

IHEP Site Report

On Behalf of IHEP-CC

Jingyan Shi

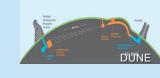
shijy@ihep.ac.cn

- **Operating System Upgrade**
- **3** Grid Sites in China
- **4 One Platform, Multi-Centers**
- **5** Some Research Work

6

Brief Introduction to IHEP

- **Institute of High Energy Physics**
- The largest fundamental research center in China
 - **Experimental Particle Physics**
 - **Theoretical Particle Physics**
 - **Astrophysics and cosmic-rays**
 - Accelerator Technology and applications
 - Synchrotron radiation and applications
 - Nuclear analysis technique
 - **Computing and Network application**



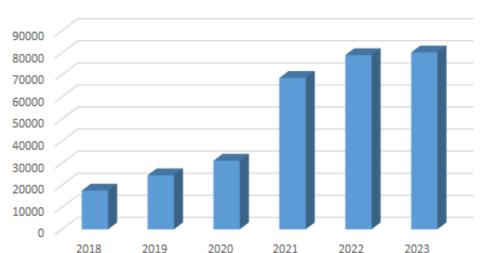
Accelerator based particle physics

Neutrino physics

Cosmic ray and astrophysics experiments

Neutron Source and Synchrotron Radiation Facilities

Facilities of IHEP

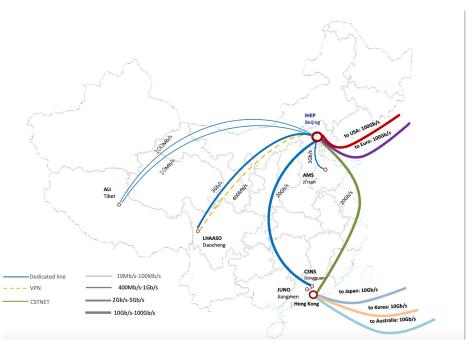


Computing and Data Storage

Distributed Locations

- Data center: Beijing, Dongguan
- Exp. Onsite: Daocheng, Jiangmen, Tibet
- Quantity of resources grew exponentially
 - ~90k CPU cores
 - ~100PB disk storage
 - ~80PB Tape storage
- HTC and HPC for experiments
 - 28 experiments / applications

Data Storage Capacity at IHEP (2018-2023) 100 90 70 60 50 40 30 20 10 2018 2019 2020 2021 2022 2023 Disk Storage (PB) Tape Storage (PB)


Number of CPU (2018-2023)

International Network

- International network link upgraded to 100Gbps in 2023
 - With the help from CSTNET, GEANT and CERN
 - The data transfer test showed the peak performance between IHEP and Europe reach to 50 Gbps
- Dedicated links between IHEP and domestic remote sites
 - HEPS-IHEP: 100 Gbps
 - CSNS-IHEP: 20 Gbps
 - LHAASO-IHEP: 2 Gbps(3 Gbps since Mar. 2024)
 - JUNO
 - Lanzhou Univ-IHEP: 2 Gbps

IT Services for HEPS

9

- High Energy Photo Source (HEPS)
 - First high-energy synchrotron radiation light source
 in China
 - Located 100km north of IHEP and will be commissional in 2025
- 520m² New machine room for HEPS is ready
 - 2500kVA+2500kVA mains power supply and 800kVA UPS
 - 47 racks in Phase I: 20 for storage, 21 for computing and 6 for network
 - Storage and computing servers have been installed
- Software of data management and analysis
 have been deployed
 - Integration and performance tuning is undergoing

HEPS machine room

新位置:/hepsfs/central/4W1B/202 根路径 返回上一级 批量高速下載		Data/GB06-20230302-01/raw			
File Manager		文件名 ⇔	类型 ≎	大小 ≑	操作
"MoaCAT 近登目录	<u>~</u>	Jzhang-red-1_None.h5	file	142.53 kB	普通下载 高速下载
automatically_clean_recycle_folder	<u>~</u>	S4-1-0.1s-10mu_None_0.h5	file	142.53 kB	普通下载 高速下载
202211	×	\$2-1-0.2-20mu-test3_0_0.h5	file	33.91 MB	普通下载 高速下载
Data	<u>~</u>	JZhang-red_None_1.h5	file	78.53 kB	普通下载 高速下载
GB06-20230302-01	~	S2-1-0.2-20mu-test5_0.h5	file	25.56 MB	普通下载高速下载
share	<u>~</u>	S4-1-0.1s-10mu_None.h5	file	142.53 kB	普通下载 高速下载
processed		S2-1-0.2-10mu_0.h5	file	407.81 MB	普通下载 高速下载
raw	~	S2-1-0.2-20mu-test2_0_0.h5	file	33.53 MB	普通下 载 高速下载
GB06-20230303-01	~	HS2-1-0.2s-20mu_0.h5	file	721.86 MB	普通下就 高速下载
isolation_area	×	Jzhang-black_None_0.h5	file	142.53 kB	普通下载 高速下载
202302		HS2-1-0.2s-10mu_0.h5	file	3.59 GB	普通下载 高速下载

HEPS data service portal

Service Provision of CC-IHEP

- Computing Statistics last 6 months
 - HTCondor Cluster: 34k CPU cores
 - Job slot utilization: 87.74%
 - Slurm Cluster: 8864 CPU cores and 254 GPU Cards
 - Utilization of CPU: 79.23%
 - Utilization of GPU: 73%
 - Grid Computing

Exp.	Atlas	CMS	LHCb	BELLEII	JUNO
CPU hours	2,929,587	699,155.33	9,265,955.19	72,270.0	95,484
Efficiency	94.01%	58.18%	79.64%	96.71%	89.35%

Service Provision of CC-IHEP

• Lustre: 31.01 PB with 65.81% usage ratio

Exp.	BESIII	LHAASO	JUNO/DYW	CEPC	ASTRONOMY	Other
Capacity/Usage	14.3 PB / 9.72 PB	610 TB / 480 TB	3.1 PB / 2.4 PB	3.7 PB / 2.5 PB	6.8 PB / 3.75 PB	2.5 PB / 1.56 PB
Usage Ratio	67.9%	78.6%	77.4%	67.5%	55.1%	62.4%

• EOS: 60.58 PB with 82.08% usage ratio

Exp.	LHAASO	JUNO/DYW	ASTRONOMY	Other
Capacity/Usage	51.79 PB / 43 PB	7.96 PB / 5.76 PB	806 TB / 750 TB	240 TB / 220 TB
Usage Ratio	83%	72.3%	93%	91.7%

Grid: 9.64 PB with 27.3% usage ratio

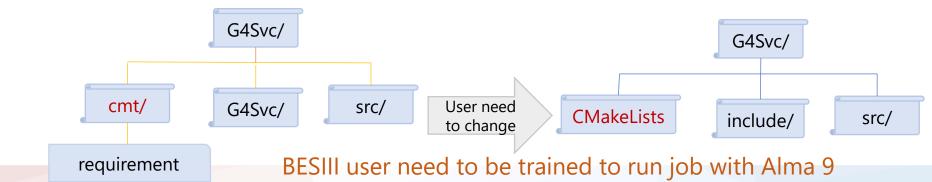
Exp.	Atlas	CMS	LHCb	BELLEII	JUNO
Capacity/Usage	398.43 TB / 317.68 TB	673.51 TB / 574.32 TB	6.69 PB / 0.25 PB	279.88 TB / 49.28 TB	1.6 PB / 1.44 PB
Usage Ratio	79.7%	85.27%	3.7%	17.6%	90%

Linux Operating System Upgrade

- CentOS 7 will be officially unsupported after 30th June 2024
- Evaluation on Alma Linux 9.3
 - System software deployment almost done
 - Physics software evaluation undergoing
- Upgrade plan of IHEP computing platform
 - Alma Linux 9 will be in production from Aug, 2024
 - Cent OS 7 will be supported in container

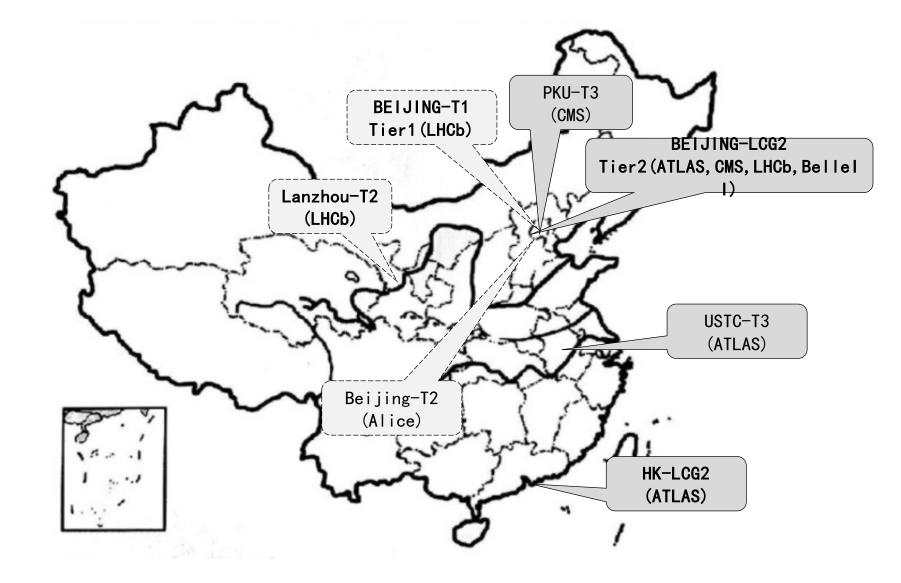
Alma Linux 9.3 Evaluation

System Software	Status
HTCondor	
Slurm	
Lustre	
EOS	
NFS	
CVMFS	
AFS	
Kerberos	Undergoing
Container	

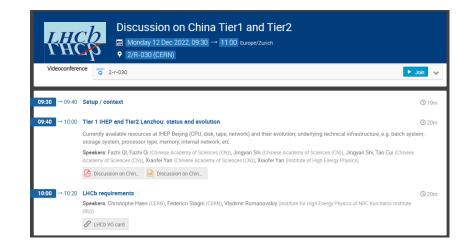

Linux Operating System Upgrade

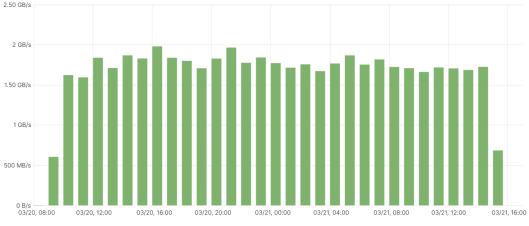
- Basic software compilation
 - Compilers, basic libraries, program languages and HPC software are compiled
 - OpenMPI, MPICH, Python, gcc, ...
 - fftw, lapack, scalapack, gromacs, cp2k, ...
 - CUDA, cuDNN ...
 - Modulefiles are created to load software environment
 - New license need to be bought/renewed for some commercial software
 - MATLAB, Mathematica, Comsol, gdfidl
 - Tips
 - AlmaLinux 9 has nouveau driver enabled by default
 - NVIDIA GPU cards could not be identified as a result
 - Some kernel modules are not installed by default
 - e.g. knem

Exp. Software for Operating System Upgrade


- Most software of the Exp. led by IHEP compiled and be ready
 - LHAASO, JUNO, etc.
- Compilation of BESIII software BOSS is undergoing
 - BOSS has been the BESIII software since 2009
 - Cernlib has been used by BOSS till now
 - not available in LCG
 - Necessary by BESIII generators (KKMC, BesEvtGen)
 - need to be compiled within Alma 9
 - Important changes to upgrade to Alma Linux 9
 - CMT \rightarrow Cmake
 - More simple structure for BOSS but a lot of work need to be done for the complitation
 - A big version upgraded for GCC and Gaudi \rightarrow Big Changes
 - Current progress
 - LCG, Gaudi, Geant, BersGDMS were compiled and be ready
 - Run HelloWorld successfully in BOSS

		BOSS 7.	1.1	Upgraded Vers	sion
(DS .	CentOS	tOS 7 Alma Linux 9.3		
G	CC	4.9.3		GCC 13	
CN	1ake	cmt		3.26.2	
Pyt	hon	2.7.10	D	3.9.12	
Ga	udi	v27r1	L	v36r14]
L	CG	LCG_8	34	LCG_104	
RC	ТООТ	6.20.0	2	6.28.04	
Ge	ant4	10.7		10.7	

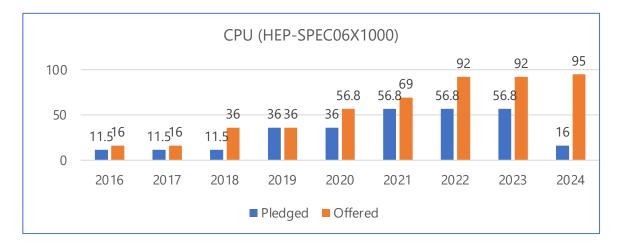

Overview of WLCG Sites in China

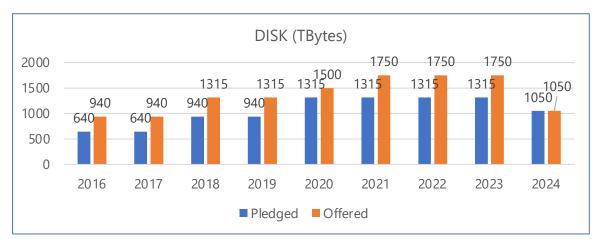


Construction and Resource of LHCb Beijing Tier-1 Sites

- Construction
 - Oct. 2023: Chinese LHCb collaboration and CC-IHEP decided to construct Tier-1 Site for LHCb
 - Dec. 2023: Discussed and received the approval from WLCG
 - Feb. 2024: Construction completed
- Resource provided for LHCb Beijing Tier-1
 - Computing:
 - 40 worker nodes (Intel & AMD) with 3216 CPU cores: 67,000 HepScore
 - Disk storage
 - 4 sets of storage arrays provide 3.2 PB
 - Tape storage:
 - 4 drivers (IBM) and 170 tapes with 3 PB
 - Network equipment and management server:
 - 6 switches, 1 router, 2 band cards and 10 servers
- First data challenge has been done in Mar. 2024
 - 189 TB data was transferred into IHEP Site in ~2 days
 - Average transfer speed is about 1.55GB/s (Max is 1.98)
 - Transfer efficiency was close to 100%
- Will be in production in Jun. 2024

Network traffic of the first data challenge


Chinese Tier-2 Site Federation


6

CPU: 4472 cores with 95,000 HepScore

•	AMD	9654:	1152	Cores
---	-----	-------	------	-------

- Intel Golden 6338: 1280 Cores
- Intel Golden 6140: 1152 Cores
- Intel E5-2680V3: 696 Cores
- Intel X5650: 192 Cores
- CE & Batch: HTCondorCE & HTCondor
- VO: ATLAS, CMS, LHCb, BELLEII, JUNO, CEPC
- Storage: 1050TB
 - 4TB * 24 slots with Raid 6, 5 Array boxes
 - DELL MD3860 8TB * 60 slots
 - DELL ME4084 10TB * 42 slots
 - DELL ME4084 12TB * 84 slots
- Got new budget for upgrading ATLAS and CMS Tier-2 in 2024
 - CPU: 60,000 HepScore
 - Disk storage: 2.5PB



Computing and Storage Pledge of BEIJING LCG Tier- 2

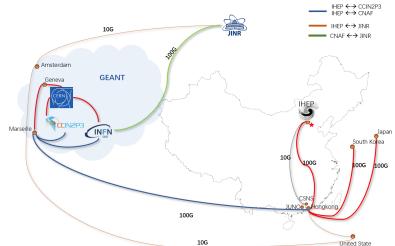
Construction of New WLCG Tier-2 Sites

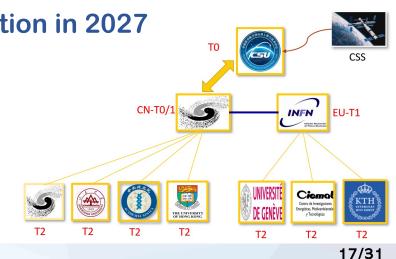
LHCb Tier-2 site in Lanzhou

- Construction started in Oct. 2023
 - ~3500 CPU cores with 77,000 HepScore
 - ~3 PB Disk Storage
 - Dedicated 2 Gbps link between IHEP and Lanzhou Univ.
- Software deployment started in Apr. 2024
- Jointly maintained by CC-IHEP and Lanzhou Univ.
 - Hardware maintenance: Lanzhou Univ.
 - Software deployment and maintenance: CC-IHEP
- Alice Tier-2 at IHEP
 - Chinse Alice collaboration would like to build Tier-2
 - 1152 CPU cores with 30,600 HepScore
 - 840TB disk storage
 - CC-IHEP to be responsible for the overall maintenance
 - Expected Production: Aim for in production in 2024

Lanzhou Univ. LHCb Tier-2 Site

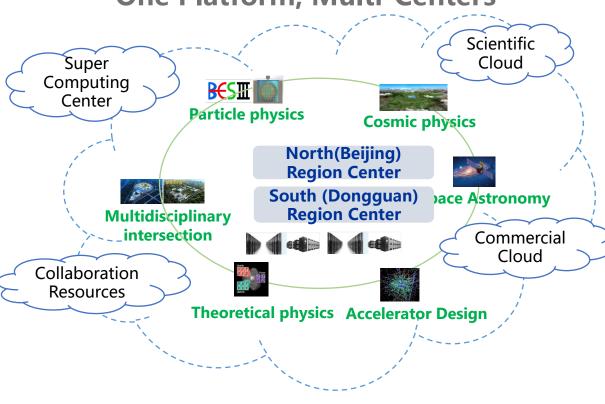
Grid Computing of JUNO & HERD at IHEP




JUNO: Jiangmen Underground Neutrino Observatory, will start production in 2024

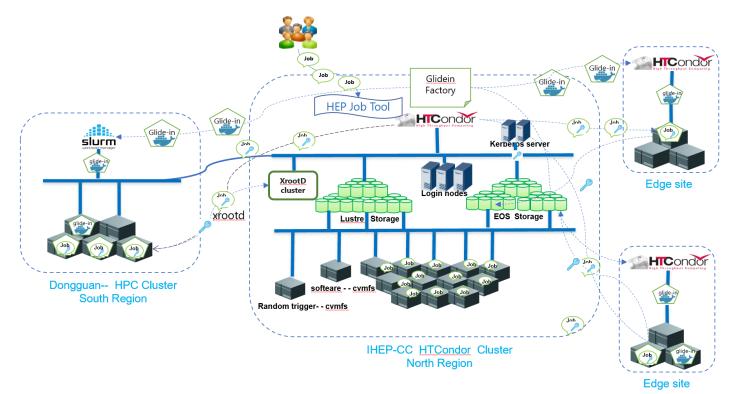
- IHEP site runs as Tier-0 and Tier-1
 - Storage: 8 PB by EOS, Lustre on disk, 4 PB by EOS-CTA on tape.
 - Computing: 180 KHS06 by HTCondor on x86, Slurm on ARM and GPU.
- Network: 10Gbps(From JUNO-onsite to IHEP), 100Gbs(From IHEP to GEANT).
- Grid computing platform: DIRAC system with IHEP-extensions.
- JUNO Data Challenge 1:
 - 12th ~ 26th Feb 2024, corresponding to WLCG DC24.
 - Pressure transfer (500-1000 Mbps) with 4-8 times throughput than JUNO design.
 - IHEP -> CNAF/IN2P3 transfer worked well, almost no failure. IHEP->JINR is bad and always get stuck.

HERD: High Energy Radiation Detection Facility, will start production in 2027


- Storage requirements: 70 PB in 10 year.
- Computing requirement: 16000 CPUs in 10 years.
- Two Tier-1 sites will run at China and Europe
- Grid computing platform
 - DIRAC + dHTC (HTC&HPC) for computing, Rucio for data management

One-Platform, Multi-Centers

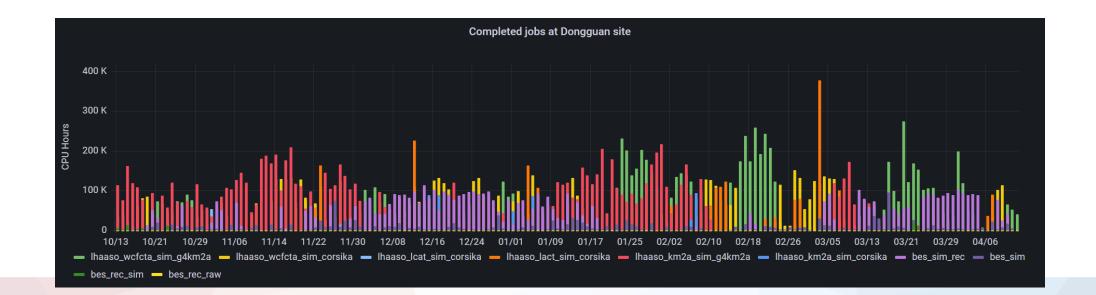
- Construct a cross-regional unified data processing platform for HEP in China
 - North and south region centers
 - Combining multiple remote sites and Compatible with heterogeneous hardware
 - IT services deployed to the HEP Exp. Facilities
 - Collaboration member IT resources
 - Commercial clouds
 - Super computing Center
- Two models
 - Grid model
 - Local cluster expanding
 - Expand HTC cluster to the remote resources



One Platform, Multi-Centers

HTC Local Cluster Expanding

- Local cluster is the main way of data processing to the HEP Exp. Led by IHEP
 - Job slots remain highly utilized and with significant job queuing time
 - Users are accustomed to the "cluster way" than the "grid way"
 - Easier and more convenient
 - No data management tool and only local file system storage for job running
- Expand IHEP local HTCondor cluster to the remote resources
 - Classified the job and site
 - Simulation and reconstruction job are dispatched to the remote worker node to suit the limit network bandwidth
 - User authentication from remote ends based on Kerberos
 - Necessary files transfer to/from remote via xrootd



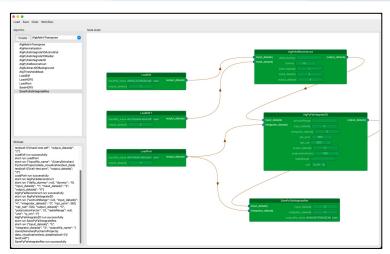
HTC Cluster Jobs dispatched to Dongguan

- Dongguan slurm cluster contribute part of the CPU cores to IHEP HTC jobs
 - 8,000 cpu core + 10,000 arm cores
- Simulation and reconstruction jobs of LHAASO and BESIII have been dispatched to Dongguan based on HTC local cluster extension
- Statistic of the jobs running at Dongguan last 6 months
 - LHAASO: 30,701,524 cpu hours, 44.5% of the whole LHAASO jobs
 - BESIII: 7,582,166 cpu hour, 9.2% of the whole BESIII jobs

Plan for AI Platform at IHEP

- Got new budget for AI Platform
- Research is undergoing

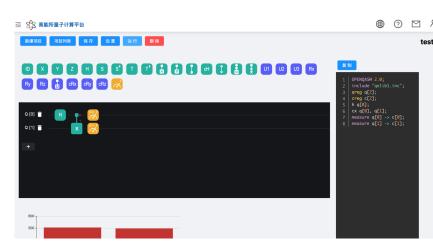
Job Submission Job Submission Ferminal Web portal REST API User Service	User Authentication & <u>Authrization</u> Accounting Service Customized Service for Operational Env.	Dataset Service Model Service Optimization				
Scheduling Service	workload manager Alarm					
Programing framwork Software environment tools O PyTorch TensorFlow Software ecosystem Software ecosystem Software ecosystem						
High Speed Network Worker nodes with Heterogeneous cards Hardware						

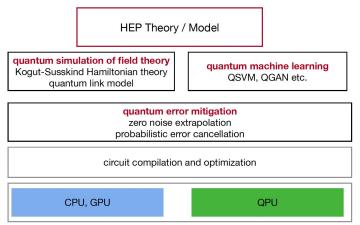

Data analysis framework

- Aim
 - Develop a basic and common high-performance scientific data analysis software framework to address the exabyte data challenge of advanced scientific facilities.
- Daisy Framework
 - Basic framework for integrating algorithms
 - Streaming and distributed data processing to handle high throughput
 - Workflow for flexible and general data processing tasks
 - CI/CD system to accelerate the software development lifecycle
- Scientific applications integration
 - Several HEPS and HXMT Applications integrated
 HEPSPtycho, Daisy-BMX, Daisy-PDF, HEPSCT, Daisy-HXMT
 - Al-based method is under development
- More Platform supported
 - Several scientific software and algorithms ported from CUDA to the ROCm (AMD machine from domestic vendor)

Already applied in synchrotron light source and space astronomy

https://daisydoc.readthedocs.io/





Quantum Computing

- IHEP quantum computing platform provided
 - Interactive drag and drop module for learning basic quantum circuits
 - Jupyter based interactive developing environment with CPU and GPU simulator backend
 - High performance qiskit-aer GPU simulator with cuQuantum speed up based on the HPC clusters
- Research on quantum algorithms
 - Utilize quantum machine learning algorithms such as particle transformer
 - Explore the quantum-centric high performance computing in theoretical physics

Web page of IHEP quantum computing platform

Design of IHEP quantum computing platform

- The computing and storage resource have grown exponentially to satisfied the more exp. Requirement
- IHEP is responsible for the most work of the Chinese grid sites construction and maintenance
- "One platform, multi-centers" provides exp. more resource usage
- Research work at IHEP goes well

Thank You! Question?