

Power and Performance Impact of Inlet temperature

Sensor monitoring at scale

E Kooistra a66@nikhef.nl April 16, 2024

Origin story The hotter the better?

- 1. Last HEPIX there where some comments on power usage vs inlet
- 2. Talked about this with our facilities team and offerd to test this out
- 3. Facilities has been pushing for quite a while to increase inlet themperature

Why?

Assumption is the mother of all

- 1. Inlet temperature PuE effect
- 2. Total power usage?
- 3. Single socket/Dual socket
- 4. Hot standby vs Both load
- 5. 80+ Rating of PSUs

How?

Or ipmi_exporter is my new best friend

- 1. Prometheus exporter
- 2. Polls sensors, dcmi, chassis and sel
- 3. Flexible filtering of sensor states
- 4. Operating system independent

What?

Read out all the sensors!

ID	Name	Туре	Reading	Unit	s Event
1	Inlet_Temp	Temperature	26.00	I C	l 'OK'
2	Outlet_Temp	Temperature	29.00	I C	I 'OK'
3	CPU_Temp	Temperature	34.00	I C	I 'OK'
4	DIMMG1_Temp	Temperature	37.00	I C	I 'OK'
5	DIMMG2_Temp	Temperature	38.00	I C	I 'OK'
6	CPU_VR_Temp	Temperature	30.00	I C	I 'OK'
7	SOC_VR_Temp	Temperature	37.00	I C	I 'OK'
8	VDD_ABCD_Temp	Temperature	35.00	I C	I 'OK'
9	VDD_EFGH_Temp	Temperature	35.00	I C	I 'OK'
10	PSU1_Temp	Temperature	26.00	I C	I 'OK'
11	PSU2_Temp	Temperature	27.00	I C	I 'OK'
12	Riser1_GPU_Temp	Temperature	31.00	I C	I 'OK'
13	Riser2_GPU_Temp	Temperature	30.00	I C	I 'OK'
17	PCIe1_Inlet_Temp	Temperature	29.00	I C	I 'OK'
18	PCIe2_Inlet_Temp	Temperature	31.00	I C	I 'OK'
22	Riser_Int_Temp	Temperature	26.00	I C	l 'OK'
23	Riser_1_Temp	Temperature	26.00	I C	l 'OK'
24	Riser_2_Temp	Temperature	25.00	I C	I 'OK'
26	Front_NVME_Temp	Temperature	31.00	I C	l 'OK'

What?

6

Read out all the sensors!

ID Name	Туре	Reading	Units Event
29 CPU_VDDCR	Voltage	0.74	V 'OK'
30 SOC_VDDCR	Voltage	0.82	I V I 'OK'
31 VDD_MEM_ABCD	Voltage	1.21	∣V ∣'OK'
32 VDD_MEM_EFGH	Voltage	1.21	∣V ∣'OK'
33 VDD_VPP_ABCD	Voltage	2.50	V 'OK'
34 VDD_VPP_EFGH	Voltage	2.54	V V V V
35 P5V_VDD_RearMID	Voltage	5.09	V 'OK'
36 P3V_BAT	Voltage	3.16	∣V ∣'OK'
37 VDDCR_SOC_DUAL	Voltage	0.90	∣V ∣'OK'
38 VDD_5_DUAL	Voltage	5.04	V 'OK'
39 VDD_33_RUN	Voltage	3.35	∣V ∣'OK'
40 VDD_VTT_EFGH	Voltage	0.59	V V V V
41 VDD_18_RUN	Voltage	1.81	∣V ∣'OK'
42 VDD_18_DUAL	Voltage	1.83	∣V ∣'OK'
43 VDD_5_RUN	Voltage	5.17	∣V ∣'OK'
44 P12V_RUN	Voltage	11.96	∣V ∣'OK'
45 VDD_VTT_ABCD	Voltage	0.59	V V V V
46 P1V15_BMC	Voltage	1.16	∣V ∣'OK'
47 P1V2_DDR_BMC	Voltage	1.20	V 'OK'
48 VDD_33_DUAL	Voltage	3.37	∣V ∣,OK,
Power and	Performance Impact	of Inlet te	emperature

Sensor monitoring at scale

What?

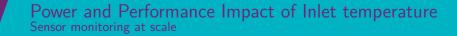
Read out all the sensors!

ID	Name	Туре	Reading	Units Event
63	PSU1_PIN	Other Units Based Sensor	138.00	W 'OK'
64	PSU1_POUT	Other Units Based Sensor	124.00	∣W ∣'OK'
65	PSU1_VIN	Voltage	237.90	V 'OK'
66	PSU1_VOUT	Voltage	12.10	V 'OK'
67	PSU1_IIN	Current	0.65	% A 'OK'
68	PSU2_PIN	Other Units Based Sensor	120.00	W 'OK'
69	PSU2_POUT	Other Units Based Sensor	116.00	W 'OK'
70	PSU2_VIN	Voltage	234.24	V 'OK'
71	PSU2_VOUT	Voltage	12.10	V 'OK'
72	PSU2_IIN	Current	0.55	% A 'OK'
73	CPU_Power	Other Units Based Sensor	53.00	W 'OK'
74	MEM_Power	Other Units Based Sensor	20.00	W 'OK'
75	Total_Power	Other Units Based Sensor	240.00	W 'OK'
76	Airflow_rate	Other Units Based Sensor	84.00	CFM 'OK'

Pretty plots make everything easier

Kast 27	Kast 28	Kast 29	Kast 30	Kest 32	Kast 33	Kast 34	Kast 35	Kast 36 top
	24	25	24	25	25	24	24	25
	24	15	25					25
	25	n	28	25	25	24	25	25
	25	15	25	26		25	26	25
	25	25	25		26	25	20	25
	25	15	24	26	26	25	26	8
	25	25	24	26	20			25
	25	15			26	26	27	8
n	25	16	24	26		26	28	26
	25	15	24	26	26		20	26
	25	25 25	24			26	29	26
	25	15	28	26	26			26
	25		25	26	26	26	28	
	25	16	25	20	20	26	28	
	25	15	25	26	26			8
	25	16	24	26		26	28	8
	25	15	24	20	27	26	28	н
	25	15	24	26		20	28	8
	25	16	25	26	27	26	28	
	25	15	26	26	27			8
	26	15		26	27	27	28	
	25	и	26	07	27	27	28	
	26	15	26	27				
	25	15	27	27	27	28	29	8
	27	19	26		20	00	00	8
	29	28	27	24	28	28	28	8

The higher in the rack the lower the inlet temperature



Pretty plots make everything easier

Inlet air temp is a lower threshold

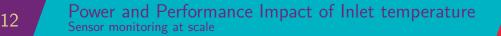
Pretty plots make everything easier

Job usage influences power usage a lot

10

Pretty plots make everything easier

1U boxes (yellow) use more power then 2U (green)


11

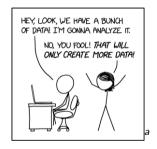
Pretty plots make everything easier

Hot standby reduces efficency

80+ ? Or how its not that easy

- Power supply ratings are not straight forward
- Hot / cold standy options differ per vendor
- Power feed balancing to prevent cascading failure
- Inrush currents can be still an issue

Level/load	10%	20%	50%	100%
Gold	-	88%	92%	88%
Platinum	-	90%	94%	91%
Titanium	90%	94%	96%	91%


Future

Collect all the data!

- Intergrate Node exporter data
- Export job scheduler data
- Power efficency of a job

14

- Communicate with vendors for more sensor probe points
- This is still an ongoing project.
- 128 core Bergamo nodes getting delivered soon

^ahttps://xkcd.com/2582/

