

Exascale challenges

Christophe CALVIN

CEA/DRF

Deputy to the Director of Fundamental Research at the CEA in charge of HPC and simulation

What exascale? And for what?

Prefix (symbol E) which, placed in front of a unit, multiplies it by 10¹⁸.

Compute: Exaflops → 10¹⁸ floating points operations per seconds Eflops/s

Storage: Exabyte → 10¹⁸ bytes

Technological challenges

How to design and operate such a machine within a sustainable energy envelope?

			Factor
	2010	2018	Change
System peak	2 Pf/s	1 Ef/s	500
Power	6 MW	20 MW	3
System Memory	0.3 PB	10 PB	33
Node Performance	0.125 Gf/s	10 Tf/s	80
Node Memory BW	25 GB/s	400 GB/s	16
Node Concurrency	12 cpus	1,000 cpus	83
Interconnect BW	1.5	50 GB/s	33
System Size (nodes)	20 K nodes	1 M nodes	50
Total Concurrency	225 K	1 B	4,444
Storage	15 PB	300 PB	20
Input/Output bandwidth	0.2 TB/s	20 TB/s	100

Technological challenges

	2010	2018	2022 (FRONTIER)
System peak	2 Pf/s	1 Ef/s	1.5 Ef/s
Power	6 MW	20 MW	22.7 MW
System Memory	0.3 PB	10 PB	37 PB
Node Performance	0.125 Gf/s	10 Tf/s	166 Tf/s
Node Memory BW	25 GB/s	400 GB/s	
			64 CPU cores + 880
Node Concurrency	12 cpus	1,000 cpus	GPU cores
Node Concurrency Interconnect BW	12 cpus 1.5		GPU cores 100 GB/s
•	1.5	50 GB/s	
Interconnect BW	1.5	50 GB/s 1 M nodes	100 GB/s
Interconnect BW System Size (nodes)	1.5 20 K nodes	50 GB/s 1 M nodes 1 B	100 GB/s 9,472 nodes
Interconnect BW System Size (nodes) Total Concurrency	1.5 20 K nodes 225 K	50 GB/s 1 M nodes 1 B	100 GB/s 9,472 nodes 9 B

How to design and operate such a machine within a sustainable energy envelope? → GPU

	//

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE	8,699,904	1,194.00	1,679.82	22,703
2	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot- 11, Intel	4,742,808	585.34	1,059.33	24,687
3	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft	1,123,200	561.20	846.84	
ļ	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu	7,630,848	442.01	537.21	29,899
)	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE	2,752,704	379.70	531.51	7,107
3	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, EVIDEN	1,824,768	238.70	304.47	7,404
7	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM	2,414,592	148.60	200.79	10,096
3	MareNostrum 5 ACC - BullSequana XH3000, Xeon Platinum 8460Y+40C 2.3GHz, NVIDIA H100 64GB, Infiniband NDR200, EVIDEN	680,960	138.20	265.57	2,560
)	Eos NVIDIA DGX SuperPOD - NVIDIA DGX H100, Xeon Platinum 8480C 56C 3.8GHz, NVIDIA H100, Infiniband NDR400, Nvidia	485,888	121.40	188.65	
0	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox	1,572,480	94.64	125.71	7,438

100% CPU

>90% of total performance is based on GPUs (NVIDIA and AMD)

GPU from video games to Al

- Initially GPU have been designed for video games! → graphics
- Used for HPC (CUDA): excellent ratio Gflops/Watt
- Now GPU market: Al (and Gen Al) FP64 is quite useless for Al workloads (Learning and inference)

- GPU: not especially designed for numerical simulation
- Not really easy to program CUDA/OpenCL explicit transfer from host→device
- Increase FP32/FP16/FP8/FP4 performances for Al and stagnation of FP64 perf

And what about usages?

Big data and extreme-scale computing: Pathways to Convergence-Toward a shaping strategy for a future software and data ecosystem for scientific inquiry

The International Journal of High Performance Computing Applications 2018, Vol. 32(4) 435-479 © The Author(s) 2018 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/1094342018778123 journals.sagepub.com/home/hpc **\$**SAGE

35 ExaBytes

- Not only pure HPC (numerical simulation)
- More and more HPDA: treatment and analysis coming from large facilities and IoT
- Explosion of AI (and especially GenAI)
- ChatGPT-3: 175 Billions of parameters 3 months 8 000 GPU Hopper 15 MW mégawatts
- Chat GPT-4: 1 Trillion of parameters

Dataset	# tokens	Proportion within training
Common Crawl	410 billion	60%
WebText2	19 billion	22%
Books1	12 billion	8%
Books2	55 billion	8%
Wikipedia	3 billion	3%

DataSets Size of DataSets

What impact?

- SW stack: both for data and HPC
- FS: large data sets / small files / high performance (LUSTRE is not the only solution)
- Cloud access HPC center is not "fortress" anymore
- HPC center not anymore in the center! A link in the chain

Exascale is not only a HW concern but need to rethink the usage of supercomputers, datacenter architecture and access to supercomputers

Exascale in Europe

HPC

Infrastructure

Quantum

Infrastructure

EUROHPC, MAIN DIRECTIONS FOR #2 REGULATION (2021-2033)

2 main technological directions, 7B€ for the second phase

➤Infrastructure deployment

Joint Undertaking 2019 & 2020 2021 2022 2023 2024 pre-exascale Several pre-exascale systems exascale HPC + petascale

> 1st generation of quantum computers + quantum simulators interfacing with HPC

> > systems

and exascale HPC systems

2025 2026 2027 exascale and post-

2nd generation of quantum computers +

quantum simulators

EU PEX

systems

#EuroHPC

1st Exascale CFEI published by EuroHPC on dec 2021

-> Selection of the German proposal (at FZJ) called JUPITER 2ème Exascale CFEI expected for end 2022

1sr CFEI for quantum computers from EuroHPC

-> EuroQCS-France application (with FR, GE, IE et RO) using photonics based solution integrated into HPCQS

-> results expected in October

HPC USER FORUM | 04/10/2022 | 7

>Successive R&D calls for proposals including :

- an Exascale pilot Consortium EUPEX (lead Atos)
- A quantum pilot Consortium HPCQS

Meluxina: 18Pflops

HPC systems

Quantum

simulators

interfacing

with HPC

systems

Karolina: 13Pflops

Discoverer: 6Pflops

Peta

LUMI: 540 Pflops

LEONARDO: 314 Pflops

MareNostrum5: 312 Pflops

PreExa

Exascale in France: Jules Verne project

EXASCALE SYSTEM ARCHITECTURE OVERVIEW

Possible reference designs

Academia, industrial and public services users

cea

Organization of the french application

➤ GENCI Hosting Entity

➤CEA Hosting Site

>SURF (NL) as member of consortium

Name of the consortium/supercomputer: Jules Verne

Full TCO over 5 years: 542 € (50% EuroHPC, 50% consortium)

- French public contribution
- NL contribution
- -Seeking more partners on the consortium to reach 300M€
 - International partners
 - French research institutions
 - French industrial partners (end users)

JULES VERNE PROPOSAL - NEXT STEPS

From Call for Expression of Interest (CEI) to commissioning the Exascale supercomputer

Global performance targets

Sustained HPL performance = 1 Eflops
Composition: 60% accelerated nodes, 40% scalar nodes
but accelerated nodes will bring > 90% peak performance
>100 PB Flash/HDD and > 200 PB archive

Estimated Total cost of ownership over 5 years ~ 500 M€ Power consumption < 20 MW

Exascale in France: support for application communitiesToward Exascale appl

Toward Exascale applications and usages : The NumPEx project

EXASCALE AS A KEY APPLICATION ENABLER FOR EUROPEAN SCIENTIFIC AND SOCIETAL CHALLENGES

Aggregate the French HPC/HPDA/IA community

Contribute and accelerate the emergence of a European sovereign exascale software stack and strategic applications exascale capability in a coherent and multi-annuel framework

Integrate and validate co-designed innovative methods, libraries and software stack with demonstrators of strategic applications.

Accelerate science-driven and engineeringdriven developers training and software productivity

12 PY for 5 years L3/L4 support funded by the project

Collaborations - National -> International ecosystem >>

Questions?