cdot Q_{ef} - \left(\sum_{p=1}^{payloads} C_{ep}\right)$

Apportion by Real Time

Table 1: Summary of the Simple Payload Model showing allocations of Scope 2 energy and Scope 3 carbon to user payloads and the remaining idle allocation to the provider.

Simple Payload Model

Input	Description
E_f^t	Facility Energy usage over an accounting period
,	(including cooling) could be estimated from PDU readings
	multiplied by PUE
t	Duration of accounting period
t_p	Elapsed time of a payload (Wall clock)
R_p	Resource slots allocated to job (eg CPU's)
R_f	Total slots available at facility
C_{ex}	Inventory Entry: Embedded carbon of each item x in facility
T_{x}	Inventory Entry: expected lifetime of each item x in facility

Table 2: Summary of the inputs needed to evaluate the Simple Payload Model.

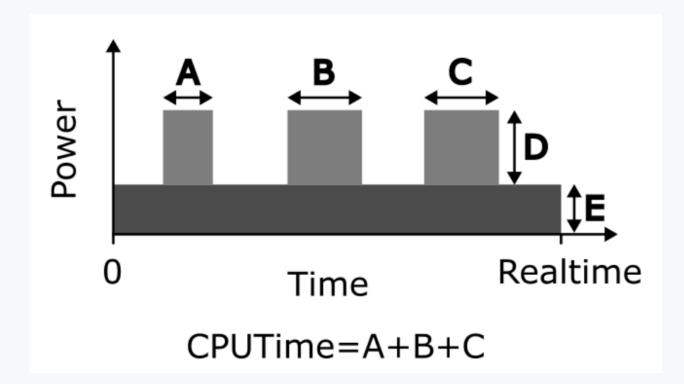

	Scope 2 - Energy	Scope 3 - Carbon
Payload	$E_p = P_f^{idle} \cdot \frac{R_p}{R_f} \cdot t_p + P_{slot}^{CPU} \cdot t_p^{CPU}$ Where: $P_{slot}^{CPU} = \frac{E_f^t - P_f^{idle} \cdot t}{t_f^{CPU}}$	$C_{ep} = \frac{R_p}{R_f} \cdot t_p \cdot Q_{ef}$ Where: $Q_{ef} = \sum_{x=1}^{items} \frac{C_{ex}}{T_x}$
Idle	$E_{idle}^t = E_f^t - \sum_{p=1}^{payloads} Ep$	$C_{e \ idle}^t = t \cdot Q_{ef} - \left(\sum_{p=1}^{payloads} C_{ep}\right)$

Table 3: Summary of the Enhanced Payload Model showing allocations of Scope 2 energy and Scope 3 carbon to user payloads and the remaining idle allocation to the provider

Enhanced Payload Model

Know your idle power?

Know your CPUtime?

Input	Description
E_f^t	Facility Energy usage over an accounting period
,	(including cooling) could be estimated from PDU readings
	multiplied by PUE
P_f^{idle}	Idle power draw of the facility (including cooling) could be
,	estimated from PDU readings during an idle period multiplied by
	PUE
t Duration of accounting period	
t_f^{CPU} Total CPUtime delivered by the facility during the accounting	
period.	
t_p	Elapsed time of a payload (Wall clock)
t_p^{CPU}	CPUtime of a payload
R_p	Resource slots allocated to job (eg CPU's)
R_f	Total slots available at facility
C_{ex}	Inventory Entry: Embedded carbon of each item x in facility
T_{x}	Inventory Entry: expected lifetime of each item x in facility
- 1-1- 1. 0	in write was also like a confusate that Eulean and Davids and Mandal

Table 4: Summary of the inputs needed to evaluate the Enhanced Payload Model.

Scope 2 - Energy	$E_{suser}^t = \frac{S_{user}}{S_{Total}} \cdot E_s^t$
Scope 3 - Carbon	$C_{esuser}^t = \frac{S_{user}}{S_{Total}} \cdot t \cdot Q_{es}$ Where:
	$Q_{es} = \sum_{x=1}^{storage_items} \frac{C_{ex}}{T_x}$

Apportion by Quota

Table 5: Summary of the Simple Storage Model showing allocations of Scope 2 energy and Scope 3 carbon to user storage use and the remaining allocation to the provider.

Simple Storage Model

Input	Description
E_s^t	Storage Energy usage over an accounting period
	(including cooling) could be estimated from PDU readings
	multiplied by PUE
S_{user}	Storage capacity allocated to a user
S_{total}	Total storage capacity of the storage subsystem
t	Duration of accounting period
C_{ex}	Inventory Entry: Embedded carbon of each storage item x
T_{x}	Inventory Entry: expected lifetime of each storage item x

Table 6: Summary of the inputs needed to evaluate the Simple Storage Model.

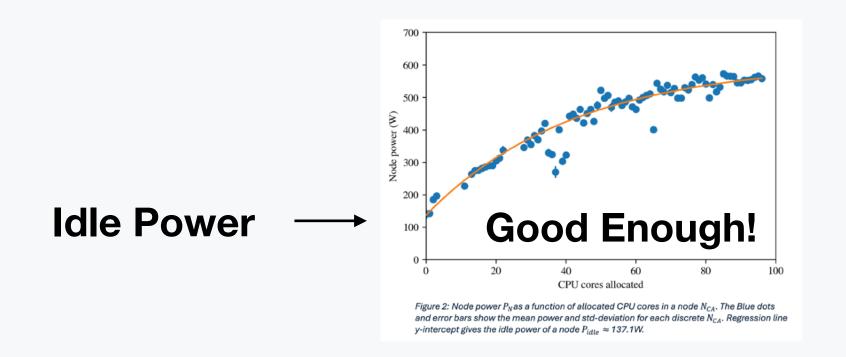
Scope 2 - Energy	$E_{suser}^t = \frac{S_{user}}{S_{total}} \cdot P_s^{idle} \cdot t + \left(E_s^t - P_s^{idle} \cdot t\right) \frac{B_{user}}{\sum_{u=1}^{all_users} B_u}$
Scope 3 - Carbon	$C_{esuser}^t = \frac{S_{user}}{S_{Total}} \cdot t \cdot Q_{es}$ Where:

Enhanced Storage Model

 $Q_{es} = \sum_{x=1}^{storage_items} \frac{C_{ex}}{T_x}$

Table 7: Summary of the Enhanced Storage Model showing allocations of Scope 2 energy and Scope storage use and the remaining allocation to the provider.

Know your idle power?


Know your bytes?

Input	Description		
E_s^t	Storage Energy usage over an accounting period		
	(including cooling) could be estimated from PDU readings multiplied by PUE		
Idle power draw of the storage cluster (including cooling) could be estimated from PDU readings during an idle period multiplied by PUE.			
S_{user}	Storage capacity allocated to a user		
S_{total}	Total Storage capacity of the storage subsystem		
t	Duration of accounting period		
B_{user}	Bytes read from, or written to, a users storage area		
C_{ex}	C_{ex} Inventory Entry: Embedded carbon of each storage item x		
T_x	Inventory Entry: expected lifetime of each storage item x		

Table 8: Summary of the inputs needed to evaluate the Enhanced Storage Model.

Nice model but is it practical?

User	Simple Payload Model	Enhanced Payload Model	
	kWh	kWh	
prdatl	1204.79	1191.95	
pillhcb	159.08	242.24	
pilcms	76.83	71.28	
pilatl	48.86	51.58	
Pilmoe	10.75	16.86	
Pildune	2.46	0.61	
Others	0.08	0.04	
Sub total	1502.86	1574.57	
Idle(provider)	94.14	22.43	
Total	1597	1597	

L				_
	E_f^t	1597 kWh	-	Facility Energy usage.
	,			In this four rack example the PDU
				cumulative energy readings were used
				to calculate this.
	P_f^{idle}	16.45 kW	-	Idle power draw of the facility.
	,			In this example the 137.1W per node
				was multiplied by 120 nodes.
	t	86400 s	-	Duration of accounting period. In this
				case 24 hours.
	t_f^{CPU}	-	\sum TotalCPU	Total CPUtime delivered by the facility
	,			during the accounting period. Sum of
				the TotalCPU figures for all payloads
	t_p	-	Elapsed	Elapsed time of a payload (Wall clock)
	t_p^{CPU}	-	TotalCPU	CPUtime of a payload
Ì	$Slots_p$	-	AllocCPUS	Resource slots allocated to job (eg
	P			CPU's)
	$Slots_f$	11520	-	Total slots available at facility.
	,			In this case 120 nodes with 96 cores
				each.

Slurm name

Description

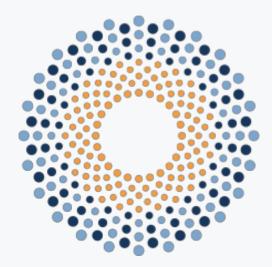
Table 9: Measured and derived constants and Slurm accounting data names used to evaluate the payload models for QMUL batch payloads.

Works for Batch!

Value

Input

Nice model but is it practical?


Works for Cloud too! (Simple does at least)

User	Simple Payload Model		
	kWh		
Project 1	51.51		
Project 2	31.52		
Project 3	25.07		
Project 4	18.22		
Project 5	17.61		
Project 6	12.89		
Others	94.00		
Sub total	250.82		
Idle(provider)	173.44		
Total	424.26		

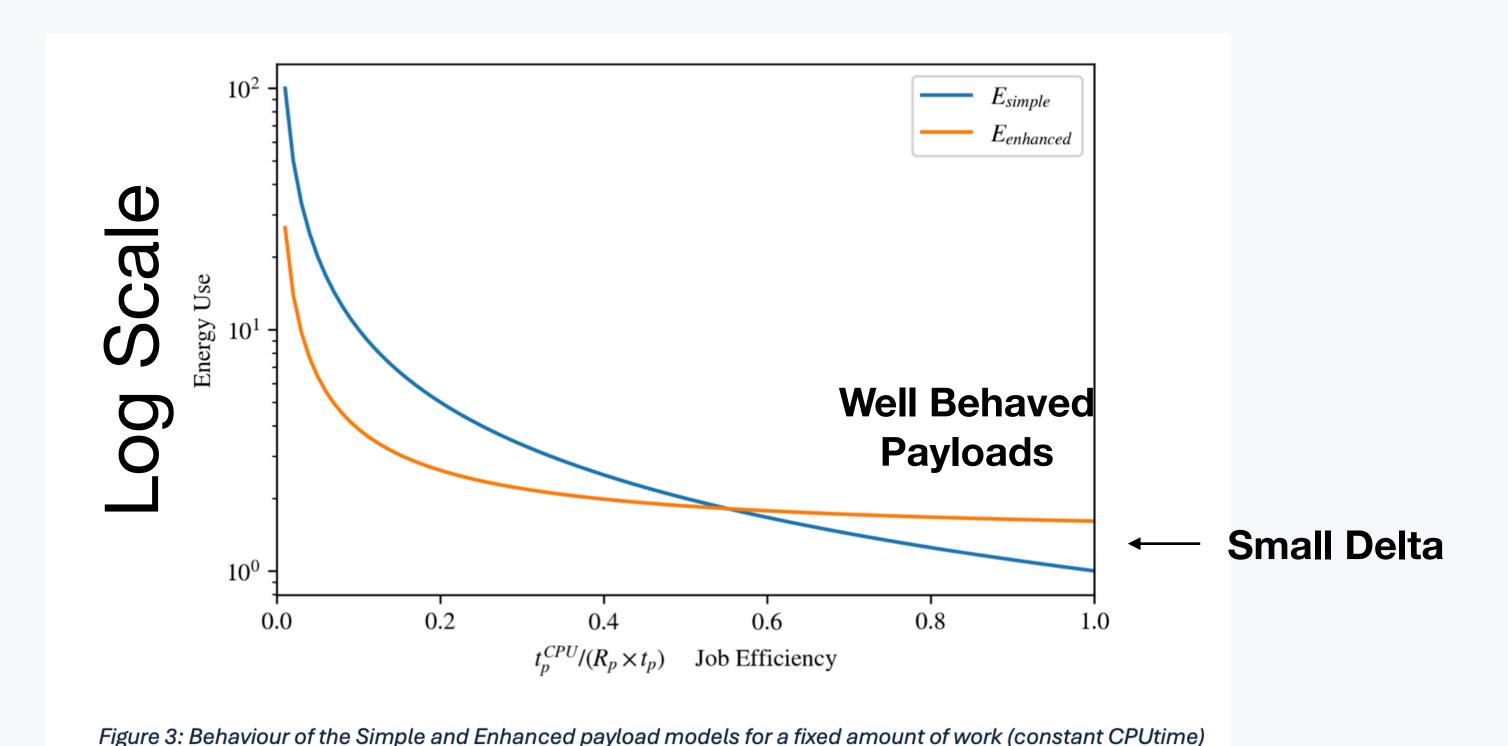

Input	Value	Prometheus name	Description
E_f^t	424.26	-	Facility Energy usage, derived from
,	kWh		"node_hwmon_power_average_watt"
			and our accounting period t on all
			nodes.
t	72000	-	Duration of accounting period. In this
	seconds		case 20 hours.
t_p	-	-	Elapsed time of a VM (Wall clock)
r			during our accounting period, as
			inferred by the VM's "launched_at" and
			"terminated_at" time from OpenStack.
R_p	-	openstack_nova_vcpus_used	Resource slots allocated to VM (eg
Ρ			CPU's)
R_f	?	openstack_nova_vcpus_available	Total slots available at facility.
,			In this case number of all vcpus on all
			the nodes.

Table 13: Measured and derived constants and Prometheus accounting data names used to evaluate the simple payload model for STFC Cloud payloads.

Enhanced should too...

Which Payload Mode is Best?

varying with Job Efficiency. Plotted on a log scale.

Not much to choose between them.

Both encourage more efficient code

Enhanced reduces Allocation to Providers

Which Storage Mode is Best? -> Can we get bytes read/written?

Reporting Requirements / Concerns

Federation

Carbon costs of IRIS activity/providers broken down into scope 2 and scope 3.

Carbon costs of IRIS supported projects broken down into scope 2 and scope 3.

Carbon saved by being a federation

Reporting upwards:

Benefit realisation, infrastructure efficiency Demonstrate right mix of platforms/tech Value of heterogeneity in the federation

Present success while using more?
Power used per hepspec
Fossil power used per hepspc

Providers

Carbon costs of a provider's service broken down by scope.

Allocate service carbon cost to users and idle/provider

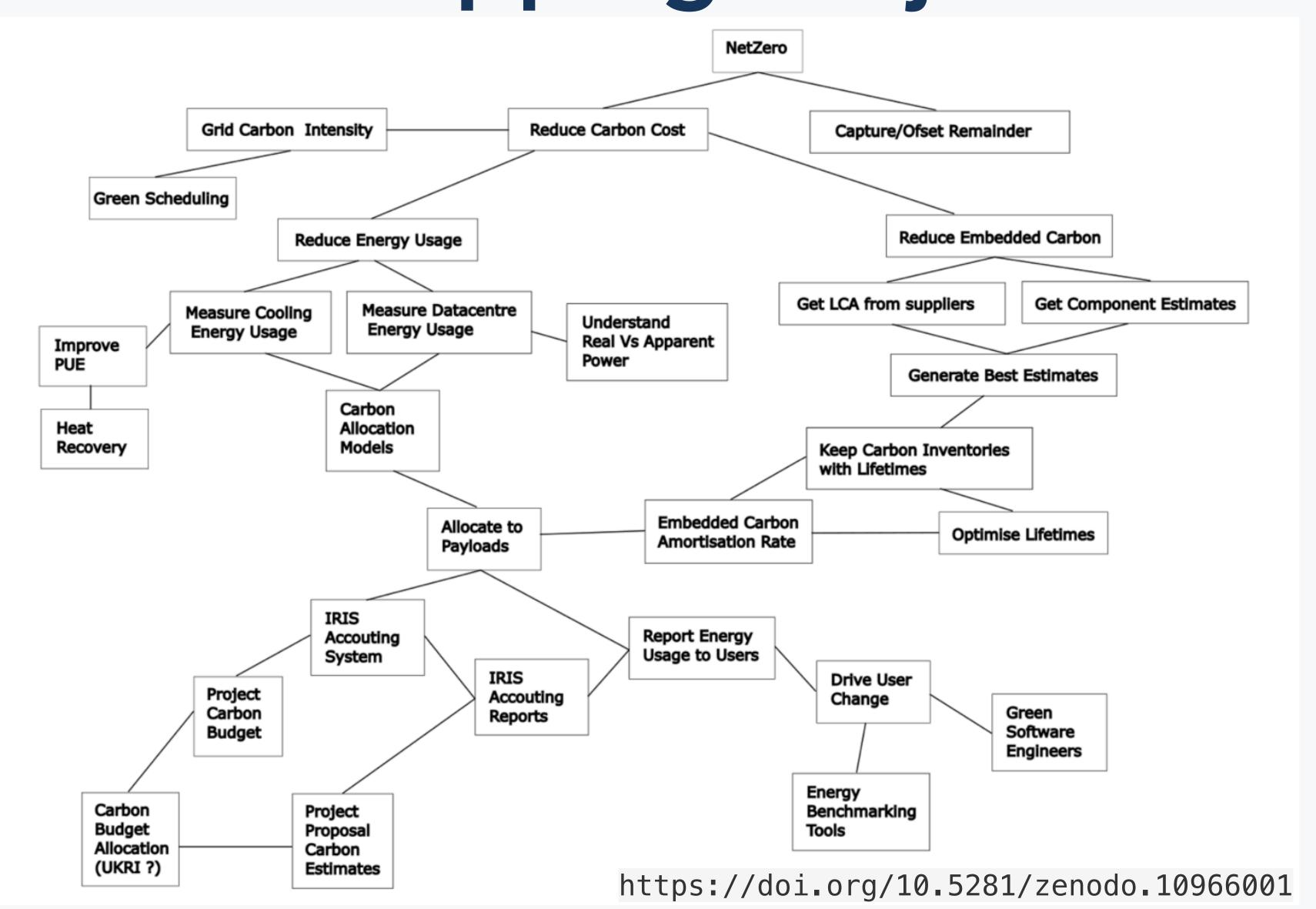
Ease of implementation

Allocate maximum to users (minimum to idle/provider)

Users

Energy per job

Average IRIS Carbon Intensity


Average Embedded carbon factor

Try to avoid motivating behaviour that increase federation carbon costs.

Try to lead the narrative

What's the Problem?

What we will do...

ID	Action	By whom	Timeframe
1	Include energy efficiency and scope 3 carbon considerations into procurements with low weighting	Provider	Now
2	Request LCA and scope 3 data from suppliers at procurement	Provider	Now
3	Increase weighting of energy efficiency and scope 3 carbon considerations into procurements	Provider	Soon
4	Require LCA and scope 3 data from suppliers at procurement	Provider	Later
5	Agree a minimum Carbon Inventory schema	Federation	Now
6	Create and maintain the Carbon Inventory	Provider	Now
7	Decide carbon accounting policy for scope 3 write-off/credit if equipment disposed of early or sold as working	Federation	Now
8	Prepare guidelines on how to optimise lifetime of kit for carbon emissions	Federation	Soon
9	Collect Grid Carbon Intensity for: provider sites, federation average and UK average.	Fed/Prov	Now
10	Publish average federation carbon intensity	Federation	Now
11	Share good practice on how real vs apparent AC power measurements effect the processing of different energy use measurements.	Federation	Now
12	Decide on initial carbon model for payload allocation	Federation	Now

ID	Action	By whom	Timeframe
13	Commission an IRIS Carbon Accounting Data Repository: planning and implementation, including data model and data transfer.	Federation	Now
14	Evaluate selected model on payloads daily to give user energy feedback	Provider	Now
15	Evaluate selected model on payloads monthly to report sum of payload energies and idle energy and apportioned embedded carbon costs	Prov/Fed	Now
16	Collect monthly returns of data from providers to IRIS Carbon Accounting Data Repository	Federation	Now
17	Commission reporting portal to provide the identified reports to federation, providers, and users.	Federation	Now
18	Commission reporting to users of payload energy usage and average federation carbon intensity.	Federation	Now
19	Additional tools for user code optimisation such as energy benchmark tools and the addition of profiling queues to services run by providers.	Fed/Prov	Soon
20	Find or commission an energy benchmark for providers to run on compute nodes and keep results in inventory	Federation	Soon
21	Survey GPU energy monitoring frameworks and plan how to add accelerators into carbon monitoring models.	Federation	Soon
22	Review evidence from under-clocking of accelerators and the effect on carbon emissions.	Federation	Soon
23	Collect additional user carbon reporting needs.	Users	Soon
24	Plan how to record and report the impact of Green RSE's.	Federation	Now
25	Regular review of developments in 'Green Scheduling'.	Federation	Now
26	Regular review of UKRU DRI NetZero projects and policy	Federation	Now
27	Bid for UKRI DRI NetZero funds	ALL	Now
28	Prepare IRIS Carbon Costing Framework for grant proposals	Federation	Now

Energy Vs Power

For active carbon we need to know about ENERGY usage

Time Stamped Energy usage is more robust than instantaneous power

Do you know your PUE? (Cooling kWh)

APC PDU's / PowerNet-MIB::rPDU2DeviceStatusEnergy.1

Hoctowatthour (100 wh) units

APC port n

SNMP query

PowerNet-MIB::rPDU2OutletMeteredStatusEnergy.n

freeipmi precision improved: https://savannah.gnu.org/bugs/index.php?65449 ipmitool bug submission + 1 line patch pending

IPMI query
(ipmitool)
ipmitool sensor list

Probably Power Measurements Energy is better!

We can measure Carbon Costs of a computer service

We can allocate Carbon Costs to Payloads

Next Steps

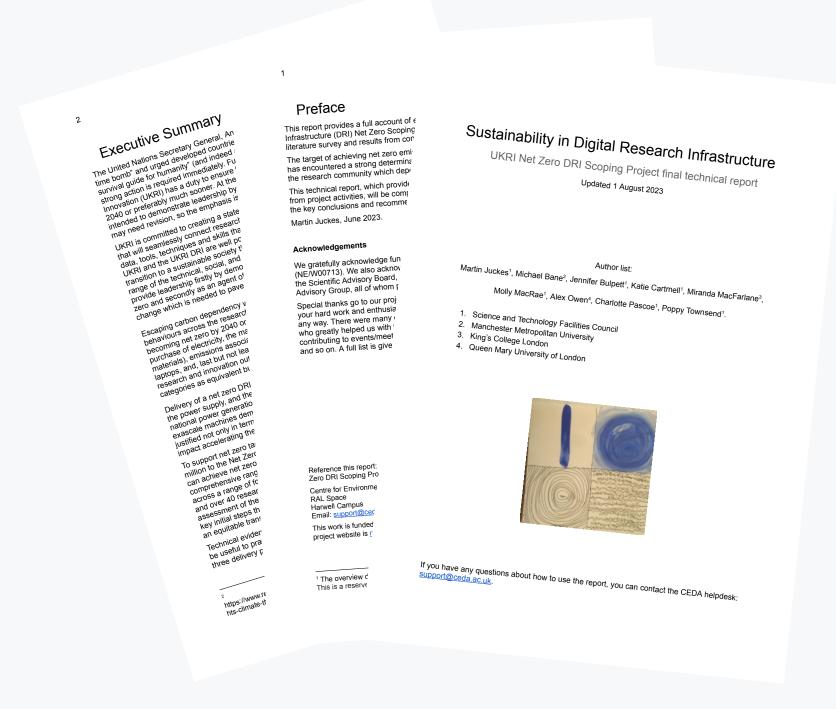
Establish Embedded Carbon Inventories

Measure model inputs regularly

Establish Carbon
Accounting/Reporting
System

Run Model Regularly

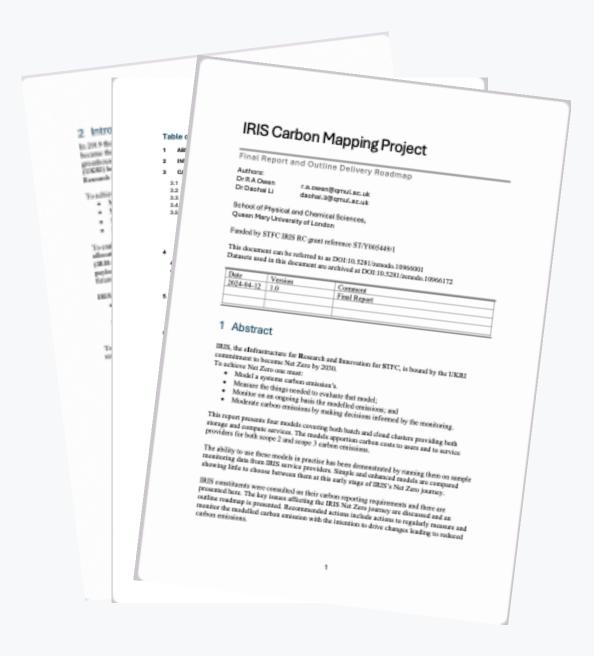
Monitor the model trends


Make informed decisions to recuse Carbon costs

Stay aware of UKRI NetZero DRI work

Carbon Costs in IRIS & UKRI NetZero DRI

https://doi.org/10.5281/zenodo.7692451


Speaker: Dr Alex Owen

r.a.owen@qmul.ac.uk

https://doi.org/10.5281/zenodo.10966001

https://doi.org/10.5281/zenodo.8199984