

EUROPEAN SPALLATION SOURCE

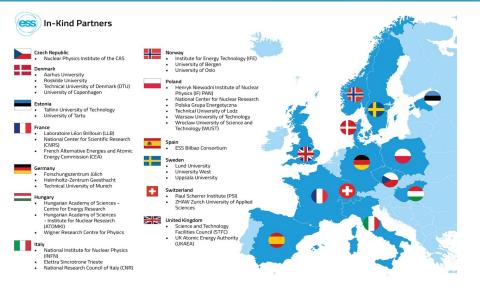
EPICS Archiver Appliance Infrastructure at ESS

ESS deployment

PRESENTED BY STEPHANE ARMANET

2024-04-16

- 1 ESS introduction
- 2 Controls Infrastructure
- 3 EPICS Archiver deployment
- 4 Monitoring
- 5 Questions


European Spallation Source

In a nutshell

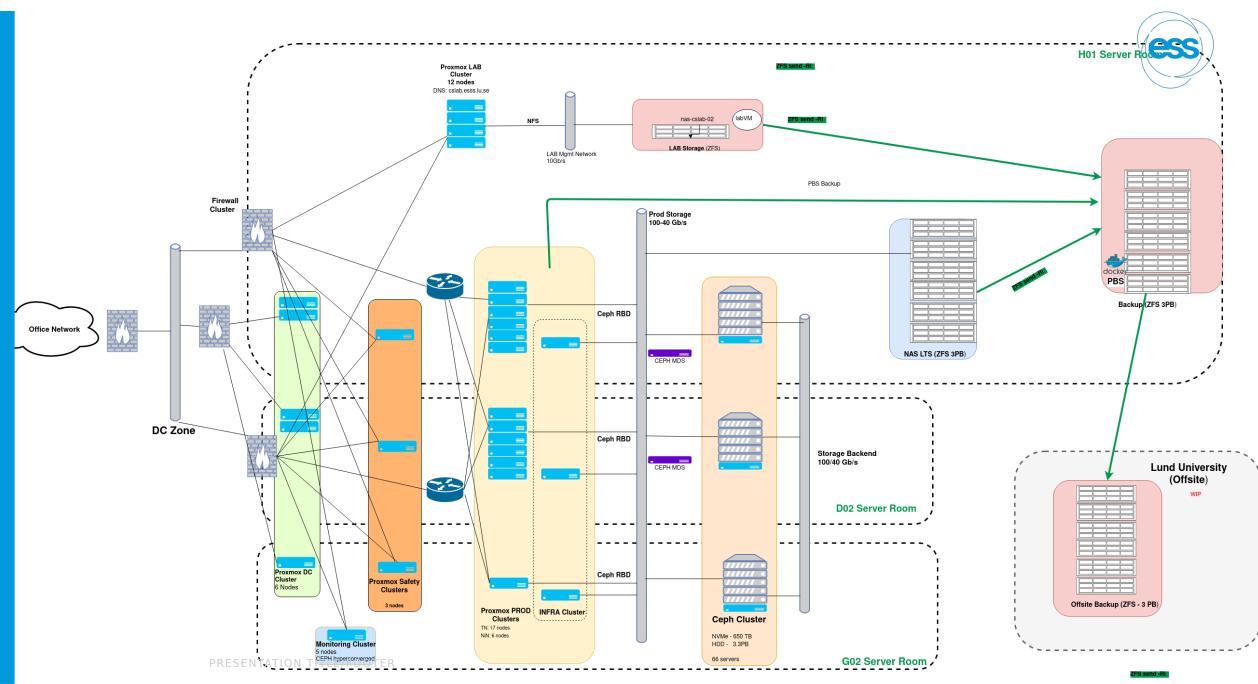
ESS is :

- · accelerator based neutron source in construction in Lund Sweden
- A collaboration of 13 European Countries
- To become the most powerful neutron source in the world
 - 5MW beam power (initial target set at 2MW), 2.5GeV proton energy, pulsed at 14 Hz
 - Initial set of 15 neutron instruments (as part of the construction budget)
 - Will cover a large spectrum of research (energy, Health and life science, Information Technology, Nanoscience , Environment Sciences, Heritage ...)
- Project deliveries are a collaboration between ESS internal solutions and inkind deliveries

Infrastructure for Control systems

IT Infrastructure for Controls

Virtualisation and storage overview


- IT infrastructure for Controls is built with openSource solutions:
 - Virtualization :
 - Proxmox VE 35 hosts, 5 clusters , 1300 VMs
 - Storage:
 - CEPH :
 - RBD Block storage for VM backend
 - CephFS for shared filesystem (native or NFS gateways)
 - Combination of HDD and NVMe
 - 2.2 PB raw, 500 OSDs, 60 servers \rightarrow will increase by 50% this summer
 - ZFS NAS
 - NFS servers
 - Long term storage (3 PB net)
 - Backups (4 PB net)

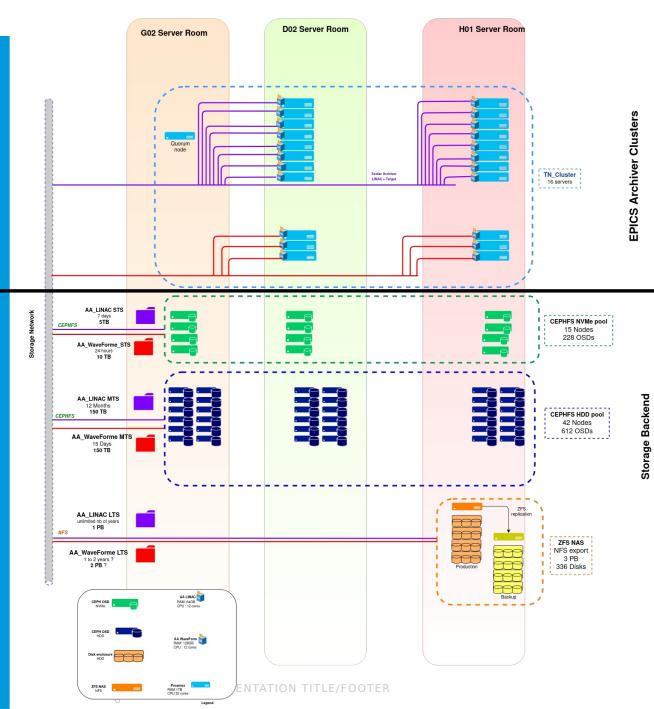
Ko 🖾 ICS 🗸	Q Search or jump to	⊞ ctrl+k			0	۳ 🕐
🗮 Home > Dashboards > INFRA - High Level overview 🟠 😪			Add 🗸 🛱 🐵 🕐 Last 6 hours CEST	Q	G	~ ^

Storage

CSI Infrastructure 2024

Infrastructure for EPICS Archivers

Control System overview


ESS is an EPICS based Facility

- Technical Network \rightarrow Linac and Target
 - EPICS 7
 - Includes CRYO, Vaccum, RF, SRF, Target, safety systems (PSS and MPS), BI ...
 - ~ 1500 IOCs
 - IOCs running on μ TCA, IPCs (Lenovo basic servers) and Vms \rightarrow mostly centos7 (~ 500 hosts)
 - 2 Control room : LCR (CRYO and Test Stands), MCR for 24/7 operation
 - 2 archiver appliance clusters (next slide)
- CSLAB environment
 - Dev and Test
 - Same size as TN but no real archiving (test clusters)
- Neutron instrument Controls
 - Should be similar size than TN
 - 1 network per instrument but with central archiving (does not cover instrument detector data)
 - Only for technical systems (motion Control, neutron choppers, sample env., EPICS control of the instruments)

11

Archiver Appliance Infrastructure 2023

ess

- TN Archiving : 2 clusters \rightarrow 2 policies
 - 1 for scalars, 1 for large wave forms Pvs (75k -400k points)
 - STS on CephFS NVMe pool
 - Retention: WF 24 hours Scalars 7 days
 - MTS on CephFS HDD pool
 - Retention: WF 14 days Scalars 12 months
 - LTS on NFS/ZFS
 - No data deletion
 - Inline Compression (ZFS)
 - Easy to backup/replicate (AA append to protoBuf files → ZFS send/recv)
- Running on VM
 - Not too big (easier to fail-over)
 - Scalars Cluster : Max 100k Pvs per instance (soft limit)
 - Scale-out architecture (max 2 VMs per nodes)

Issues and challenges

What we learned ... so far

- Governance \rightarrow ESS Machine data management maturity
 - Hard to identify which Pvs are strictly required (~15% are actual signals, the rest are parameters)
 - High level policy (per cluster) instead of system or per type of signals
 - Hard to gather future requirements
 - we jumped from 25k Pvs (2022) to 300K for NCL commissioning (2023) to 700k+ ... so far!
 - No "quality of service" → same solution cover all types of Pvs (Safety, operation, instrumentation ...)
 - Policy we has been keeping from the beginning:
 - No applied decimation
 - 14Hz, forever by default \rightarrow applied to everything
 - balance between request from system owners and operators vs integrators and Infra

Issues and challenges

What we learned ... so far

- Wave Form archiving is challenging
 - Try to archive large WF (up to 400k points) \rightarrow dedicated cluster (best effort)
 - Upcoming SDS solution :
 - triggered/event based data acquisition to HDF5 files
 - will write to CephFS
 - will allow to inject meta-data into data collections (user tags, post-mortem events, pulseID...)
 - Should provide a good alternative for large waveform
 - Will not answer all use cases
- Performance and retrieval limitations
 - Data retrieval has to go through archiver API (default JSON → custom python pkg to read raw PB)
 - No easy way to discard data after the archiving has wrote to protoBuf (1 file per PV per partition)
 - No way to tag datasets after acquisition (only timestamp) → no way to query the data via a high level language
 - Hard to have a clean environment during installation/maintenance phases
 - \rightarrow lots of disconnected PVS = high broadcast
 - \rightarrow new : ChannelFinder add PVs to the archiver

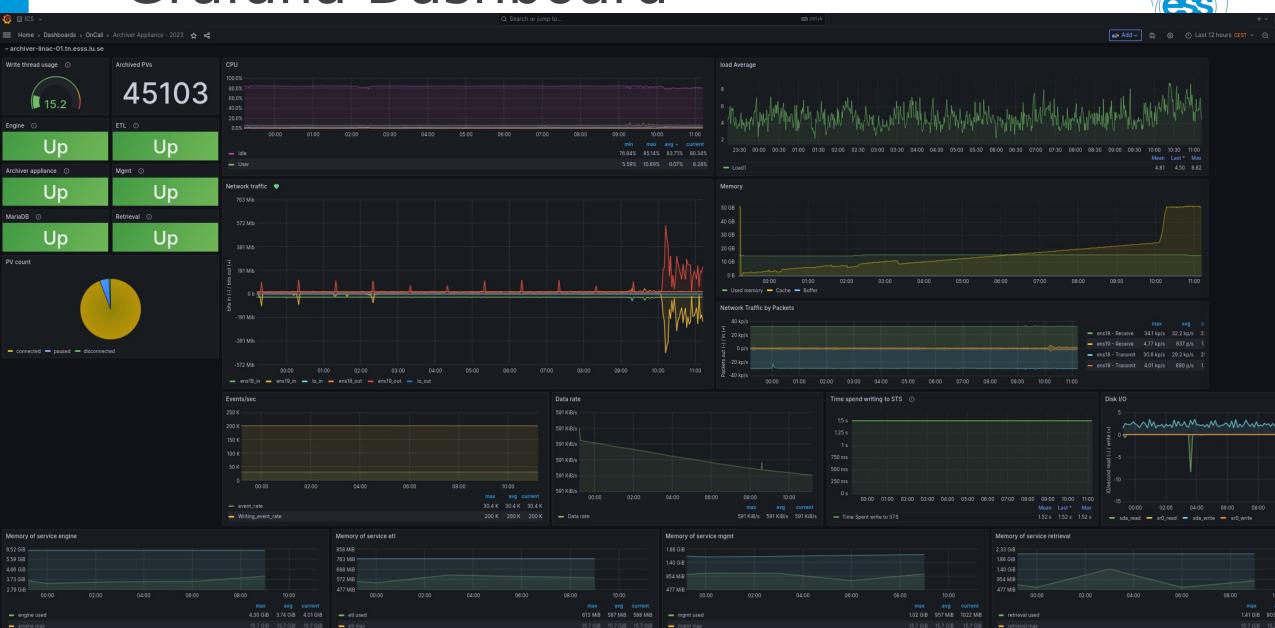
System Monitoring

System Dashboard

Prometheus and Grafana

- System monitoring
 - Prometheus node_exporter
- Storage monitoring
 - Ceph MGR to Prometheus
 - ZFS extend node_exporter metrics
- Archiver Appliance
 - Custom Prometheus exporter (gather metrics from archiver API)
- Dashboard (Grafana)
 - high level information (PV count and status, storage and network status)
 - Per instance in-depth monitoring (JVM stats, event/s, system load ...)
 - \rightarrow has been a great tool to help understanding some internals of the archiver appliance
 - → help to plan and monitor cluster expansion (also maintenance progress)

Grafana Dashboard



Grafana Dashboard

Grafana Dashboard

- engine ma

Thanks !! Questions ?

Title

Text