Stress testing the Standard Model at colliders: from Amplitudes to Events

Fabrizio Caola

Oxford Theoretical Studies of Particles and Strings retreat, March 2024

The QCD&collider group

Gavin

Jack

Jasmine

Xiao

Federica

Giulio

Radek

Peter

The LHC: stress-testing the Standard Model

What have we learned so far Overall, the Standard Model works very well

Standard Model Total Production Cross Section Measurements

What have we learned so far

Many "vanilla" BSM scenarios excluded at the EW scale **10 TeV**

CMS String resonance # Arresonace # Mage resonance # Mage reso	Overview of CMS EXO results	15-73 Hel 1 15-54 Hel 12-2014 (Det 4) 15-14 Hel 12-2014 (Det 4) 15-14 Hel 1 15-14 Hel 1 15-73 Hel 10-2014 (Det 4) 15-73 Hel 10-2014 (Det 4) 15-74 Hel	647 (2) 247 (2+ 24) 259 (2+ 24) 259 (2+ 24)	March 2023 35 fb ⁻¹ 35 fb ⁻¹ 35 fb ⁻¹ 35 fb ⁻¹ 35 fb ⁻¹ 35 fb ⁻¹			SUSY		
H = 4, predestation (risk), $(\frac{1}{2}, + 80, -10) = 0.210, 0.01$ p = 27(y + 3) p = 27	ABIT-R. STORY (10) LINKO UK, # 40 BERNET (10) LINKO UK, # 40	۲۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰۰ ۲۰۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ <td< th=""><th>4494 (20) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>$\begin{array}{c} \begin{array}{c} \mu_{1}\mu_{2}\mu_{2}\\ \hline \textbf{ATLAS SUSY Sea}\\ \hline \textbf{March 2023}\\ \hline \textbf{Model}\\ \hline \\ \hline$</th><th>rches* - 95% CLSignature$\int \mathcal{L} d$$0 e, \mu$2-6 jets$E_T^{miss}$$0 e, \mu$2-6 jets$E_T^{miss}$$0 e, \mu$2-6 jets$E_T^{miss}$$1 e, \mu$2-6 jets$E_T^{miss}$$1 e, \mu$2-6 jets$E_T^{miss}$$0 e, \mu$7-11 jets$E_T^{miss}$$0 e, \mu$6 jets$E_T^{miss}$$0 e, \mu$3 b$E_T^{miss}$$0 e, \mu$2 b$E_T^{miss}$</th><th>Lower $f_{t} [f_{b}^{-1}]$ 139 $\frac{\bar{q}}{\bar{q}}$ [13 139 $\frac{\bar{q}}{\bar{g}}$ [13 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$</th><th>Limits Mass limit * Bx Degen.] 0.9 Forbidde</th><th>1.8 1.15-1. 15 1.25 2.255</th><th>5 $m(\tilde{x}_1^0) = 400 \text{ GeV}$ $m(\tilde{q}) = m(\tilde{x}_1^0) = 5 \text{ GeV}$ 95 $m(\tilde{x}_1) = 5 \text{ GeV}$ 95 $m(\tilde{x}_1) = 1000 \text{ GeV}$ 2.2 $m(\tilde{x}_1^0) = 000 \text{ GeV}$ 2.2 $m(\tilde{x}_1^0) = 700 \text{ GeV}$ 97 $m(\tilde{x}_1^0) = 200 \text{ GeV}$ $m(\tilde{x}_1) = 100 \text{ GeV}$ 97 $m(\tilde{x}_1^0) = 200 \text{ GeV}$ $m(\tilde{x}_1^0) = 500 \text{ GeV}$ $m(\tilde{x}_1^0) = 300 \text{ GeV}$</th></td<>	4494 (20) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} \begin{array}{c} \mu_{1}\mu_{2}\mu_{2}\\ \hline \textbf{ATLAS SUSY Sea}\\ \hline \textbf{March 2023}\\ \hline \textbf{Model}\\ \hline \\ \hline$	rches* - 95% CLSignature $\int \mathcal{L} d$ $0 e, \mu$ 2-6 jets E_T^{miss} $0 e, \mu$ 2-6 jets E_T^{miss} $0 e, \mu$ 2-6 jets E_T^{miss} $1 e, \mu$ 2-6 jets E_T^{miss} $1 e, \mu$ 2-6 jets E_T^{miss} $0 e, \mu$ 7-11 jets E_T^{miss} $0 e, \mu$ 6 jets E_T^{miss} $0 e, \mu$ 3 b E_T^{miss} $0 e, \mu$ 2 b E_T^{miss}	Lower $f_{t} [f_{b}^{-1}]$ 139 $\frac{\bar{q}}{\bar{q}}$ [13 139 $\frac{\bar{q}}{\bar{g}}$ [13 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$ 139 $\frac{\bar{g}}{\bar{g}}$	Limits Mass limit * Bx Degen.] 0.9 Forbidde	1.8 1.15-1. 15 1.25 2.255	5 $m(\tilde{x}_1^0) = 400 \text{ GeV}$ $m(\tilde{q}) = m(\tilde{x}_1^0) = 5 \text{ GeV}$ 95 $m(\tilde{x}_1) = 5 \text{ GeV}$ 95 $m(\tilde{x}_1) = 1000 \text{ GeV}$ 2.2 $m(\tilde{x}_1^0) = 000 \text{ GeV}$ 2.2 $m(\tilde{x}_1^0) = 700 \text{ GeV}$ 97 $m(\tilde{x}_1^0) = 200 \text{ GeV}$ $m(\tilde{x}_1) = 100 \text{ GeV}$ 97 $m(\tilde{x}_1^0) = 200 \text{ GeV}$ $m(\tilde{x}_1^0) = 500 \text{ GeV}$ $m(\tilde{x}_1^0) = 300 \text{ GeV}$
$\label{eq:response} \begin{tabular}{ c c c c c } \hline $BV (gints 15 gauss) & $BV (gints 15 g$	dim	ATTEM TORO CORE 43.3 m. State (10.100.0 m) 43.3 m. Attable (10.0 m) 43.3 m.	2000 2000 2000 2000 2000 2000 2000 200	$\begin{array}{c} \mathbf{b}_{1}\tilde{b}_{1}, b_{1} \rightarrow b\tilde{x}_{2}^{0} \rightarrow bh\tilde{x}_{1}^{0} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow t\tilde{x}_{1}^{0} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow t\tilde{x}_{1}^{0} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow t\tilde{h}b\tilde{x}_{1}^{0} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow \tilde{h}b\tilde{x}_{1}^{0} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow \tilde{h}b\tilde{x}_{1}^{0} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow \tilde{x}_{1}^{0}/\tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{x}_{1}^{0} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow t\tilde{x}_{2}^{0}, \tilde{x}_{2}^{0} \rightarrow Z/h\tilde{x}_{1}^{0} \\ \tilde{h}_{2}\tilde{h}_{2}, \tilde{h}_{2} \rightarrow \tilde{h}_{1} + Z \\ \tilde{x}_{1}^{\dagger}\tilde{x}_{2}^{0} \text{ via } WZ \\ \tilde{x}_{1}^{\dagger}\tilde{x}_{2}^{\dagger} \text{ via } WW \\ \tilde{x}_{1}^{\dagger}\tilde{x}_{2}^{0} \text{ via } WH \\ \tilde{x}_{1}^{\dagger}\tilde{x}_{2}^{0} $	$\begin{array}{c cccc} 0 \ e, \mu & 6 \ b & E_T^{\text{miss}} \\ 2 \ \tau & 2 \ b & E_T^{\text{miss}} \\ \hline \\ 0 \ -1 \ e, \mu & 3 \ \text{sts} / 1 \ b & E_T^{\text{miss}} \\ 1 \ e, \mu & 3 \ \text{sts} / 1 \ b & E_T^{\text{miss}} \\ 1 \ -2 \ \tau & 2 \ \text{sts} / 1 \ b & E_T^{\text{miss}} \\ \hline \\ 0 \ e, \mu & 2 \ c & E_T^{\text{miss}} \\ \hline \\ 1 \ -2 \ e, \mu & 1 \ b & E_T^{\text{miss}} \\ \hline \\ 1 \ -2 \ e, \mu & 1 \ b & E_T^{\text{miss}} \\ \hline \\ Multiple \ \ell / \text{jets} & E_T^{\text{miss}} \\ ee, \mu & 2 \ j \text{jet} & E_T^{\text{miss}} \\ \hline \\ 2 \ e, \mu & E_T \\ \hline \\ 2 \ e, \mu & E_T^{\text{miss}} \\ \hline \\ Multiple \ \ell / \text{jets} & E_T^{\text{miss}} \\ \hline \\ Multiple \ \ell / \text{jets} & E_T^{\text{miss}} \\ \hline \end{array}$	$\begin{array}{c c} & b_1 \\ 139 & \bar{b}_1 \\ 139 & \bar{b}_1 \\ 139 & \bar{t}_1 \\ 139 & \bar{t}_2 \\ 139 & \bar{k}_1^+ / \bar{k}_2^0 \\ 139 & \bar{k}_1^+ / \bar{k}_1^0 \\ 139 & \bar{k}_1^+ / \bar{k}_2^0 \\ 139 & \bar{k}_1^+ / \bar{k}_2^+ / \bar{k}_2^0 \\ 139 & \bar{k}_1^+ / \bar{k}_2^+ / \bar{k}_2^+ / \bar{k}_2^+ / \bar{k}_2^+ / \bar{k}_2^+ / \bar{k}_2^+ \\ 139 & \bar{k}_1^+ / \bar{k}_2^+ / \bar{k}_2^+$	Forbidden 0.13-0.85 Forbidden 0.65 Forbidden 0.85 0.55 0.06 Forbidden 0.86 0.205 0.42 Forbidden 1	23-1.35 1.25 1.4 .18	$\begin{split} &10\text{GeV}(\Delta m(k), \mathcal{X}_1^*) \geq 20\text{GeV} \\ &\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130\text{GeV}, m(\tilde{\chi}_1^0) = 100\text{GeV} \\ &\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130\text{GeV}, m(\tilde{\chi}_1^0) = 10\text{GeV} \\ &m(\tilde{\chi}_1^0) = 500\text{GeV} \\ &m(\tilde{\chi}_1^0) = 500\text{GeV} \\ &m(\tilde{\chi}_1^0) = 0\text{GeV} \\ &m(\tilde{\chi}_1^0) = 0\text{GeV} \\ &m(\tilde{\chi}_1^0) = 0\text{GeV} \\ &m(\tilde{\chi}_1^0) = 5\text{GeV} \\ &m(\tilde{\chi}_1^0) = 5\text{GeV} \\ &m(\tilde{\chi}_1^0) = 360\text{GeV}, m(\tilde{\chi}_1^0) = 40\text{GeV} \\ \\ &m(\tilde{\chi}_1^0) = 360\text{GeV}, m(\tilde{\chi}_1^0) = 0\text{GeV} \\ &m(\tilde{\chi}_1^0) = 0\text{GeV}, \min-bino \\ &m(\tilde{\chi}_1^0) = 70\text{GeV}, \min-bino \\ &$
utble [Link] 1.0 # utble [Link] 1.0 # Utble [Link] 1.0 # Utble [Link] 1.0 # Utble [Link] [Link] #<	881-8878 (1993) 811-8878 (1993) 811-88		2 	$\begin{array}{c} \chi_{1}\chi_{1} \; \text{va}\; \ell_{L}/\tilde{r} \\ \chi_{1}\chi_{1} \; \text{va}\; \ell_{L}/\tilde{r} \\ \tilde{t}, \tilde{\tau}, \tilde{\tau}, \tilde{\tau}, \tilde{\tau}, \tilde{t}_{1}^{0} \\ \tilde{\ell}_{LR}\tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \tilde{\ell}_{1}^{0} \\ \tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G} \end{array}$ Direct $\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-} \text{ prod., long-lived } \tilde{\chi}_{1}^{\dagger} \\ Stable \tilde{g} \text{ R-hadron} \\ \text{Metastable } \tilde{g} \text{ R-hadron}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0} \\ \tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G} \end{array}$	$\begin{array}{cccc} 2 e, \mu & E_T^{miss} \\ 2 r & E_T^{miss} \\ e, \mu & 0 \text{ jets } E_T^{miss} \\ e, \mu & 2 \text{ l jet } E_T^{miss} \\ 0 e, \mu & 2 \text{ l jet } E_T^{miss} \\ 0 e, \mu & 2 \text{ l set } E_T^{miss} \\ 0 e, \mu & 2 \text{ large jets } E_T^{miss} \\ 2 e, \mu & 2 \text{ large jets } E_T^{miss} \\ \end{array}$ Disapp. trk 1 jet E_T^{miss} pixel dE/dx E_T^{miss} pixel dE/dx E_T^{miss} pixel dE/dx E_T^{miss} pixel dE/dx E_T^{miss}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L, ⁷ R,L] 0.16-0.3 0.12-0.39 0.256 0.13-0.23 0.29-0.88 0.55 0.45-0.93 0.77 0.66 0.21 (ĝ) =10 ns] 0.34 0.36		$\begin{array}{c} \mathfrak{m}(\ell,\tilde{r})=0.5(\mathfrak{m}(\ell_1)+\mathfrak{m}(\ell_1))\\ \mathfrak{m}(\tilde{r})=0\\ \mathfrak{m}(\tilde{r})=0\\ \mathfrak{m}(\tilde{r})=0\\ \mathfrak{m}(\tilde{r})=0\\ \mathfrak{m}(\tilde{r})-\mathfrak{m}(\tilde{r})=10 \ \mathrm{Gev}\\ BR(\tilde{r}_1^0\to Z\tilde{G})=1\\ BR(\tilde{r}_1^0\to Z\tilde{G})=1\\ BR(\tilde{r}_1^0\to Z\tilde{G})=BR(\tilde{r}_1^0\to h\tilde{G})=0.5\\ \hline\\ \hline\\ Pure Wino\\ Pure Wino\\ Pure Wino\\ Pure Wino\\ Pure Gym\\ Signion\\ 2.05\\ 2.2 \\ \mathfrak{m}(\tilde{r}_1^0)=100 \ \mathrm{GeV}\\ \mathfrak{r}(\tilde{r})=0.1 \ \mathrm{ns}\\ \mathfrak{r}(\tilde{r})=10 \ \mathrm{ns}\\ \mathfrak{r}(\tilde{r})=10 \ \mathrm{ns} \end{array}$
0.001 Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not includes)	n uuu 100 Mas Scale [FeV] 1 Te	V		$\begin{array}{c} \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{T} / \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\dagger} \rightarrow Z\ell \rightarrow \ell\ell\ell \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0} \rightarrow WWZ\ell\ell\ell\ellrv \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{0} \ell \delta \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{0} - \hbar\delta \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{0} - \hbar\delta \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{0} - \hbar\delta \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{2}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{\dagger} / \tilde{\chi}_{2}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{\dagger} / \tilde{\chi}_{2}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{\dagger} / \tilde{\chi}_{2}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{\dagger} / \tilde{\chi}_{2}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{\dagger} / \tilde{\chi}_{2}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{\dagger} / \tilde{\chi}_{2}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{\dagger} / \tilde{\chi}_{2}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{\dagger} / \tilde{\chi}_{2}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{\dagger} / \tilde{\chi}_{2}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{0} / \tilde{\chi}_{1}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{0} / \tilde{\chi}_{1}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{0} / \tilde{\chi}_{1}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \rightarrow \delta \\ \tilde{\chi}_{1}^{0} / \tilde{\chi}_{1}^{0} / \tilde{\chi}_{1}^{0} \chi_{1}^{0} \chi_$	$\begin{array}{cccc} 3 \ e, \mu & & \\ 4 \ e, \mu & 0 \ \text{jets} & E_T^{\text{miss}} & \\ 4 \ -5 \ \text{large jets} & & \\ & 4 \ -5 \ \text{large jets} & \\ & & \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ l l l l l l l l l l l l $	1.55 1.3 1 0.4-1.45 1.6	Pure Wino $m(\tilde{x}_{1}^{0})=200 \text{ GeV}$ Large λ_{112}^{\prime} $m(\tilde{x}_{1}^{0})=200 \text{ GeV}$ bino-like $m(\tilde{x}_{1}^{0})=200 \text{ GeV}$ bino-like $m(\tilde{x}_{1}^{0})=500 \text{ GeV}$ $BR(\tilde{t}_{1} \rightarrow be/b\mu)>20\%$ $BR(\tilde{t}_{1} \rightarrow de/b\mu)>20\%$ $BR(\tilde{t}_{1} \rightarrow de/b\mu)=100\%$, cos $d_{t}=1$ Pure higgsino Mass scale [TeV]

1 TeV

Is the SM established? Can we go home?

Ultra-precise data / theory comparison: some tensions

Example: W mass

Input in the SM. But enters radiative corrections and the set of t

Overview of m_w Measurements LEP Combination PR. 532, p119-244, (2013) **ATLAS** Preliminary $\sqrt{s} = 7 \text{ TeV}, 4.6 \text{ fb}^{-1}$ D0 (Run 2) PRL 108, p151804 (2012) CDF (Run 2) Science 376, 6589, p170 (2022) LHCb 2022 JHEP 01, 036 (2022) **ATLAS 2017** EPJ-C 78-2, p110 (2018) Measurement Stat. Unc. Total Unc. **ATLAS 2023** this work SM Prediction 80200 80300 80400 m_w [MeV]

Require exquisite theoretical control over Z/W bosons predictions

Testing ground for "precision" programme

similar situation: $(g\mathchar`-2)_\mu$

Is the SM established? Can we go home?

 $\begin{aligned} \mathcal{Z} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{B} \mathcal{F} \\ &+ \mathcal{F} \mathcal{B} \mathcal{F} \\ &+ \mathcal{F} \mathcal{B} \mathcal{F}_{j} \mathcal{F}_{j} \mathcal{P} + h.c. \end{aligned}$ Yukawa sector: exploration $+\left|\mathcal{D}_{\mathcal{M}}\varphi\right|^{2}-\bigvee(\phi)$ only just beginning Gauge sector: well-studied, Higgs potential: basically but now with a scalar field unexplored

Moving forward

We are only at the beginning of the LHC programme

- So far: only about 5% of data
- Big jump in statistics, no big jump in energy → precision data/theory comparison more and more important

Collider predictions: how to get there

proton, Q~GeV, non perturbative High-energy scattering, perturbative

From high-energy to hadrons: $PS \rightarrow Silvia$

Collider predictions: how to get there

Collider predictions: how to get there $d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) d\sigma_{\text{part}}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{\text{QCD}}^n / Q^n))$ $+\alpha_s^3\Delta\sigma_{N^3LO}+\ldots$ $+\alpha_s^2 \Delta \sigma_{\rm NNLO}$ $(1 + \alpha_s \Delta \sigma_{\rm NLO})$ $\sigma_{\rm part} = \sigma_{\rm LO}$ NLO: N³LO: **NNLO:** $\sim 10/20\%$ ~few % ≲ % 3L 00 00 $\alpha_s \sim 0.1$

From "nice" theories to real-life QCD

"Nice" \equiv N=4 sYM, in the planar limit

<u>Issue</u>: QCD is non (dual) (super) conformal \rightarrow most cool N=4 tricks don't work

No "N=4"-like tricks (nice integrands...) \rightarrow "textbook" way \otimes

$$\mathcal{A} = \sum_{\substack{j \in \mathcal{A} \\ j \in \mathcal{I}}} \left[\int_{\mu} d^{d}k \ \partial_{\mu} [v^{\mu} \mathcal{F}(k)] = 0 \\ \text{Integral reduction, IBPs} \right] \qquad \text{Major bottleneck}$$
$$\mathcal{A} = \sum_{\substack{j \in \mathcal{I} \\ j \in \mathcal{I}}} c_{j} \times \text{MI}_{j}$$

Some recent results from us & friends

<u>Numerical methods for</u> complex Electroweak amplitudes

	1L	2L	3L
Number of diagrams	6	138	3299
Number of integral topologies	1	2	3
Number of integrals before IBPs and symmetries	209	20935	4370070
Number of master integrals	6	39	486
Size of the Feynman diagrams list [kB]	4	90	2820
Size of the result before integral reduction [kB]	276	54364	19734644
Size of the result in terms of MIs [kB]	12	562	304409
Size of the result in terms of HPLs [kB]	136	380	1195

Interesting way forward: intersection theory

$$\mathscr{A} = \sum c_i \times \mathrm{MI}_i$$

Can we "project" over MIs?
$$c_i = \langle \widetilde{\mathrm{MI}}_i | \mathscr{A} \rangle$$

$$I = \int \prod d^d k_i \frac{\mathcal{N}}{D_1 \dots D_n} \longrightarrow \int \frac{dz_1 \dots dz_n f(\mathbf{z})}{z_1^{n_1} \dots z_n^{n_n}} \times u(\mathbf{z}) = \int_{\mathbf{C}_{\mathbf{R}}} \mathbf{u}(\mathbf{z}) \varphi_{\mathbf{L}}(\mathbf{z})$$

 $\varphi \sim \varphi_L + (d + \omega \wedge)\xi, \quad \omega = d \ln(u) \longrightarrow \varphi_L \in H^n_{\omega}$

 $I = \langle \varphi_L C_R] = \sum c_i \langle e_i C_R] \longrightarrow c_i = \langle \varphi_L e_j \rangle [\langle e_j e_i \rangle]^{-1}, \quad |e_i\rangle \in H^n_{-\omega}$

From high-energy scattering to observable final states: parton showers

[Graphics: Gavin Salam]

Parton showers in a nutshell

- Hard process: high-scale, perturbative, few legs...
- ... triggering a cascade of QCD radiation, down to hadronic scale
- Up to the very last step, computable from pQCD
- ~ Markov chain semi (but not entirely) classical process

 $d\mathcal{P}_{\text{split}} \sim \alpha_s(k_t) \frac{dk_t^2}{k_t^2} \frac{dz}{z}$

The two faces of parton showers

- PS 1: a <u>highly tuneable device</u>, able to accurately reproduces datas over a multitude of configurations (*"with 4 parameters I can fit an elephant"*)
 - huge amount of intuition, ingenuity; ab initio control not required

- PS 2: a <u>highly predictive</u> tool, till the hadronic scale. Exquisite control *ab initio* mandatory
 - more and more crucial with the rise of AI/ML: PS predictions are "the truth" that we feed the machines...
 - highly non-trivial, both technically and conceptually, to go beyond the standard "(N)LL" paradigm

Recent results from the group & friends

<u>A robust theoretical definition for "PS</u>

<u>accuracy" + the first NLL shower</u>

Gavin P. Salam

DESY Theory Seminar, June 2022

<u>Steps towards higher-order PS</u>

$$\begin{aligned} \mathbb{K}_{q}^{\mathrm{R}}[G_{q},G_{g}] &= \sum_{(A)} \frac{1}{S_{2}} \int d\Phi_{3}^{(A)} P_{1\to3}^{(A)} \left\{ G_{f_{1}}(x \, z_{p} \, (1-z), t_{1,2}) \, G_{f_{2}}(x \, (1-z_{p}) \, (1-z), t_{1,2}) \right. \\ & \times G_{q}(x \, z, t_{12,3}) - G_{f_{12}}(x \, (1-z), t_{12,3}) \, G_{q}(x \, z, t_{12,3}) \right\} \frac{\Delta_{q}(t)}{\Delta_{q}(t_{1,2})} \\ & + \int d\Phi_{3}^{(B)} P_{1\to3}^{(B)} \left\{ G_{g}(x \, (1-z), t_{1,23}) \, G_{g}(x \, z \, (1-z_{p}), t_{2,3}) \right. \\ & \times G_{q}(x \, z \, z_{p}, t_{2,3}) - G_{g}(x \, (1-z), t_{1,23}) \, G_{q}(x \, z, t_{1,23}) \right\} \frac{\Delta_{q}(t)}{\Delta_{q}(t_{2,3})} \, \Theta(t_{2,3} - t_{1,3}) \,, \quad (C.2) \end{aligned}$$

Accurate PS: beyond large-N

Recent results from the group & friends

Making use of all of this: pheno studies

An example: jet flavour

- <u>What we want</u>
 - back to the start: we want to measure Higgs Yukawa couplings \rightarrow H \rightarrow bb(cc...) decay \rightarrow need to measure "b-quarks"
 - many (B)SM resonances decay to quarks/gluons \rightarrow want to measure them
- <u>The obvious problem</u>
 - quark and gluons are not asymptotic states... "what is a b-quark?"
- <u>The "in principle" solution...</u>
 - find observables which are strongly correlated to "I had a b-quark in the hard process", yet insensitive to IR physics. *"Jet flavour"*
- <u>The "good" solution</u>
 - something you can compute, to high precision
 - something that experimentalists can measure, to high precision
 - something that is flexible enough for a wide array of studies

A final disclaimer: only a subset of what the group is doing, more stuff going on

(heavy-ions, IR subtractions, nonperturbative effects, Higgs physics...)

<u>If you want to hear more: ask us/</u> <u>come to our Friday 1pm-2pm</u> <u>Journal Club (also on zoom)</u>

Thank you very much for your attention

From "nice" theories to real-life QCD: issues

"Nice" \equiv N=4 sYM, in the planar limit

<u>Issue</u>: QCD is non (dual) (super) conformal → most cool N=4 tricks don't work

 $\underline{\textbf{Issue}}: EW \ particles \twoheadrightarrow leading-N_c \neq planar$

From "nice" theories to real-life QCD: issues

"Nice" \equiv N=4 sYM, in the planar limit

<u>Issue</u>: QCD is non (dual) (super) conformal → most cool N=4 tricks don't work

 $\underline{\textbf{Issue}}: EW \ particles \twoheadrightarrow leading-N_c \neq planar$

No parametric enhancement of the "simple" contributions

Beyond leading colour: 2

[Chen, Gehrmann, Glover, Huss, Mo (2022)]

Beyond leading colour: 3

In some cases: $1/N_c^2 \ge [i\pi]^2 \rightarrow$ no longer suppressed

 δ NNLO/NLO: 3%

Beyond leading colour: 3

In some cases: $1/N_c^2 \ge [i\pi]^2 \rightarrow$ no longer suppressed

δNNLO/NLO: up to 1.5%

δNNLO/NLO: 3%

[Liu, Melnikov, Penin (2019)]

High scale: top quark effects

similar problems for EW corrections, massive W/Z

No "N=4"-like tricks (nice integrands...) \rightarrow "textbook" way \otimes

$$\mathcal{A} = \sum_{\substack{j \in \mathcal{A} \\ j \in \mathcal{I}}} \int_{\mathbf{d}^{d}k} \partial_{\mu} [v^{\mu} \mathcal{F}(k)] = 0}$$
Integral reduction, IBPs
$$\mathcal{A} = \sum_{\substack{j \in \mathcal{L} \\ i \in \mathcal{I}}} c_{i} \times \mathbf{MI}_{i}$$

$$\mathscr{A} = \sum c_i \times \mathrm{MI}_i$$

Computing MIs: binary situation

- 1. They are GPLs $\rightarrow \bigoplus$
- 2. They are not (elliptic, CY...) \rightarrow hic sunt leones \diamondsuit

$$\mathscr{A} = \sum c_i \times \mathrm{MI}_i$$

Computing MIs: binary situation

1. They are GPLs $\rightarrow \bigoplus$

2. They are not (elliptic, CY...) \rightarrow hic sunt mansuefacti leones

Lot of progress in understanding space of required functions, and in providing <u>fast and reliable numerical evaluations</u>

$$\mathbf{E}_4\left(\begin{smallmatrix}n_1 & \dots & n_m \\ c_1 & \dots & c_m \end{smallmatrix}; z, \vec{q}\right) = \int_0^z dt \,\psi_{n_1}(c_1, t, \vec{q}) \,\mathbf{E}_4\left(\begin{smallmatrix}n_2 & \dots & n_m \\ c_2 & \dots & c_m \end{smallmatrix}; t, \vec{q}\right)$$

...ask the experts in the audience!

Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser (2022)

2→2 scattering:

[Bargiela, Chakraborty, FC, von Manteuffel, Tancredi]

2→3:

 $2 \rightarrow n \ge 4$: 1-loop, numerical

[Abreu, Badger, Brønnum-Hansen, Bargiela, Borowka, Buccioni, Chawdhry, Chen, Chicherin, Czakon, de Laurentis, Dormans, Duhr, Dunbar, Febres-Cordero, Frellesvig, Gambuti, Gehrmann, Gluza, Hartanto, Heinrich, Henn, Ita, Jones, Jehu, Kajda, Kosower, Liu, Lo Presti, Manteuffel, Ma, Maître, Mitev, Mitov, Page, Peraro, Perkins, Poncelet, Schabinger, Sotnikov, Tancredi, Usovitch, Wasser, Weinzierl, Zhang...]

$2 \rightarrow n \ge 4$: 1-loop, numerical

Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser (2022)

2→3:

 $2 \rightarrow n \ge 4$: 1-loop, numerical

$2 \rightarrow n \ge 4$: 1-loop, numerical

From amplitudes to phenomenology

A glimpse of recent results: exploring the $2\rightarrow 3$ frontier

A rich phenomenology, to be explored

QCD amplitudes: <u>some</u> open questions

- Some obvious questions:
- better ways of approaching QCD amplitudes
- •how to get more complicated ones (e.g. 5pt, 2 legs off-shell \rightarrow di-boson)

QCD amplitudes: <u>some</u> open questions

Perhaps less obvious questions:• are we really minimising non-physical information?

QCD amplitudes: <u>some</u> open questions

Perhaps less obvious questions:• are we choosing the right MIs?

One-loop amplitudes for
$$e^+e^-$$
 to four partons

Zvi Bern^{a,1}, Lance Dixon^{b,2}, David A. Kosower^{c,3} ^a Department of Physics, University of California, Los Angeles, Los Angeles, CA 90024, USA ^b Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA ^c Service de Physique Théorique, Centre d'Etudes de Saclay, F-91191 Gif-sur-Yvette cedex, France⁴

Received 13 August 1997; accepted 20 October 1997

1L: "optimal" QCD MIs are not UT...

$$L_{0}(r) = \frac{\ln(r)}{1 - r}, \qquad L_{1}(r) = \frac{L_{0}(r) + 1}{1 - r},$$

$$L_{s-1}(r_{1}, r_{2}) = Li_{2}(1 - r_{1}) + Li_{2}(1 - r_{2}) + \ln r_{1} \ln r_{2} - \frac{\pi^{2}}{6},$$

$$L_{s_{0}}(r_{1}, r_{2}) = \frac{1}{(1 - r_{1} - r_{2})} Ls_{-1}(r_{1}, r_{2}),$$

$$L_{s_{1}}(r_{1}, r_{2}) = \frac{1}{(1 - r_{1} - r_{2})} [Ls_{0}(r_{1}, r_{2}) + L_{0}(r_{1}) + L_{0}(r_{2})],$$

Guiding principle: singularity structure of the QCD amplitude (which is not uniform transcendental...) **Beyond** amplitudes

Amplitude techniques: more general

A "revolution" in precision phenomenology: reverse unitarity

Higgs boson production at hadron colliders in NNLO QCD

Charalampos Anastasiou, Kirill Melnikov

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA Received 9 July 2002; received in revised form 4 September 2002; accepted 19 September 2002

$$\begin{vmatrix} p_{1} & \cos \varphi & q_{H} \\ g & g & q_{1} \\ p_{2} & \cos \varphi & q_{2} \end{vmatrix} ^{2} \sim \int \frac{\mathrm{d}^{d} q_{1} \,\mathrm{d}^{d} q_{2} \,\delta(q_{1}^{2}) \delta(q_{2}^{2}) \delta(q_{H}^{2} - m_{H}^{2}) [\cdots]}{[(q_{H} - p_{1})^{2}]^{2} [(q_{2} - p_{2})^{2}]^{2}}$$
$$2i\pi \delta(p^{2} - m^{2}) \rightarrow \frac{1}{p^{2} - m^{2} + i0} - \frac{1}{p^{2} - m^{2} - i0}.$$

Maps phase-space integration into loop integrals \rightarrow amplitude technology

Amplitude techniques: more general

Dilepton Rapidity Distribution in the Drell-Yan Process at Next-to-Next-to-Leading Order in QCD

Charalampos Anastasiou,¹ Lance Dixon,¹ Kirill Melnikov,² and Frank Petriello¹ ¹Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309, USA ²Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA (Received 25 June 2003; published 31 October 2003)

$$\frac{d\sigma_{ij}}{2e^{2Y}dY} = \int d\Pi_f |\mathcal{M}_{ij}|^2 \delta\left(e^{2Y} - \frac{E+p_z}{E-p_z}\right).$$

"Observable": constraint in the integration domain

$$\delta(x) \rightarrow \frac{1}{2\pi i} \left[\frac{1}{x - i0} - \frac{1}{x + i0} \right]$$

Reverse unitarity trick still works, but generalised propagators (also: θ functions...)

Can we understand the properties of these "generalised" Feynman integrals (e.g. regularity conditions to fix b.c. of diff. eq. etc)

Amplitude techniques: more general

Understanding the structure of QCD amplitudes: crucial beyond amplitudes themselves

For example

- Soft/collinear regions: insight into large $\alpha_s \ln^k(v \ll 1)$ contributions to the cross section. Starting from 2L: non-trivial limits in the non-planar sector [see G. Gambuti's talk]
- Soft/collinear limits beyond leading power: insight into NP regime of QCD
- (Multi)-Regge limit: insight into physics of high-density QCD / NNLL important information for parton distribution functions at N³LO [<u>see E.Gardi's talk]</u>
- Non-planar soft/collinear interplay at 2 loops and beyond: expose "Glauber" modes, responsible for potential breaking of collinear factorisation (foundation of perturbative QCD at hadron colliders!) [see G. Gambuti's talk]

and many more!

... also few percent: $\sim \alpha \rightarrow SM$ at the quantum level (e.g. W-mass)

The Higgs potential: a long journey $V = \lambda (H^{\dagger}H - v^2)^2 \rightarrow 2\lambda v^2 h^2 + \sqrt{2\lambda} v h^3 + \lambda h^4/4$

The Higgs potential: a long journey $V = \lambda (H^{\dagger}H - v^2)^2 \rightarrow 2\lambda v^2 h^2 + \sqrt{2\lambda} v h^3 + \lambda h^4/4$

The Higgs potential: a long journey $V = \lambda (H^{\dagger}H - v^2)^2 \rightarrow 2\lambda v^2 h^2 + \sqrt{2\lambda} v h^3 + \lambda h^4/4$

... also few percent: ~ $\alpha \rightarrow SM$ at the quantum level (e.g. W-mass)

$$\varphi_L(\mathbf{z}) = \frac{f(\mathbf{z})}{z_1^{n_1} \dots z_N^{n_N}} dz_1 \dots dz_N$$

$$0 = \int_{C_R} d(u\xi_L) = \int_{C_R} du \wedge \xi_L + ud\xi_L \qquad 0 = \int_{C_R} u\left(\frac{du}{u} \wedge \xi_L + d\right)\xi_L = \int_{C_R} u\nabla_\omega\xi_L$$

$$\int_{C_R} u(\mathbf{z})\varphi_L = \int_{C_R} u(\mathbf{z})(\varphi_L + \nabla_\omega \xi_L) \qquad I = \int_{C_R} u(\mathbf{z})\varphi_L(\mathbf{z}) = \langle \varphi_L | C_R]$$

$$\left\langle \varphi_{L} | \varphi_{R} \right\rangle = \frac{1}{(2\pi i)^{n}} \int_{X} \varphi_{L} \wedge \varphi_{R} \qquad \left\langle \varphi_{L}^{(1)} | \varphi_{R}^{(1)} \right\rangle = \sum_{p \in \mathcal{P}_{1}} \operatorname{Res}_{z_{1}=p} \left(\psi^{(p)} \varphi_{R}^{(1)} \right) \tag{2.21}$$

where \mathcal{P}_1 is the set of poles of $\omega_1 = \frac{\partial \log u(z_1)}{\partial z_1}$ (including infinity), and $\psi_p^{(1)}$ is the solution to the differential equation

$$\boldsymbol{\nabla}_{\omega}\psi^{(p)} = d\psi^{(p)} + \omega_1 \wedge \psi^{(p)} = \varphi_L^{(1)} \tag{2.22}$$