
HEPiX Spring 2024 - 18 April 2024

DevOps approach and Infrastructure
as Code for the SVOM mission

D. Corre on behalf of SVOM
French Science Ground Segment

Outline

● SVOM brief overview
○ Objectives
○ Global infrastructure

● FSGS collaboration
○ Overview
○ DevOps approach

● FSGS infrastructure
○ Automatic deployment
○ Migration to Kubernetes

2

SVOM objectives

● Space-based multi-band astronomical Variable Objects Monitor

● Gamma-Ray Bursts observation
○ Most energetic events observed since the Big Bang
○ Can appear anywhere in the sky
○ 2 types of emission

■ Prompt emission in gamma-rays (few seconds) → detection
■ Afterglow emission spanning wide range of wavelengths (few sec to min / hours) → characterisation

○ Afterglow emission fades very quickly
○ Coordinated observations over a wide range of wavelengths from space and from the ground are the key to

fullest understanding this astronomical phenomenon.
○ GRB detection and localization estimation: 70 GRBs detected per year

● Major constraints : race against the time
○ Continuous monitoring of the Sky + rare brief events → high availability infrastructure
○ Near Real time alert processing + short events → automated services

3

https://player.vimeo.com/video/219485939?h=4fac1428e9

Near Real-Time VHF Network
56 stations ~ 1 packet (100 bytes) / 1.8s

4

S & X band Ground Stations
full raw data download 2GB / 6h

5

Mission segments

6

French segment

7

French segment

8

Architecture principles

● SOA (service oriented architecture)
○ Define small services dedicated to specific tasks

■ DB management : satellite data, science products, etc
■ Data processing : algorithm processing data at different level
■ Services Orchestration : triggers specific services based on data availability
■ Services Monitoring

○ First (?) French space scientific segment using fully automated containerised microservices approach

● Architecture and Protocols
○ REST API :

■ FSC data services offer REST APIs to external (and internal) clients
■ Standardised API for different processing pipelines
■ This allow synchronous operations (data upload and retrieval)

○ Messaging (NATS, MQTT) :
■ In several cases, an asynchronous communication is important:

● external clients need to be notified about new products @ FSC
● FSC needs to be notified about new products (Beidou data, XBAND data)

■ Internally, orchestration relies on messaging to gather information on existing data and trigger
pipeline processing on specific inputs

9

FSGS Services Orchestrator

10

Fully automated services orchestrated upon data availability

Simplified
overview of
VHF data
processing

DevOps approach: objectives

● Objectives
○ Let developers focus on development only
○ Common git workflow adopted by all actors
○ Homogeneous and automated integration processes
○ Automated services deployment

11

DevOps approach: facts / constraints

● Roadmap of facts / constraints
○ Multi languages (Python, Java, Angular, React)

○ Several laboratories involved in France and China, ~30 developers (small collaboration)

○ ~150 projects hosted on a GitLab self instance at CEA Irfu

○ Fully containerised micro-services (~140 services)

○ Container orchestration technology / platform : Docker Swarm / Portainer

○ Infrastructure deployed using OpenStack IaaS (CC IN2P3, IJCLab)

○ High availability required

○ No money → open source only

○ Satellite launch : June 2024

○ Human resources for DevOps & Infrastructure : 1 person 12

DevOps approach: status

● Status 1 year ago: custom agile +++++++
○ Lack of global configuration management
○ No common git workflow
○ Each GitLab project responsible for its own GitLab CI/CD pipeline
○ Still manual steps:

■ deployment of infrastructure by different people, without documentation
■ deployment of services
■ OpenStack projects configuration

○ Not all micro-services containerised yet
○ Most containers were running as root
○ There were many good things too 😌

13

DevOps approach

● Improvement Priorities
○ Continuous Integration

■ Set up common git workflow
■ Set up common CI templates to let developers develop!

○ Continuous Deployment
■ Automatise services deployment with rootless container

○ Infrastructure
■ Automatise infrastructure deployment on OpenStack
■ Automatise VMs configuration
■ Add a third OpenStack project to have 3 deployment sites: integration, pre-production

and production

○ Migrate to Kubernetes 14

DevOps approach: Continuous Integration

● Common git worflow: I must be cruel to be kind!

15
Follow my rules or
follow my rules! 😈

3 environments : integration, pre-production and production

DevOps approach: CI/CD

● Common CI templates: kindness moment
○ Ensure git workflow by implementing specific trigger rules for push / Merge Request

○ Remove responsibility of maintaining the GitLab CI/CD pipelines to developers

○ Ensure homogeneity of CI/CD jobs
■ quality report (lint tools, ruff, SonarQube)
■ unit testing
■ container building / pushing (Docker, Kaniko)
■ vulnerability scans (SonarQube, Trivy)
■ tag format
■ documentation (Sphinx)
■ packaging (private PyPI)
■ changelogs (towncrier)
■ release version conformity

○ Ensure automated deployment of services into OpenStack trough Portainer

○ Homogeneity allows GitLab projects configuration checks (end of kindness moment 💔) 16

DevOps approach: CI templates

● Make life easy for developers
○ Simply include the CI templates in .gitlab-ci.yml

17

DevOps approach: CI templates

● Make life easy for developers
○ Simply include the CI templates in .gitlab-ci.yml
○ And add the desired CI jobs (copy/paste)

18

DevOps approach: CI templates

● Make life easy for developers
○ Simply include the CI templates in .gitlab-ci.yml
○ And add the desired CI jobs (copy/paste)
○ Developers have flexibility to configure other jobs
○

19

Infrastructure as Code

● Terraform using OpenStack provider
○ Use Terraform scripts to automate provisioning of idempotent infrastructure:

■ Networking (networks, routers, subnets)
■ Security Groups (acting as virtual firewall)
■ Server Groups (to spread critical VMs over different hypervisors)
■ Virtual Machines (CPUs, RAM)
■ OS images (Rocky Linux 9.3)
■ Volumes
■ Floating and Virtual IPs

○ Use modules to factorise code for our 3 OpenStack projects / environments while accounting
for cloud provider specificities / differences

○ Easy integration in GitLab CI/CD (lint, validation, deployment)

○ Whole FSGS infrastructure (re)deployment duration : few minutes

○ VMs IPs are stored in config files for further use by Ansible
20

Infrastructure as Code

● Ansible for VMs / software configuration
○ Set up inventories adapted to each of our environment (integration, pre-production, production)

○ Use host variables to link instances defined in inventories with IP addresses retrieved by Terraform

○ Usage of custom roles for configuring:
■ OS hardening
■ FSGS services deployment
■ Keycloak
■ Portainer
■ Docker Swarm
■ Kubernetes
■ nginx
■ Certificates (letsencrypt)
■ NFS
■ cephFS mount
■ PostgreSQL server
■ Many others

○ Whole FSGS infrastructure configuration duration : <~ 1 hour
21

FSGS with Docker Swarm

22

Production environment
overview

Migration to Kubernetes

● Motivation (deadline October 2024)
○ Improve network stability
○ Better scalability management

● Swarm → k8s
○ Use of kompose to help converting docker-compose.yml into k8s manifests
○ Use of kubespray Ansible collection to configure the k8s cluster (CNI, CRI, LB, CephFS, etc)
○ Use of nginx controller
○ Use of Portainer to deploy k8s deployments from GitLab repos
○ Use of Keycloak fo authentication and user management

● Change of technologies
○ Prometheus instead of Graylog
○ ELK instead of InfluxDB
○ LBaaS Octavia
○ ArgoCD / FluxCD / Flamingo instead of Portainer ?
○ Gateway API instead of Ingress API?
○ OPA or kyverno?

● Others
○ Harbor instead of Docker Registry
○ Set up scalable gitlab runners fleet 23

Feedback / tips on
Kubernetes deployment
are welcomed!

FSGS with Kubernetes

24

Testing environment
overview

Main structure deployment automated
Ready to integrate FSGS services now

Summary

● DevOps
○ Micro-services are great but can be a chaotic nightmare without common

configuration management

○ Set up a git workflow in the early stages of the mission

○ Invest efforts on a common strategy for CI/CD pipelines ASAP
■ Let developers develop!
■ Homogeneous CI allows configuration checks and provides a better

quality overview
■ Automates Continuous Deployment

25

Summary

● Micro-services are great but can be a chaotic nightmare without common
configuration management

● Set up a git workflow in the early stages of the mission

● Invest efforts on a common strategy for CI/CD pipelines ASAP

● IaaS (OpenStack) + IaC (Terraform, Ansible) very useful for limited
manpower collaboration

● Investing (reasonable) efforts on IaC is a good idea for the present but also the
future → easily re-usable for future projects / collaborations

26

Summary

● Cloud deployment
○ Use of IaaS platforms as OpenStack

○ Eases and fastens deployment

○ Use of IaC tools as Terraform and Ansible
■ ensure idempotency
■ allows rapid automated (re-)deployment

○ IaaS + IaC very useful for limited manpower collaboration

○ IaC is easily re-usable for other projects / collaborations

● Feedback / tips on Kubernetes deployment are welcomed!
27

28

Thank you!

