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The LHC: stress-testing the 
Standard Model



What have we learned so far
Overall, the Standard Model works very well

Vector boson(s), top: 
high precision, now



What have we learned so far
Many “vanilla” BSM scenarios excluded at the EW scale
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Is the SM established? Can we go home?
Ultra-precise data / theory comparison: some tensions

Electroweak precision and the W mass

26th May 2023 4Richard Hawkings

▪ Spectacular consistency of EW fit – indirect 
vs. direct measurements
▪ LHC contributions to mt, mW, mH, 𝛼S, …
▪ But latest CDF mW strongly disagrees with 

other measurements and with SM
▪ No convincing explanation so far

▪ Meanwhile, updated results from ATLAS
▪ Reanalysis of 7 TeV data, updated PDFs

▪ mw=80.360±16 MeV

▪ New direct measurement of pT(W) with low 
pileup samples at √s=5 and 13 TeV
▪ Reconstruction of pT(W) via hadronic recoil
▪ Validation comparing recoil and pT(ll) in Z→ll
▪ Pythia AZ MC (tuned to Z at 7 TeV) gives good 

description of pT(W) at 5 TeV at low pT(W)
▪ Validates modelling used in mW measurement

▪ Eagerly awaiting a CMS result ...

F. Balli
Input in the SM. But enters radiative corrections → access through global 
fit to precision observables

Require exquisite theoretical 
control over  Z/W bosons 
predictions

similar situation: (g-2)μ

Example: W mass

 
Testing ground for 
“precision” programme



Is the SM established? Can we go home?

Gauge sector: well-studied, 
but now with a scalar field

Yukawa sector: exploration 
only just beginning

Higgs potential: basically 
unexplored



What have we learned so far
Higgs sector: in many cases, SM to within ~10% or better
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The	Higgs	boson	Couplings
Results	interpreted	in	terms	of	Higgs	boson	coupling	strength	multipliers	$ in	
multiple	scenarios	

11

Coupling	with	quark	charm
ATLAS:	$c <	5.7	@	95%	C.L.

Generic	parametrization	with	coupling	strength	modifiers	for	W,	Z,	t,	b,	c*,	" and	µ	treated	independently

Universal	coupling	strength	modifiers	
$V (vector	bosons)	and	$F (fermions)

arXiv:2205.05550

Nature	607	(2022)	60-68

Nature	607	(2022)	60-68

Nature	607,	pages	52-59	(2022)

Nature	607,	pages	52-59	(2022)
Coupling	with	quark	charm

CMS:	1.1	<|$c|<	5.5	@	95%	C.L.Still a lot to be done: Higgs/matter interactions, Higgs potential…

μ: starting to probe 
Higgs/matter 
interactions for 2nd 
generation family!



Moving forward
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We are only at the beginning of the LHC programme

• So far: only about 5% of data


• Big jump in statistics, no big jump in energy → precision data/theory comparison 
more and more important



Collider predictions: how to get there

Structure of the 
proton, Q~GeV, 
non perturbative

From high-energy to 
hadrons: PS → Silvia

High-energy scattering, 
perturbative



Collider predictions: how to get there

Key: physics at very different 
scales, can be separated

Non-perturbative
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The hard process: amplitudes & co

[Graphics: Giulio Gambuti] 



Collider predictions: how to get there

σpart = σLO

αs ∼ 0.1
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From “nice” theories to real-life QCD

“Nice” ≣ N=4 sYM, in the planar limit

Issue: QCD is non (dual) (super) conformal → most cool N=4 tricks don’t work

1L

N=4 bit



QCD amplitudes: how to compute them
No “N=4”-like tricks (nice integrands…) → “textbook” way ☹

𝒜 = ∑

𝒜 = ∑ ci × MIi

Integral reduction, IBPs
Major bottleneck∫ddk ∂μ[vμℐ(k)] = 0



Some recent results from us & friends

First QCD 3-loop scattering amplitudes 2-loop 2→3 parton scattering, for the 

first time beyond the large-Nc limit

4. Two-loop mixed QCD-EWK amplitudes for Z+jet production 100
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each with 9 generalised propagators. They arise from the basic PL and NPL

two-loop four-point massless topologies introduced in Sec. 2.5.1, with appropriate

modifications due to external mZ , as well as internal mZ and mW masses. See
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the corresponding top sectors in Fig. 4.9. We write a Feynman integral In̨ in

4. Two-loop mixed QCD-EWK amplitudes for Z+jet production 122

Figure 4.18: Absolute value of the virtual NNLO finite remainders
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Some recent results from us & friends

First QCD 3-loop scattering amplitudes 2-loop 2→3 parton scattering, for the 

first time beyond the large-Nc limit

4. Two-loop mixed QCD-EWK amplitudes for Z+jet production 100
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, (k2 ≠ p1)2
, (k1 ≠ p12)2

, (k1 ≠ k2 + p3)2
, (k2 ≠ p123)2

, (k1 ≠ k2 ≠ p12)2
} ,

NPL2Z7 = {k
2
1, k

2
2, (k1 ≠ k2)2

, (k1 ≠ p1)2
, (k2 ≠ p1)2

, (k1 ≠ p12)2
, ≠m

2
Z + (k1 ≠ k2 + p3)2

, (k2 ≠ p123)2
, (k1 ≠ k2 ≠ p12)2

} ,

NPL2Z1c13c24 = {k
2
1 ≠ m

2
Z , k

2
2, (k1 ≠ k2)2

, (k1 ≠ p3)2
, (k2 ≠ p3)2

, (k1 + p1 + p2)2
, (k1 ≠ k2 + p1)2

, (k2 + p2)2
, (k1 ≠ k2 + p1 + p2)2

} ,

NPL2W1 = {k
2
1 ≠ m

2
W , k

2
2, (k1 ≠ k2)2

, (k1 ≠ p1)2
, (k2 ≠ p1)2

, (k1 ≠ p12)2
, (k1 ≠ k2 + p3)2

, (k2 ≠ p123)2
, (k1 ≠ k2 ≠ p12)2

} ,

NPL2W4 = {k
2
1, k

2
2, (k1 ≠ k2)2

, ≠m
2
W + (k1 ≠ p1)2

, (k2 ≠ p1)2
, (k1 ≠ p12)2

, (k1 ≠ k2 + p3)2
, (k2 ≠ p123)2

, (k1 ≠ k2 ≠ p12)2
} ,

NPL2W7 = {k
2
1, k

2
2, (k1 ≠ k2)2

, (k1 ≠ p1)2
, (k2 ≠ p1)2

, (k1 ≠ p12)2
, ≠m

2
W + (k1 ≠ k2 + p3)2

, (k2 ≠ p123)2
, (k1 ≠ k2 ≠ p12)2

} ,

NPL2W1c13c24 = {k
2
1 ≠ m

2
W , k

2
2, (k1 ≠ k2)2

, (k1 ≠ p3)2
, (k2 ≠ p3)2

, (k1 + p1 + p2)2
, (k1 ≠ k2 + p1)2

, (k2 + p2)2
, (k1 ≠ k2 + p1 + p2)2

} ,

NPL2W28 = {k
2
1, k

2
2 ≠ m

2
W , (k1 ≠ k2)2

, (k1 ≠ p1)2
, (k2 ≠ p1)2

, (k1 ≠ p12)2
, (k1 ≠ k2 + p3)2

, ≠m
2
W + (k2 ≠ p123)2

, (k1 ≠ k2 ≠ p12)2
}

(4.3.3.1)

each with 9 generalised propagators. They arise from the basic PL and NPL

two-loop four-point massless topologies introduced in Sec. 2.5.1, with appropriate

modifications due to external mZ , as well as internal mZ and mW masses. See
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1Figure 4.9: Example top sectors of integral topologies defined in Eq. 4.3.3, in the format
TOPOLOGYxCROSSING.SECTOR.

the corresponding top sectors in Fig. 4.9. We write a Feynman integral In̨ in
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Figure 4.18: Absolute value of the virtual NNLO finite remainders
2 Re

1
A

(0,0,fin)ú
L A

(1,1,fin)
L + A

(0,0,fin)ú
R A

(1,1,fin)
R

2
in all partonic channels u ū æ g Z,

u g æ u Z, g u æ u Z, d d̄ æ g Z, d g æ d Z, and g d æ d Z, as functions of transverse
momentum pT and rapidity y of the Z boson.

Numerical methods for 
complex ElectroWeak 

amplitudes

Sub-leading Nc results open the way to many 

interesting investigations:


• High-energy limit: sensitive to “Regge cuts” in the 

complex angular momentum plane (observable@3L)


• Soft physics beyond the dipole picture and potential 

breaking of collinear factorisation (2L&3L)



The problem with IBPs

∫ddk ∂μ[vμℐ(k)] = 0 𝒥(k) =
𝒩(k, {pi})
D1 . . . Dn

Issue: 

• IBPs generate a lot of irrelevant junk


• IR/UV mixing

3. Three-loop four-point massless QCD amplitudes 54

factoring out an overall color singlet structure

projecting the 138 Lorentz tensor structures onto the 8 physical ones

IBP reducing all the required 4370070 scalar Feynman integrals to 486 MIs

relating the 486 MIs to a single three-loop sunrise integral

expanding the analytic amplitude linearly in terms of 126 HPLs

Figure 3.4: Computational flow chart for the amplitude.

1L 2L 3L
Number of diagrams 6 138 3299
Number of integral topologies 1 2 3
Number of integrals before IBPs and symmetries 209 20935 4370070
Number of master integrals 6 39 486
Size of the Feynman diagrams list [kB] 4 90 2820
Size of the result before integral reduction [kB] 276 54364 19734644
Size of the result in terms of MIs [kB] 12 562 304409
Size of the result in terms of HPLs [kB] 136 380 1195

Table 3.2: Some indicators of the complexity of the result at various stages of the
calculation at di�erent loop orders. The size of the files with formulae in a consistent text
format should be analysed relatively to the corresponding leading order.

Tab. 3.2, we summarise the corresponding complexity of the result at various stages

of the amplitude computation. In addition, transforming the amplitude along these

stages required hundreds of CPU hours and gigabytes of RAM memory.

3.3 Amplitude structure

Before discussing the details of the calculation, we describe the three mathematical

structures appearing in the gg æ ““ amplitude, colour, tensor, and integral,

as introduced in Ch. 2.

• Huge intermediate results


• Underlying physics obscured



Interesting way forward: intersection theory

𝒜 = ∑ ci × MIi

  Can we “project” over MIs? ci = ⟨M̃I i |𝒜⟩

I = ∫ ∏ddki
𝒩

D1 . . . Dn
⟶ ∫

dz1 . . . dzn f(z)
zn1
1 . . . znn

n
× u(z) = ∫CR

u(z)φL(z)

φ ∼ φL + (d + ω∧)ξ, ω = d ln(u) ⟶ φL ∈ Hn
ω

I = ⟨φLCR] = ∑ ci⟨eiCR] ⟶ ci = ⟨φLej⟩[⟨ejei⟩]−1, |ei⟩ ∈ Hn
−ω



The power and limits of  
parton showers

From high-energy scattering to 
observable final states: parton showers

[Graphics: Gavin Salam] 



Parton showers in a nutshell
• Hard process: high-scale, 

perturbative, few legs…


• … triggering a cascade of 
QCD radiation, down to 
hadronic scale


• Up to the very last step, 
computable from pQCD


• ~ Markov chain semi (but not 
entirely) classical process

d𝒫split ∼ αs(kt)
dk2

t

k2
t

dz
z



The two faces of parton showers

• PS 1:  a highly tuneable device, able to accurately reproduces datas 
over a multitude of configurations (“with 4 parameters I can fit an 
elephant”) 

• huge amount of intuition, ingenuity; ab initio control not required


• PS 2: a highly predictive tool, till the hadronic scale. Exquisite control 
ab initio mandatory

• more and more crucial with the rise of AI/ML: PS predictions are “the truth” 

that we feed the machines…


• highly non-trivial, both technically and conceptually, to go beyond the standard 
“(N)LL” paradigm



Recent results from the group & friends

DESY Theory Seminar, June 2022Gavin P. Salam

Test class 2: full shower v. all-order NLL — many observables

60

4

FIG. 2. Left: ratio of the cumulative y23 distribution from several showers divided by the NLL answer, as a function of
↵s ln y23/2, for ↵s ! 0. Right: summary of deviations from NLL for many shower/observable combinations (either ⌃shower(↵s !
0,↵sL = �0.5)/⌃NLL � 1 or (N subjet

shower(↵s ! 0,↵sL
2 = 5)/N subjet

NLL � 1)/
p
↵s). Red squares indicate clear NLL failure; amber

triangles indicate NLL fixed-order failure that is masked at all orders; green circles indicate that all NLL tests passed.

Fig. 1.
The left-hand plot of Fig. 1 shows the Pythia8 dipole

algorithm (not designed as NLL accurate), while the
middle plot shows our PanGlobal shower with � = 0.
The dipole result is clearly not independent of � 12

for ↵s ! 0, with over 60% discrepancies, extending the
fixed-order conclusions of Ref. [37]. The discrepancy is
only ' 30% for gg events (not shown in Fig. 1), and
the di↵erence would, e.g., skew machine learning [67] for
quark/gluon discrimination. PanGlobal is independent
of � 12. The right-hand plot shows the ↵s ! 0 limit
for multiple showers. The overall pattern is as expected:
PanLocal works for � = 0.5, but not � = 0, demon-
strating that with kt ordering it is not su�cient just to
change the dipole partition to get NLL accuracy. Pan-
Global works for � = 0 and � = 0.5. (Showers that
coincide for ↵s ! 0, e.g. Dire v1 and Pythia8, typically
di↵er at finite ↵s, reflecting NNLL di↵erences.)

Next, we consider a range of more standard observ-
ables at NLL accuracy. They include the Cambridgep
y23 resolution scale [68]; two jet broadenings, BT and

BW [69]; fractional moments, FC1��obs , of the energy-
energy correlations [47]; the thrust [70, 71], and the max-
imum ui = kti/Qe��obs|⌘i| among primary Lund declus-
terings i. Each of these is sensitive to soft-collinear ra-
diation as kt/Qe��obs|⌘|, with the �obs values shown in
Fig. 2 (right). Additionally, the scalar sum of the trans-
verse momenta in a rapidity slice [72], of full-width 2, is
useful to test non-global logarithms (NGLs). These ob-
servables all have the property that their distribution at
NLL can be written as [47, 53, 72–74]

⌃(↵s,↵sL) = exp
⇥
↵�1
s g1(↵sL) + g2(↵sL) +O

�
↵n
sL

n�1
�⇤
,

(6)
where ⌃ is the fraction of events where the observable
is smaller than eL (g1 = 0 for the rapidity slice kt).
We also consider the kt-algorithm [75] subjet multiplic-

ity [76], [51]§ 5.
Fig. 2 (left) illustrates our all-order tests of the shower

for one observable,
p
y23. It shows the ratio of the ⌃

as calculated with the shower to the NLL result, as a
function of ↵s ln

p
y23 in the limit of ↵s ! 0. The stan-

dard dipole algorithms disagree with the NLL result, by
up to 20%. This is non-negligible, though smaller than
the disagreement in Fig. 1, because of the azimuthally
averaged nature of the

p
y23 observable. In contrast the

PanGlobal and PanLocal(� = 0.5) showers agree with
the NLL result to within statistical uncertainties.
Fig. 2 (right) shows an overall summary of our

tests. The position of each point shows the result of
⌃shower(↵s ! 0,↵sL = �0.5)/⌃NLL�1 or (N subjet

shower(↵s !
0,↵sL2 = 5)/N subjet

NLL � 1)/
p
↵s. If it di↵ers from 0, the

point is shown as a red square. In some cases (amber tri-
angles) it agrees with 0, though an additional fixed-order
analysis in a fixed-coupling toy shower [37] [51]§ 2 re-
veals issues a↵ecting NLL accuracy, all involving hitherto
undiscovered spurious super-leading logarithmic terms.1

Green circles in Fig. 2 (right) indicate that the
shower/observable combination passes all of our NLL
tests, both at all orders and in fixed-order expansions.
The four shower algorithms designed to be NLL accurate
pass all the tests. These are the PanLocal shower (dipole
and antenna variants) with � = 1

2 and the PanGlobal
shower with � = 0 and � = 1

2 .

1 Such terms, (↵sL)n(↵sL2)p in ln⌃, starting typically for n = 3
(sometimes 2), p � 1, appear for traditional kt ordered dipole
showers for global (�obs > 0) and non-global observables [51]§ 3.
Terms of this kind can generically exist [77–79], but not at
leading-colour or for pure final-state processes with rIRC [47]
safe observables. In many cases, the spurious super-leading log-
arithms appear to resum to mask any disagreement with NLL.

A robust theoretical definition for “PS 
accuracy” + the first NLL shower
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Figure 8: The diagram representing the gluon emission C
2
F
channel.

Following the definition of the inclusive emission probability (2.10) we obtain:

KR
q [Gq, Gg] =

X

(A)

1

S2

Z
d�(A)

3 P
(A)
1!3

⇢
Gf1(x zp (1� z), t1,2)Gf2(x (1� zp) (1� z), t1,2)

⇥Gq(x z, t12,3)�Gf12(x (1� z), t12,3)Gq(x z, t12,3)

�
�q(t)

�q(t1,2)

+

Z
d�(B)

3 P
(B)
1!3

⇢
Gg(x (1� z), t1,23)Gg(x z (1� zp), t2,3)

⇥Gq(x z zp, t2,3)�Gg(x (1� z), t1,23)Gq(x z, t1,23)

�
�q(t)

�q(t2,3)
⇥(t2,3 � t1,3) , (C.2)

where we have used the notation ti,j to indicate the value of the evolution time (2.1)

corresponding to the angle ✓i,j . Moreover, we have parameterised the integrands as 15

P
(A)
1!3 ⌘

(8⇡)2

s
2
123

↵
2
s(E

2
g
2(z) ✓212,3)hP̂ iCFCA ,CFTRnf ,CF (CF�CA/2) , (C.3)

P
(B)
1!3 ⌘

(8⇡)2

s
2
123

↵
2
s(E

2
g
2(z) ✓21,3)hP̂ i

C
2
F
. (C.4)

Here, P (A)
1!3 is parameterised according to the phase space depicted in Fig. 7, while P (B)

1!3 is

parameterised according to Fig. 8. The corresponding phase space measures, denoted by

d�(A,B)
3 in (C.2) are obtained from Eq. (6.1) by setting ✏ = 0 and performing the change of

variable (with the corresponding Jacobian) of Figs. 7, 8. The sum in Eq. (C.2) runs over

all the (A) colour channels of the type q ! f1f2q(q̄) defined in Eq. (C.3), and fi denotes

15We notice that the production of a qq̄q final state with identical flavours contributing to the CF (CF �
CA/2) is finite, and therefore does not factorise into the product of two splitting functions in the strong

angular ordered limit.
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Test class 2: full shower v. all-order NLL — many observables

60

4

FIG. 2. Left: ratio of the cumulative y23 distribution from several showers divided by the NLL answer, as a function of
↵s ln y23/2, for ↵s ! 0. Right: summary of deviations from NLL for many shower/observable combinations (either ⌃shower(↵s !
0,↵sL = �0.5)/⌃NLL � 1 or (N subjet

shower(↵s ! 0,↵sL
2 = 5)/N subjet

NLL � 1)/
p
↵s). Red squares indicate clear NLL failure; amber

triangles indicate NLL fixed-order failure that is masked at all orders; green circles indicate that all NLL tests passed.

Fig. 1.
The left-hand plot of Fig. 1 shows the Pythia8 dipole

algorithm (not designed as NLL accurate), while the
middle plot shows our PanGlobal shower with � = 0.
The dipole result is clearly not independent of � 12

for ↵s ! 0, with over 60% discrepancies, extending the
fixed-order conclusions of Ref. [37]. The discrepancy is
only ' 30% for gg events (not shown in Fig. 1), and
the di↵erence would, e.g., skew machine learning [67] for
quark/gluon discrimination. PanGlobal is independent
of � 12. The right-hand plot shows the ↵s ! 0 limit
for multiple showers. The overall pattern is as expected:
PanLocal works for � = 0.5, but not � = 0, demon-
strating that with kt ordering it is not su�cient just to
change the dipole partition to get NLL accuracy. Pan-
Global works for � = 0 and � = 0.5. (Showers that
coincide for ↵s ! 0, e.g. Dire v1 and Pythia8, typically
di↵er at finite ↵s, reflecting NNLL di↵erences.)

Next, we consider a range of more standard observ-
ables at NLL accuracy. They include the Cambridgep
y23 resolution scale [68]; two jet broadenings, BT and

BW [69]; fractional moments, FC1��obs , of the energy-
energy correlations [47]; the thrust [70, 71], and the max-
imum ui = kti/Qe��obs|⌘i| among primary Lund declus-
terings i. Each of these is sensitive to soft-collinear ra-
diation as kt/Qe��obs|⌘|, with the �obs values shown in
Fig. 2 (right). Additionally, the scalar sum of the trans-
verse momenta in a rapidity slice [72], of full-width 2, is
useful to test non-global logarithms (NGLs). These ob-
servables all have the property that their distribution at
NLL can be written as [47, 53, 72–74]

⌃(↵s,↵sL) = exp
⇥
↵�1
s g1(↵sL) + g2(↵sL) +O

�
↵n
sL

n�1
�⇤
,

(6)
where ⌃ is the fraction of events where the observable
is smaller than eL (g1 = 0 for the rapidity slice kt).
We also consider the kt-algorithm [75] subjet multiplic-

ity [76], [51]§ 5.
Fig. 2 (left) illustrates our all-order tests of the shower

for one observable,
p
y23. It shows the ratio of the ⌃

as calculated with the shower to the NLL result, as a
function of ↵s ln

p
y23 in the limit of ↵s ! 0. The stan-

dard dipole algorithms disagree with the NLL result, by
up to 20%. This is non-negligible, though smaller than
the disagreement in Fig. 1, because of the azimuthally
averaged nature of the

p
y23 observable. In contrast the

PanGlobal and PanLocal(� = 0.5) showers agree with
the NLL result to within statistical uncertainties.
Fig. 2 (right) shows an overall summary of our

tests. The position of each point shows the result of
⌃shower(↵s ! 0,↵sL = �0.5)/⌃NLL�1 or (N subjet

shower(↵s !
0,↵sL2 = 5)/N subjet

NLL � 1)/
p
↵s. If it di↵ers from 0, the

point is shown as a red square. In some cases (amber tri-
angles) it agrees with 0, though an additional fixed-order
analysis in a fixed-coupling toy shower [37] [51]§ 2 re-
veals issues a↵ecting NLL accuracy, all involving hitherto
undiscovered spurious super-leading logarithmic terms.1

Green circles in Fig. 2 (right) indicate that the
shower/observable combination passes all of our NLL
tests, both at all orders and in fixed-order expansions.
The four shower algorithms designed to be NLL accurate
pass all the tests. These are the PanLocal shower (dipole
and antenna variants) with � = 1

2 and the PanGlobal
shower with � = 0 and � = 1

2 .

1 Such terms, (↵sL)n(↵sL2)p in ln⌃, starting typically for n = 3
(sometimes 2), p � 1, appear for traditional kt ordered dipole
showers for global (�obs > 0) and non-global observables [51]§ 3.
Terms of this kind can generically exist [77–79], but not at
leading-colour or for pure final-state processes with rIRC [47]
safe observables. In many cases, the spurious super-leading log-
arithms appear to resum to mask any disagreement with NLL.

A robust theoretical definition for “PS 
accuracy” + the first NLL shower

Ga
vin

 P
. S

al
am

DE
SY

 T
he

or
y S

em
in

ar
, J

un
e 

20
22

Tes
t c

las
s 1

: tr
ee

-le
ve

l (2
nd

/3r
d-

ord
er)

 ex
pa

ns
ion

 of
 sh

ow
er 

v. 
fac

tor
ise

d m
atr

ix 
ele

me
nt

➤
se

m
i-a

na
ly

tic
al

ly
 

(r
ec

oi
l c

he
ck

s)
 

➤
nu

m
er

ic
al

ly
 

(c
ol

ou
r &

 s
pi

n)

54

0 02

NODS

q
q0

q0

0
5

10
02

5
10

10
15

(a
)
q̄q

0 q̄
0 q
+

g

q
g 1

g 2

0
5

10
5

10
10

15

(b
)
q̄g

1
g 2
q
+

g

F
ig
u
r
e
5
:
C
ol
ou

r
fa
ct
or

as
si
gn

m
en
t
an

d
re
la
ti
ve

d
ev
ia
ti
on

to
th
e
sq
u
ar
ed

tr
ee
-l
ev
el
m
at
ri
x

el
em

en
t,

as
in

F
ig
.
4,

fo
r
th
e
2
!

4
+

g
co
n
fi
gu

ra
ti
on

s
(a
)
q̄q

0 q̄
0 q
+

g
an

d
(b
)
q̄g

1
g 2
q
+

g,

co
rr
es
p
on

d
in
g
re
sp
ec
ti
ve
ly

to
th
e
L
u
n
d
d
ia
gr
am

s
in

F
ig
s.

2c
an

d
1a

(w
it
h
g 2

th
er
e
m
ov
ed

to
th
e
ri
gh

t
of

g 1
).

T
h
e
re
su
lt
s
h
av
e
b
ee
n
ob

ta
in
ed

w
it
h
th
e
�

=
0
P
an

G
lo
b
al

sh
ow

er

al
go

ri
th
m
.

as
in

E
q.

(6
.1
).

T
h
e
se
co
n
d
sp
li
tt
in
g
is

p
er
fo
rm

ed
w
it
h

q̄q
0 q̄

0 q
co
n
fi
gu

ra
ti
on

:
z q̄

0
=

1/
4,

⌘ q
0 q̄

0
=

10
,

 
=

0,
(6
.2
a)

q̄g
1
g 2
q
co
n
fi
gu

ra
ti
on

:
z g

2
=

10
�
1
6
,

⌘ g
2
=

10
,

 
=

0
.

(6
.2
b
)

T
h
es
e
co
n
fi
gu

ra
ti
on

s
ar
e
su
ch

th
at

th
e
se
co
n
d
sp
li
tt
in
g
h
ap

p
en

s
at

a
m
u
ch

sm
al
le
r
an

gl
e

th
an

th
e
fi
rs
t
gl
u
on

em
is
si
on

.
F
or

th
e
fi
rs
t
co
n
fi
gu

ra
ti
on

(g
1
!

q̄0
q0
),
w
e
ch
oo

se
a
z
fr
ac
ti
on

re
fl
ec
ti
n
g
th
e
ab

se
n
ce

of
so
ft

en
h
an

ce
m
en
ts
.

F
or

th
e
se
co
n
d

co
n
fi
gu

ra
ti
on

(e
m
is
si
on

of

g 2
fr
om

th
e
qu

ar
k,

w
el
l
se
p
ar
at
ed

in
ra
p
id
it
y
fr
om

g 1
)
w
e
fo
cu

s
on

a
ca
se

w
h
er
e
g 2

is

m
u
ch

so
ft
er

th
an

g 1
,
th
ou

gh
th
e
co
n
cl
u
si
on

s
ar
e
u
n
ch
an

ge
d
if
w
e
ta
ke

g 1
an

d
g 2

to
h
av
e

co
m
m
en

su
ra
te

tr
an

sv
er
se

m
om

en
ta
.
R
es
u
lt
s
ar
e
d
is
p
la
ye
d
in

F
ig
.
5.

T
h
ey

h
av
e
fe
at
u
re
s

si
m
il
ar

to
th
os
e
of

F
ig
.
4,

al
b
ei
t
w
it
h
a
ri
ch
er

st
ru
ct
u
re
.

–
25

–

(a
)
q̄q

0 q̄
0 q
+

g
(b
)
q̄g

1
g 2
q
+

g

F
ig
u
r
e
5
:
C
ol
ou

r
fa
ct
or

as
si
gn

m
en
t
an

d
re
la
ti
ve

d
ev
ia
ti
on

to
th
e
sq
u
ar
ed

tr
ee
-l
ev
el
m
at
ri
x

el
em

en
t,

as
in

F
ig
.
4,

fo
r
th
e
2
!

4
+

g
co
n
fi
gu

ra
ti
on

s
(a
)
q̄q

0 q̄
0 q
+

g
an

d
(b
)
q̄g

1
g 2
q
+

g,

co
rr
es
p
on

d
in
g
re
sp
ec
ti
ve
ly

to
th
e
L
u
n
d
d
ia
gr
am

s
in

F
ig
s.

2c
an

d
1a

(w
it
h
g 2

th
er
e
m
ov
ed

to
th
e
ri
gh

t
of

g 1
).

T
h
e
re
su
lt
s
h
av
e
b
ee
n
ob

ta
in
ed

w
it
h
th
e
�

=
0
P
an

G
lo
b
al

sh
ow

er

al
go

ri
th
m
.

as
in

E
q.

(6
.1
).

T
h
e
se
co
n
d
sp
li
tt
in
g
is

p
er
fo
rm

ed
w
it
h

q̄q
0 q̄

0 q
co
n
fi
gu

ra
ti
on

:
z q̄

0
=

1/
4,

⌘ q
0 q̄

0
=

10
,

 
=

0,
(6
.2
a)

q̄g
1
g 2
q
co
n
fi
gu

ra
ti
on

:
z g

2
=

10
�
1
6
,

⌘ g
2
=

10
,

 
=

0
.

(6
.2
b
)

T
h
es
e
co
n
fi
gu

ra
ti
on

s
ar
e
su
ch

th
at

th
e
se
co
n
d
sp
li
tt
in
g
h
ap

p
en

s
at

a
m
u
ch

sm
al
le
r
an

gl
e

th
an

th
e
fi
rs
t
gl
u
on

em
is
si
on

.
F
or

th
e
fi
rs
t
co
n
fi
gu

ra
ti
on

(g
1
!

q̄0
q0
),
w
e
ch
oo

se
a
z
fr
ac
ti
on

re
fl
ec
ti
n
g
th
e
ab

se
n
ce

of
so
ft

en
h
an

ce
m
en
ts
.

F
or

th
e
se
co
n
d

co
n
fi
gu

ra
ti
on

(e
m
is
si
on

of

g 2
fr
om

th
e
qu

ar
k,

w
el
l
se
p
ar
at
ed

in
ra
p
id
it
y
fr
om

g 1
)
w
e
fo
cu

s
on

a
ca
se

w
h
er
e
g 2

is

m
u
ch

so
ft
er

th
an

g 1
,
th
ou

gh
th
e
co
n
cl
u
si
on

s
ar
e
u
n
ch
an

ge
d
if
w
e
ta
ke

g 1
an

d
g 2

to
h
av
e

co
m
m
en

su
ra
te

tr
an

sv
er
se

m
om

en
ta
.
R
es
u
lt
s
ar
e
d
is
p
la
ye
d
in

F
ig
.
5.

T
h
ey

h
av
e
fe
at
u
re
s

si
m
il
ar

to
th
os
e
of

F
ig
.
4,

al
b
ei
t
w
it
h
a
ri
ch
er

st
ru
ct
u
re
.

–
25

–

sh
ow

er 
va

lue
 of

 |M
E2 |

sh
ow

er/
ex

ac
t |M

E2 |

colour

F
ig
u
r
e
1
3
:
S
iz
e
of

th
e
sp
in

co
rr
el
at
io
n
s
fo
r
se
qu

en
ce
s
th
at

in
vo
lv
e
b
ot
h
so
ft

an
d
co
ll
in
ea
r

sp
li
tt
in
gs
,
sh
ow

in
g
a
2
/
a
0
at

O
(↵

2 s
)
(t
w
o
le
ft
-h
an

d
p
lo
ts
)
an

d
O
(↵

3 s
)
(t
w
o
ri
gh

t-
h
an

d
p
lo
ts
).

T
h
e
F
ey
n
m
an

d
ia
gr
am

s
in
d
ic
at
e
th
e
se
qu

en
ce

of
sp
li
tt
in
gs

u
n
d
er

co
n
si
d
er
at
io
n
fo
r
al
l
ca
se
s.

W
e
co
n
si
d
er

th
e
az
im

u
th
al

d
i↵
er
en

ce
b
et
w
ee
n
th
e
p
la
n
e
d
efi

n
ed

by
th
e
p
ri
m
ar
y
so
ft
sp
li
tt
in
g

w
it
h
m
om

en
tu
m

fr
ac
ti
on

z
1
(z

2
),
an

d
th
e
p
la
n
e
d
efi

n
ed

by
th
e
se
co
n
d
(t
h
ir
d
)
sp
li
tt
in
g
w
it
h

m
om

en
tu
m

fr
ac
ti
on

z
c
.
T
h
e
co
lo
u
r
in
d
ic
at
es

th
e
si
ze

of
a
2
/
a
0
as

p
re
d
ic
te
d
by

th
e
sh
ow

er
.

B
la
ck

li
n
es

in
d
ic
at
e
co
n
st
an

t
va
lu
es

fo
r
th
is

ra
ti
o,

an
d

ar
e
ob

ta
in
ed

by
u
si
n
g
cr
os
si
n
g

re
la
ti
on

s
in

th
e
m
at
ri
x
el
em

en
ts

ca
lc
u
la
te
d
in

R
ef
.
[4
5]

fo
r
fi
n
al
-s
ta
te

co
n
fi
gu

ra
ti
on

s.

sp
li
ts

co
ll
in
ea
rl
y
as

g
1
!

g
g
(fi
rs
t
p
lo
t)

or
g
1
!

q
q̄
(s
ec
on

d
p
lo
t)

w
it
h
m
om

en
tu
m

fr
ac
ti
on

z
c
.
W
e
sc
an

ov
er

th
e
ra
p
id
it
y
y
1
of

gl
u
on

g
1
re
la
ti
ve

to
th
e
q
q̄
sy
st
em

b
et
w
ee
n
�
2
<

y
1
<

2,

an
d
ov
er

th
e
en

er
gy

fr
ac
ti
on

z
c
of

th
e
em

it
te
d
p
ar
to
n
(g

or
q
).

S
p
in

co
rr
el
at
io
n
s
ar
e
in

th
is

ca
se

in
d
ep

en
d
en
t
of

th
e
ra
p
id
it
y
of

th
e
so
ft

gl
u
on

.2
5
T
h
e
sp
in

co
rr
el
at
io
n
s
ar
e
ag

ai
n

m
ax

im
al

in
ab

so
lu
te

si
ze

w
h
en

th
e
en

er
gy

fr
ac
ti
on

of
th
e
gl
u
on

is
sh
ar
ed

eq
u
al
ly

b
et
w
ee
n

th
e
tw

o
fi
n
al
-s
ta
te

p
ar
to
n
s.

A
m
or
e
in
te
re
st
in
g
p
at
te
rn

ap
p
ea
rs

at
O
(↵

3 s
)
as

d
is
p
la
ye
d
in

th
e
tw

o
ri
gh

tm
os
t
p
an

el
s

of
F
ig
.
13

.
In

th
is

ca
se

w
e
st
u
d
y
th
e
az
im

u
th
al

co
rr
el
at
io
n
s
b
et
w
ee
n
th
e
fi
rs
t
an

d
th
ir
d

em
is
si
on

.
T
h
e
fi
rs
t
gl
u
on

em
is
si
on

is
n
ow

fi
xe
d
at

y
1
=

1
w
it
h
an

en
er
gy

fr
ac
ti
on

z
1
=

10
�
4
,

w
h
il
e
w
e
sc
an

th
e
ra
p
id
it
y
of

a
se
co
n
d
gl
u
on

em
is
si
on

b
et
w
ee
n
�
2
<

y
2
<

2
w
it
h
z
2
=

10
�
8
,

w
h
ic
h
th
en

sp
li
ts

co
ll
in
ea
rl
y.

T
h
e
tw

o
so
ft
gl
u
on

s
ar
e
em

it
te
d
at

d
i↵
er
en
t
az
im

u
th
al

an
gl
es
,

�
 
1
2
=

1.
B
ec
au

se
w
e
fi
x
�
 
1
2
,
th
e
an

al
yt
ic
al

fo
rm

fo
r
th
e
az
im

u
th
al

co
rr
el
at
io
n
s
n
ee
d
s

to
b
e
ex
te
n
d
ed

re
la
ti
ve

to
E
q.

(6
.6
),
an

d
n
ow

re
ad

s

d
�

d
�
 
1
3
/

a
0

✓
1
+

a
2

a
0
co
s(
2�

 
1
3
)
+

b
2

a
0
si
n
(2
�
 
1
3
)◆

.
(6
.7
)

W
e
p
lo
t
ju
st

th
e
ra
ti
o
a
2
/
a
0
an

d
se
e
th
at

it
is

en
h
an

ce
d
w
h
en

th
e
se
co
n
d
gl
u
on

is
em

it
te
d

w
it
h
a
la
rg
er

ra
p
id
it
y
d
i↵
er
en

ce
w
it
h
re
sp
ec
t
to

th
e
fi
rs
t
gl
u
on

,
an

d
w
h
en

it
s
en

er
gy

fr
ac
ti
on

is
sh
ar
ed

eq
u
al
ly

b
et
w
ee
n
th
e
ch
il
d
re
n
(z

c
=

0.
5)
.

F
in
al
ly
,
w
e
al
so

ch
ec
k
th
e
sp
in

co
rr
el
at
io
n
s
at

O
(↵

3 s
)
fo
r
co
ll
in
ea
r
sp
li
tt
in
gs
.
W
e
co
n
-

si
d
er

tw
o
co
n
fi
gu

ra
ti
on

s:
(i
)
on

e
b
ac
kw

ar
d
s
sp
li
tt
in
g
fo
ll
ow

ed
by

tw
o
fi
n
al
-s
ta
te

em
is
si
on

s,

an
d
(i
i)
tw

o
b
ac
kw

ar
d
s
sp
li
tt
in
gs

on
op

p
os
it
e
h
em

is
p
h
er
es

fo
ll
ow

ed
by

on
e
fi
n
al
-s
ta
te

sp
li
t-

ti
n
g.

F
or

ca
se

(i
)
w
e
co
n
si
d
er

b
ot
h
q
q̄
!

Z
an

d
g
g
!

H
,
w
h
er
ea
s
fo
r
ca
se

(i
i)

w
e
on

ly

2
5
A

p
u
re
ly

co
ll
in
ea
r
C
ol
li
n
s-
K
n
ow

le
s
al
go

ri
th
m

w
ou

ld
in

ge
n
er
al

n
ot

co
rr
ec
tl
y
re
p
ro
d
u
ce

th
is
p
at
te
rn

[4
6]
.

–
39

–

spin

A
cc

ur
at

e 
P

S
: b

ey
on

d 
la

rg
e-

N
c

✓12,3

z1 = (1� z)zp
✓12 z2 = (1� z)(1� zp)

z3 = z

Figure 7: The diagram representing gluon decay to a qq̄ pair, where the quark from the

gluon decay is either identical or non-identical to the initiating quark.

z1 = 1� z

✓1,23

z2 = z(1� zp)

✓23
z3 = zzp

Figure 8: The diagram representing the gluon emission C
2
F
channel.

Following the definition of the inclusive emission probability (2.10) we obtain:

KR
q [Gq, Gg] =

X

(A)

1

S2

Z
d�(A)

3 P
(A)
1!3

⇢
Gf1(x zp (1� z), t1,2)Gf2(x (1� zp) (1� z), t1,2)

⇥Gq(x z, t12,3)�Gf12(x (1� z), t12,3)Gq(x z, t12,3)

�
�q(t)

�q(t1,2)

+

Z
d�(B)

3 P
(B)
1!3

⇢
Gg(x (1� z), t1,23)Gg(x z (1� zp), t2,3)

⇥Gq(x z zp, t2,3)�Gg(x (1� z), t1,23)Gq(x z, t1,23)

�
�q(t)

�q(t2,3)
⇥(t2,3 � t1,3) , (C.2)

where we have used the notation ti,j to indicate the value of the evolution time (2.1)

corresponding to the angle ✓i,j . Moreover, we have parameterised the integrands as 15

P
(A)
1!3 ⌘

(8⇡)2

s
2
123

↵
2
s(E

2
g
2(z) ✓212,3)hP̂ iCFCA ,CFTRnf ,CF (CF�CA/2) , (C.3)

P
(B)
1!3 ⌘

(8⇡)2

s
2
123

↵
2
s(E

2
g
2(z) ✓21,3)hP̂ i

C
2
F
. (C.4)

Here, P (A)
1!3 is parameterised according to the phase space depicted in Fig. 7, while P (B)

1!3 is

parameterised according to Fig. 8. The corresponding phase space measures, denoted by

d�(A,B)
3 in (C.2) are obtained from Eq. (6.1) by setting ✏ = 0 and performing the change of

variable (with the corresponding Jacobian) of Figs. 7, 8. The sum in Eq. (C.2) runs over

all the (A) colour channels of the type q ! f1f2q(q̄) defined in Eq. (C.3), and fi denotes

15We notice that the production of a qq̄q final state with identical flavours contributing to the CF (CF �
CA/2) is finite, and therefore does not factorise into the product of two splitting functions in the strong

angular ordered limit.
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Steps towards higher-order PS

More detail on PS + “the best of both worlds”, 

i.e. how to combine hard process + PS →            
    

see Silvia’s talk



Making use of all of this: pheno studies



An example: jet flavour
• What we want


• back to the start: we want to measure Higgs Yukawa couplings →       
H → bb(cc…) decay → need to measure “b-quarks”


• many (B)SM resonances decay to quarks/gluons → want to measure 
them


• The obvious problem

• quark and gluons are not asymptotic states… “what is a b-quark?”


• The “in principle” solution…

• find observables which are strongly correlated to “I had a b-quark in 

the hard process”, yet insensitive to IR physics. “Jet flavour”


• The “good” solution

• something you can compute, to high precision 

• something that experimentalists can measure, to high precision

• something that is flexible enough for a wide array of studies




A “jet flavour” for the modern era

20

FIG. 10. Stress-tests of the performance of the plain anti-kt algorithm (with net flavour summation, left column), the flavour-
kt,⌦ algorithm (middle left column), and the anti-kt algorithm with flavour neutralisation (with ↵ = 1, middle right column,
and ↵ = 2, right column). The stress-tests are performed in pp ! Z + q collisions with ptZ > 1TeV, as simulated with
Pythia 8.3 at parton level with multi-parton interactions disabled (enabled) on the upper row (lower row). As a function of
the jet radius parameter R, the plots show the fraction of leading jets that are multi-flavoured, i.e. whose flavour is neither
that of a gluon nor a single quark or anti-quark (red band), singly flavoured (blue band) and flavourless (green band). The key
observation is the large fraction of multi-flavoured jets with the standard anti-kt algorithm, which occur due to contamination
of the hard jet flavour from low-momentum particles. With the flavour-kt,⌦ algorithm, we see some reduction, while anti-kt
with IFN shows a further reduced rate, especially for ↵ = 2.

quark, blue) or multi-flavoured (neither flavourless or
singly-flavoured, red), as a function of the jet radius pa-
rameter R used in the clustering. We perform this com-
parison with Pythia at parton level, where the underlying
event is turned o↵ (upper row), and with MPI turned on
(lower row). From left to right, the columns show results
with the standard anti-kt algorithm, flavour-kt,⌦ (↵ = 2),
and anti-kt with our IFN algorithm for two values of
↵ = {1, 2} (and ! = 3�↵). A first point to observe is the
large multi-flavoured contribution for the plain anti-kt al-
gorithm, about 14% at R = 0.4 without MPI, increasing
to 19% with MPI. Increasing R substantially worsens the
situation with over 40% multi-flavoured jets for R = 1
when MPI is on.

Flavour-kt,⌦ improves the situation somewhat, giving
a multi-flavoured contribution of 5% (10%) with MPI o↵
(on) at R = 0.4. The anti-kt algorithm with IFN brings
a more substantial improvement, yielding 2% (4%) for
↵ = 1 and 1.5% (3%) for ↵ = 2.16

Examining instead the unflavoured (“gluon”) jet frac-
tions, we find that all flavour algorithms give a ⇠ 4%

16 For the CMP⌦ algorithm there is freedom in how one extends
it to multi-flavoured events, and accordingly we defer study of
multi-flavoured events with that algorithm to future work.

gluon-jet fraction at R = 0.4, relatively una↵ected by
the presence of MPI. This figure is important to keep
in mind for quark/gluon discrimination studies [48]: the
fact that a jet was initiated by a quark in Pythia does not
mean that the corresponding jet observed after showering
is always a quark jet. In particular, Fig. 10 implies that if
one is attempting to tag gluon-jets and reject quark-jets,
and one is using Pythia’s Z + q and Z + g samples as
the sources of quark and gluon jets, then even a perfect
gluon tagger will still show an acceptance of about 4%
on the Z + q sample.

Ultimately, we would argue that the “truth” flavour
labels should be derived not from the generation pro-
cess, but by running a jet flavour algorithm such as anti-
kt+IFN. Nevertheless the anti-kt+IFN labelling remains
subject to some ambiguities, and the multi-flavoured jet
fraction discussed above is probably a good measure of
those ambiguities. As a future direction, one might wish
to investigate whether one can develop jet flavour algo-
rithms that further reduce the multi-flavoured jet frac-
tion, while maintaining other good properties.

b-quark

flavourless

contamination

EXP 😀 


TH ☹

EXP ☹ 


TH 😀 !!!NEW!!!



A final disclaimer: only a subset of 
what the group is doing, 

more stuff going on 

(heavy-ions, IR subtractions, non-
perturbative effects, Higgs physics…) 

If you want to hear more: ask us/
come to our Friday 1pm-2pm 
Journal Club (also on zoom)



KEEP

Thank you very much for your attention



From “nice” theories to real-life QCD: issues

“Nice” ≣ N=4 sYM, in the planar limit

Issue: QCD is non (dual) (super) conformal → most cool N=4


Issue: EW particles → leading-Nc ≠ planar

N2c N2c x [nf/Nc]



From “nice” theories to real-life QCD: issues

“Nice” ≣ N=4 sYM, in the planar limit

Issue: QCD is non (dual) (super) conformal → most cool N=4


Issue: EW particles → leading-Nc ≠ planar

N2c N2c x [nf/Nc]

No parametric enhancement of the “simple” contributions



Beyond leading colour: 2
Even in pure QCD: sub-leading Nc can be enhanced 

in regions of the phase-space

Figure 13. NNLO LC (blue) and FC (red) predictions of the triple di↵erential dijet distributions
normalized to the FC prediction.

and leads to a substantial reduction of theory uncertainties to a residual level of ±5% on

most distributions. The non-perturbative e↵ects are most pronounced at low pT,avg, while

electroweak e↵ects increase towards high pT,avg.

Figure 13 compares the FC and LC predictions at NNLO. As before, the LO and NLO

coe�cients are included in full colour, such that the truncation applies only to the NNLO

coe�cient. In contrast to the single jet inclusive and dijet double di↵erential cross sections,

discussed in Sections 3 and 4 above, the SLC contributions are sizable and non-uniform.

They typically enhance the LC predictions by about 5% at low pT,avg, their numerical

contribution decreases towards larger values of pT,avg. For central yb (upper row), the SLC

corrections change sign, such that the FC predictions are below the LC predictions for the

highest pT,avg bins. The LC and FC predictions are only marginally consistent with each

other within the NNLO scale uncertainty.

The substantial SLC e↵ect on the NNLO coe�cient d��NNLO is quantified in Fig-

ure 14, which compares the LC and FC predictions for this coe�cient. The e↵ect is most

pronounced at low pT,avg, where LC represents only 40% of the FC result in in the lowest

y
⇤ bins, and typically around 60–70% in the other bins. With increasing pT,avg the LC/FC

– 20 –

FC

[Chen, Gehrmann, Glover, Huss, Mo (2022)]

5%
LC

2L 1L TNNLO



In some cases: 1/Nc2 x [iπ]2 → no longer suppressed

δNNLO/NLO: 3%

Beyond leading colour: 3

x

VS

1/Nc2



In some cases: 1/Nc2 x [iπ]2 → no longer suppressed

δNNLO/NLO: 3% δNNLO/NLO: up to 1.5%

Beyond leading colour: 3

x

VS

1/Nc2 x π2

[Liu, Melnikov, Penin (2019)]



High scale: top quark effectsBoosted Higgs: theoretical picture
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σgg (pt>pt,cut)  =       1 fb                       1 ab
bb pt,cut ~ 600 GeV pt,cut ~ 1.5 TeV
ττ ~ 400 GeV ~ 1.2 TeV

2l2ν ~ 300 GeV ~ 1 TeV
γγ ~ 200 GeV ~ 750 GeV
4l ~ 50 GeV ~ 450 GeV

•Rates are low, but not 
insignificant

•Very sensitive to 
anomalous ggH 
coupling

•Can help resolving flat 
directions in ggH, ttH 
couplings 

•UNFORTUNATELY, WE 
ONLY KNOW IT AT LO

•NLO would require 
complicated 2-loop 
amplitudes, currently 
under investigation → 
J. Henn

similar problems for EW corrections, massive  W/Z

Elliptic sectors

m≠0



QCD amplitudes: how to compute them
No “N=4”-like tricks (nice integrands…) → “textbook” way ☹

𝒜 = ∑

𝒜 = ∑ ci × MIi

Integral reduction, IBPs
∫ddk ∂μ[vμℐ(k)] = 0

see T. Peraro’s talk



QCD amplitudes: how to compute them

𝒜 = ∑ ci × MIi
Computing MIs:  binary situation


1.They are GPLs → 😀


2.They are not (elliptic, CY…) → hic sunt leones 😞



QCD amplitudes: how to compute them

𝒜 = ∑ ci × MIi
Computing MIs:  binary situation


1.They are GPLs → 😀


2.They are not (elliptic, CY…) → hic sunt mansuefacti leones 

Lot of progress in understanding space of required functions, 
and in providing fast and reliable numerical evaluations

Multiple polylogarithms, as defined above, can be used to compute integrals I1, I2 and

I4. To this end, we need to write ln[(1 + z)/(1 � z)] and ln2[(1 + z)/(1 � z)] in terms of

MPLs, do a partial fractioning with respect to z and then integrate the resulting expressions

using eq. (D.1). If the required integrals are not in the canonical form, we integrate by

parts several times until the canonical form is reached. Applying this procedure to the

calculation of functions I1,2,4, we obtain a result written in terms of MPLs which depends

upon �/!max and �min. However, since both of these quantities only appear in the final

result because of the z-integration boundaries, it is relatively straightforward to derive an

expansion of the integrals I1,2,4 in these parameters.

As we have already mentioned, if an additional square root is present as is the case

for G3 and G5, it is not possible to write the result of the integration in terms of multiple

polylogarithms and the so-called elliptic multiple polylogarithms (eMPLs) are needed. Al-

though elliptic functions are well-known in the mathematical community, they are relatively

new to particle theorists and their application to particle physics problems was started be-

ing explored only recently. For further reading and additional references, we refer the

reader to refs. [35–40]. Below we give a brief review on elliptic multiple polylogarithms.

Elliptic curves are characterised by either a cubic or a quartic polynomial under the

square root. In the calculation of Feynman integrals, the quartic case is much more common

and for this reason we will focus on it in what follows. Similarly to MPLs, eMPLs [35, 36]

can be defined recursively using the following equation

E4 (
n1 ... nm
c1 ... cm ; z, ~q) =

zZ

0

dt n1(c1, t, ~q) E4 (
n2 ... nm
c2 ... cm ; t, ~q), (D.3)

where the recursion terminates with E4 (; t, ~q) = 1. We discuss the kernels  n(c1, t, ~q)

below. It is clear that these kernels should contain a square root of a quartic polynomial

that we denote as P4(x). To simplify the notation, we define an “elliptic curve”

y2 = P4(x) = (x� q1) (x� q2) (x� q3) (x� q4) . (D.4)

For our case, cf. eq. (C.12), all roots are real. We enumerate them in such a way that

q1 < q2 < q3 < q4, (D.5)

and define a vector ~q = (q1, q2, q3, q4). We note that the ordering eq. (D.5) applies if

s12 > 0, which is always the case in our situation.

In spite of the fact that we are interested in integration over the real axis, it is important

to consider the integration in definition eq. (D.3) in the complex plane. To define an analytic

function in the complex plane, we require three cuts and we choose them as cuts along the

real axis at the intervals [q4,+1], [q2, q3] and [�1, q1]. The integration contour is then

defined through the following values of the elliptic curve on these intervals [39]

y =
p
P4(x) =

p
|P4(x)|⇥

8
>>>>><

>>>>>:

�1 x  q1 _ x > q4,

�i q1 < x  q2,

1 q2 < x  q3,

i q3 < x  q4.

(D.6)
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…ask the experts in the audience!



QCD amplitudes: status

2→2 scattering:

Form factor:

4 
lo

op
s

2 
lo

op
s

2→3:

2→n≥4: 1-loop, numerical

Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, 

Steinhauser (2022) 

OpenLoops, Collier, MadLoops, Recola, GoSam, 
Ninja, Blackhat, Rocket… up to 20 (!) gluons 

[Abreu, Badger, Brønnum-Hansen, Bargiela, Borowka, 
Buccioni, Chawdhry, Chen, Chicherin, Czakon, de 
Laurentis, Dormans, Duhr, Dunbar, Febres-Cordero, 
Frellesvig, Gambuti, Gehrmann, Gluza, Hartanto, 
Heinrich, Henn, Ita, Jones, Jehu, Kajda, Kosower, Liu, 
Lo Presti, Manteuffel, Ma, Maître, Mitev, Mitov, Page, 
Peraro, Perkins, Poncelet, Schabinger,  Sotnikov, 
Tancredi, Usovitch, Wasser, Weinzierl, Zhang…]

[Bargiela, Chakraborty, FC, von Manteuffel, 
Tancredi]

3 
lo

op
s



QCD amplitudes: status
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QCD amplitudes: status

2→2 scattering:

Form factor:

NEW: fast and efficient basis 
functions with one of-shell 
leg, planar and non-planar
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From amplitudes to phenomenology
A glimpse of recent results: exploring the 2→3 frontier

3

inclusive [fb]
K

inc exclusive [fb]
K

exc

�LO 213.2(1)+21.4%�16.1% -
213.2(1)+21.4%�16.1% -

�NLO 362.0(6)+13.7%�11.4% 1.7 249.8(4)+3.9(+27)%�6.0(�19)% 1.17

�NNLO 445(5)+6.7%�7.0% 1.23 267(3)+1.8(+11)%�2.5(�11)% 1.067

TABLE I. Fiducial cross sections for pp ! `+⌫bb̄ produc-

tion at the LHC with p
s = 8 TeV at LO, NLO and NNLO

for both inclusive (inc) and exclusive (exc) final states. The

corresponding K factor is defined as K = �
N(n)

LO/�
N(n�1)

LO .

The statistical errors are shown for the central predictions.

Scale uncertainties for the exclusive predictions are provided

using both the standard 7-point scale variation and uncor-

related prescription of Ref. [47]. The latter is quoted inside

parentheses in the error estimates.
varied by a factor of 2 around HT, while satisfying the

1/2  µR/µF  2 constraint.
Based on the number of jets required in the final states,

we can define the following configurations for the NLO

and NNLO predictions:• inclusive (inc): at least 2 b-jets;
• exclusive (exc): exactly 2 b-jets and no other jets.

Näıve scale variation of the exclusive prediction may lead

to an underestimation of the scale uncertainties [47].

Hence, for the exclusive configuration, we use also the

uncorrelated prescription of Ref. [47], in addition to the

7-point scale variation.In Table I, we present numerical results for the fiducial

cross section for the inclusive and exclusive configurations

at di↵erent perturbative orders. As observed in the pre-

vious studies [9, 14], the NLO QCD corrections are large

in the case of the inclusive phase space. In our calcula-

tion this amounts to about 70% corrections. The jet veto

in the exclusive selection reduces the NLO QCD correc-

tions to a moderate 17%. A similar observation holds

at NNLO QCD, where we find a positive correction of

23% in the inclusive and 6.7% in the exclusive case. The

NNLO QCD corrections are smaller than the NLO QCD

corrections in both cases indicating perturbative conver-

gence. In that respect, by using the scale dependence

as the canonical way to estimate the uncertainties from

missing higher orders, we conclude that theoretical un-

certainty reduces with inclusion of higher order terms.

However, for the inclusive phase space, the NLO correc-

tions are significantly larger than the LO scale depen-

dence. The situation at NNLO QCD slightly improves,

but the corrections are still only barely covered by the

NLO scale band. For the exclusive case, the NLO cor-

rections are within the LO band, however the estimated

uncertainty from the 7-point scale variation is compara-

tively small, only 5%. The NNLO corrections here are

also smaller, but are well outside the NLO scale uncer-

tainty, indicating that the NLO scale dependence is un-

derestimated. This motivates the alternative prescrip-

tion of Ref. [47] to estimate theory uncertainties, taking

into account the jet veto e↵ect. The uncertainties result-

ing from this prescription are shown in the parentheses

and are significantly larger. The higher order corrections

fall well within the uncertainty bands, implying that this

method is more reliable, but also quite conservative.

The double virtual corrections, which have been in-

cluded only in the leading colour approximation, deserve

an additional comment. For the inclusive setup, we find

that the contribution of Eq. (4) to the cross section is

about 5%. In the exclusive case, the Born configurations

are una↵ected by the jet veto, but a fraction of the hard

radiative corrections are suppressed. This leads to an en-

hancement of the sensitivity to the double virtual matrix

element, which contributes ⇠ 10% of the fiducial cross

section in this case. The näıve expectation for the sub-

leading colour e↵ects is that they are about 10% of the

double virtual matrix element, implying that potential

corrections to the fiducial cross section would be about

1% (0.5%) for the exclusive (inclusive) case.

FIG. 1. The charged lepton’s transverse momentum distri-

bution. The upper panel shows the absolute predictions for

the inclusive and exclusive selection at di↵erent perturbative

orders. The middle panel shows the inclusive cross sections as

a ratio with respect to the central NLO prediction, with the

coloured bands indicating the 7-point scale variation. The

lower panel shows the same ratio for the exclusive configu-

ration. Here, the coloured bands correspond to the decorre-

lated scale variation, and the hashed bands to the standard

7-point variation. The vertical bars indicate the statistical

uncertainty.

NNLO QCD corrections to event shapes at the LHC

Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet, JHEP 03 (2023) 129
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[Hartanto, Poncelet, Popescu, Zoia (2022)] 

[Alvarez, Cantero, Czakon, Llorente, 

M
itov, Poncelet (2023)] 

A rich phenomenology, to be explored



QCD amplitudes: some open questions
Some obvious questions: 

•better ways of approaching QCD amplitudes

•how to get more complicated ones (e.g. 5pt, 2 legs off-shell 
→ di-boson) 



QCD amplitudes: some open questions

Perhaps less obvious questions:

•are we really minimising non-physical information?


𝒜 = 𝒵IR𝒜IR−finite
[Structure: see G. 
Gambuti’s talk]

what we 
compute Universal IR 

divergences. 
Cancel against 
real emission 

(KLN)

Genuine “non-trivial”  
information

• ZIR: ambiguous. “Optimal” choice?


• In simple cases, AIR-finite much simpler 
than A → accident or hint?


• Would likely require a better 
understanding of (quasi) soft/collinear 
regions



QCD amplitudes: some open questions

Perhaps less obvious questions:

•are we choosing the right MIs?
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One-loop amplitudes for e +e-  to four partons 
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Abstract 

We present the first explicit formulae for the complete set of one-loop helicity amplitudes 
necessary for computing next-to-leading order corrections for e+e - annihilation into four jets, for 
W, Z or Drell-Yan production in association with two jets at hadron colliders, and for three-jet 
production in deeply inelastic scattering experiments. We include a simpler form of the previously 
published amplitudes for e+e - to four quarks. We obtain the amplitudes using their analytic 
properties to constrain their form. Systematically eliminating spurious poles from the amplitudes 
leads to relatively compact results. @ 1998 Elsevier Science B.V. 

PACS: 12.38.-t; 12.38.Bx; 13.38.-b; 13.87.-a 
Keywords" Next-to-leading order corrections; Multi-jet production 

1. Introduct ion  

The discovery of  new physics  at colliders relies to a large extent  on our abili ty to 
unders tand  the kn o wn  physics  producing  the bulk of the data. For processes involving 
hadronic jets,  perturbative QCD predict ions are required. Leading-order  calculat ions of- 
ten reproduce  the shapes of  dis tr ibut ions well but suffer from practical and conceptual  
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1L: “optimal” QCD MIs 
are not UT…
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numerator of coefficients, when A3 appears in the denominator, alleviates the amplitudes' 
spurious singularities as /13 --~ 0. 

A p p e n d i x  B .  I n t e g r a l  f u n c t i o n s  a p p e a r i n g  in  a m p l i t u d e s  

We collect here the integral functions appearing in the text, which contain all loga- 
rithms and dilogarithms present in the amplitudes. Most of the functions have already 
appeared in previous papers [ 17,10], but for completeness we list them all in this ap- 
pendix. Except for the contribution of the top quark to vacuum polarization contributions 
and to the axial-vector contribution A~ x, all internal lines are taken to be massless. The 
following functions arise from box integrals with one external mass: 

ln(r)  Lo(r) + 1 
L 0 ( r ) -  1 - r '  L l ( r ) -  1 - r  ' 

77 -2 
L s _ t ( r l , r 2 ) = L i 2 ( 1 - r l )  + L i z ( 1 - r 2 ) + l n r l  l n r 2 - - -  

6 '  
1 

Lso(rj ,  r2) - Ls_j (r l ,  r2) , 
(1 - rl - r2) 

1 
LSl(r l , r2)  - [Ls0(rt ,r2) + L0(rl)  4, L0(r2)] , (B.1) 

(1 - rl - r2) 

where the dilogarithm is 

Liz(x) = - [ dy ln( 1 - y) (B.2) 
J Y 
0 

The function Ls- i  is simply related to the scalar box integral with one external mass, 
evaluated in six space-time dimensions where it is infrared- and ultraviolet-finite. The 
above functions have the property that they are finite as their denominators vanish. 
Generalizations of the Lso and Lsl functions to the case of box integrals with two or 
more external masses have been presented in Ref. [38]. 

The box function analogous to Ls_l, but for two adjacent external masses, is 

Ls2_mlh(s,t;m~,m~)=-Li2(1-m~)-Li2 (1 - ~ )  

2 In2 + ~ In In 

1 m 1 2 ~,m 4- ~(s-m~-m~)4. I~ (s, mZ,m2), (B.3) 

where 13m is the three-mass scalar triangle integral. This integral vanishes in the ap- 
propriate 'back-to-back' kinematic limit. We also employ a version of this box function 
with 13m removed, 

Guiding principle: singularity 
structure of the QCD amplitude 

(which is not uniform 
transcendental…)
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Amplitude techniques: more general
A “revolution” in precision phenomenology: reverse unitarityNuclear Physics B 646 (2002) 220–256
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Higgs boson production at hadron colliders in
NNLO QCD

Charalampos Anastasiou, Kirill Melnikov
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Abstract

We compute the total cross-section for direct Higgs boson production in hadron collisions at
NNLO in perturbative QCD. A new technique which allows us to perform an algorithmic evaluation
of inclusive phase-space integrals is introduced, based on the Cutkosky rules, integration by parts and
the differential equation method for computing master integrals. Finally, we discuss the numerical
impact of the O(α2s ) QCD corrections to the Higgs boson production cross-section at the LHC and
the Tevatron.
 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The Higgs boson is currently the only missing particle in the minimal Standard Model
(SM) of electroweak interactions. Its discovery will be one of the final steps toward the
experimental verification of the SM, and will provide useful input for detailed studies of
the mass generation mechanism and for physics beyond the SM.
Direct searches at LEP restrict the Higgs boson mass to be greater than 114.1 GeV [1],

while a global fit to precision electroweakmeasurements [2] favors a value around 90 GeV.
In addition, the requirement that the SM remains perturbative up to relatively high energy
scales sets an upper bound at approximately 1 TeV [3]. Although the above evidence is not
completely conclusive, it indicates a relatively light Higgs boson which could be observed
at either the Tevatron or the LHC. At both of these facilities, gluon fusion through top-quark
loops is expected to be the dominant Higgs production mechanism. All other channels,
such as vector boson fusion qq → Hqq and associated Higgs production qq̄ ′ → HW , are

E-mail addresses: babis@slac.stanford.edu (C. Anastasiou), melnikov@slac.stanford.edu (K. Melnikov).

0550-3213/02/$ – see front matter  2002 Elsevier Science B.V. All rights reserved.
PII: S0550-3213(02)00837-4
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rank and complexity depends on the number of loops and kinematic variables of the
integral in question. The Mellin–Barnes representation [13] and the differential equation
method [11] can be used to evaluate master integrals explicitly.

3.2. Reduction of phase-space integrals

In this subsection we extend the application of the above techniques to calculate phase-
space integrals for inclusive cross-sections. To the best of our knowledge the method we
present is new, however, a somewhat related discussion has been given earlier in [25].
To illustrate our method, we consider the following double-real contribution at NNLO:

(16)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

∼
∫ ddq1 ddq2 δ(q21 )δ(q

2
2 )δ(q

2
H − m2

H)[· · ·]
[(qH − p1)2]2[(q2 − p2)2]2

.

Using the Cutkosky rules [14], we can replace the delta-functions in the above integral by
differences of two propagators:

(17)2iπδ
(

p2 − m2)→ 1
p2 − m2 + i0

− 1
p2 − m2 − i0

.

The r.h.s. of Eq. (16) is now equal to a forward scattering diagram:

(18)=

where a cut propagator should be replaced by the r.h.s. of Eq. (17).
We have exchanged the square of a Born amplitude for a two-loop diagram, in contrast

to the usual application of the Cutkosky rules. We do this in order to utilize IBP and LI
relations between multi-loop integrals. The phase-space integrals can then be evaluated in
the same algorithmic fashion as the multi-loop integrals.
We begin our calculation by summing over the colors and spins of the external particles

in the cut two-loop integral on the right-hand side of Eq. (18). The original diagram is
then expressed in terms of a large number of scalar two-loop integrals to which the same
cutting rules apply. Crucially, we can use the IBP method to reduce the cut scalar integrals.
This is a consequence of the fact that the delta-function in Eq. (17) is represented in a very
simple manner by the difference of two propagators with opposite prescriptions for their
imaginary parts. We derive the IBP equations by integrating over total derivatives which
act on the propagators of the cut scalar integrals. The prescription for the imaginary part of
the two propagators in the r.h.s. of Eq. (17) is irrelevant for the differentiation. Therefore
the IBP relations for the two descendants of these two terms have the same form as the
IBP relations for the original integral without the cut. It is then allowed to commute the
application of IBP reduction algorithms with the application of the Cutkosky rules.
After the IBP reduction, the original phase-space integral is expressed in terms of a

small number of master integrals cut through the same three propagators as the initial
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Maps phase-space integration into loop integrals → 
amplitude technology



Amplitude techniques: more general

Dilepton Rapidity Distribution in the Drell-Yan Process
at Next-to-Next-to-Leading Order in QCD

Charalampos Anastasiou,1 Lance Dixon,1 Kirill Melnikov,2 and Frank Petriello1

1Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309, USA
2Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA

(Received 25 June 2003; published 31 October 2003)

We compute the rapidity distribution of the virtual photon produced in the Drell-Yan process through
next-to-next-to-leading order in perturbative QCD.We introduce a powerful new method for calculating
differential distributions in hard scattering processes. This method is based upon a generalization of the
optical theorem; it allows the integration-by-parts technology developed for multiloop diagrams to be
applied to noninclusive phase-space integrals, and permits a high degree of automation. We apply our
results to the analysis of fixed-target experiments.

DOI: 10.1103/PhysRevLett.91.182002 PACS numbers: 12.38.Bx, 13.85.Qk

The production of lepton pairs in hadronic collisions,
known as the Drell-Yan (DY) process [1], was the first
application of parton model ideas beyond deep inelastic
scattering. Because of its clean theoretical interpreta-
tion in terms of quark-antiquark annihilation into a vec-
tor boson, and large event rates, the DY process has been
studied extensively and will continue to be investigated at
both the Tevatron and the Large Hadron Collider (LHC).
The DY process provides valuable information about par-
ton distribution functions (pdfs), enables measurements
of the production rates and masses of W and Z bosons,
and furnishes a sensitive test for many varieties of new
physics, such as the additional gauge bosons that appear
in many extensions of the standard model. It will also be
used for the more prosaic purpose of monitoring partonic
luminosities at the LHC.

Despite the importance of the DY process and the sig-
nificant amount of work devoted to its description, the
calculation of higher order QCD corrections has pro-
ceeded slowly. The next-to-leading order (NLO) QCD
corrections to the total cross section, and the xF and
rapidity distributions, were calculated nearly 25 years
ago [2]; the next-to-next-to-leading order (NNLO) cor-
rections to the total cross section were obtained 11 years
later [3]. No complete calculation of the NNLO QCD
corrections to any differential distribution has been per-
formed, although partial results exist [4].

Recently, the NNLO virtual corrections to several
interesting hard scattering processes in QCD have been
computed [5]; however, the calculation of real emission
contributions, required for complete NNLO predictions,
is still in progress. These contributions entail a careful
analysis of perturbative multiparticle final states in ge-
neric hard scattering events.While it is certainly useful to
solve this problem in complete generality, it is also useful
to study specific examples, especially those most urgently
needed in experimental analyses. It is possible to develop
alternative methods of calculation which can be used to
compute basic differential distributions. In Refs. [6,7] it

was shown how to combine the optical theorem with
multiloop computational methods to compute phase-
space integrals. In this Letter we present a nontrivial
application of these ideas; we compute the rapidity dis-
tribution of the virtual photon produced in the DYprocess
through NNLO in perturbative QCD.

We shall apply our results to the production of lepton
pairs in proton-proton (pp) collisions at center-of-mass
energies accessible to fixed-target experiments. The most
recent measurements come from Fermilab experiment
E866/NuSea, which measured the dimuon production
cross section in pp and proton-deuteron collisions at
!!!

s
p ! 40 GeV for muon invariant masses in the interval
4–16 GeV [8]. These experiments are sensitive to both the
x ! 1 components of the valence quark distribution func-
tions and the moderate x components of the sea quark
distribution functions of the proton. Neither of these
kinematic configurations are well constrained by other
data, so the E866 measurements provide valuable input to
a global pdf fit. The precision of the E866 measurement is
better than 10% per bin. Given the significant ("40%)
NLO corrections at such energies, the complete NNLO
computation is required. For E866 kinematics, Z boson
exchange is suppressed relative to photon exchange by
M2=M2

Z ! 1%, where M is the lepton pair invariant mass,
and will be neglected here.

The NNLO calculation is quite challenging techni-
cally. Existing techniques for computing phase-space in-
tegrals are incapable of handling problems of this
complexity. We introduce here a powerful new method:
we extend the optical theorem in such a way that the
calculation of differential distributions becomes possible
using techniques developed for multiloop calculations. To
achieve this, we represent the rapidity constraint by an
effective ‘‘propagator.’’ This propagator is constructed so
that when the imaginary part of the forward scatter-
ing amplitude is computed using the optical theorem,
the ‘‘mass-shell’’ constraint for the particle described
by this propagator is equivalent to the rapidity constraint
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in the phase-space integration. We then use the methods
described in Ref. [6] for computing inclusive cross
sections, keeping the fake particle propagator in the
loop integrals, and deriving the rapidity distribution as
the imaginary part of the forward scattering amplitude.

The production of a lepton pair in a high-energy had-
ronic collision occurs in two distinct steps: first, the
quarks and gluons from the colliding hadrons annihilate
to create a highly virtual timelike photon; then the pho-
ton decays into a pair of leptons. In the center-of-mass
frame, the two colliding hadrons have momenta P1;2 !
" !!!

s
p

=2#"1; 0?;$1#. A virtual photon of invariant mass M
produced in the collision has momentum P! !
"E;p?; pz#. Its energy and momentum are related by the
mass-shell condition E2 % p2

? % p2
z ! M2, while its ra-

pidity is defined as Y ! 1
2 ln&"E' pz#="E% pz#(.

We first compute the partonic hard scattering cross
sections, and then convolute them with the pdfs of the
colliding hadrons. The partonic rapidity distributions for
the hard scattering of partons i; j, with momentum p1 !
x1P1 and p2 ! x2P2, respectively, are obtained by inte-
grating the hard scattering matrix elements over the
phase space of the final state particles with the rapidity
and mass of the virtual photon kept fixed:

d"ij

2e2YdY
!

Z

d!fjMijj2#
"

e2Y % E' pz

E% pz

#

: (1)

The rapidity constraint can be rewritten using the incom-
ing parton momenta as

#
"

e2Y % E' pz

E% pz

#

! e%2Y#
"
P! ) &p1 % up2(

P! ) p1

#

; (2)

where u ! x1
x2
e%2Y . The simple Lorentz boost properties of

the rapidity are helpful at NNLO. In comparison to the
total cross section computation, only one additional di-
mensionless variable, u, is introduced. Computation of
the distribution in xF ! 2pz=

!!!

s
p

, for example, would
require two new variables.

At leading order in $s, the production of the virtual
photon occurs through the annihilation of a q "qq pair. Only
the virtual photon is produced in the collision, rendering
the phase-space integrations trivial. At higher orders in
$s, inelastic channels contribute. At O"$s#, for example,
we must consider also q "qq ! !*g and qg ! q!*. It is still
quite simple to perform these phase-space integrations
using standard techniques. At higher orders this approach
becomes impractical. We adopt instead the method of
Ref. [7], which can be applied efficiently at NNLO.

We first represent the # function in Eq. (2) as the
imaginary part of an effective propagator:

#"x# ! 1
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$
1

x% i0
% 1

x' i0

%

: (3)

Next we map the constrained phase-space integrals onto
forward scattering loop integrals [6]. We denote the dif-

ference of propagators with opposite i0 prescription, such
as that shown in Eq. (3), by a cut propagator; final state
particles on mass shell are also represented by cut propa-
gators. The # function constraint (2) becomes an uncon-
ventional propagator, linear in the loop momentum.

At NLO, we must consider integrals of the following
general form:
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where A1 ! k2 % M2 $ i0, A2 ! "k ' p1#2, A3 !
"k' p1 ' p2#2 $ i0, A4 ! "k' p2#2, and A5 ! k ) p1 %
uk ) p2 $ i0. The propagators A1, A3, and A5 should be
‘‘cut’’ according to Eq. (3), indicating that the corre-
sponding particles are on-shell. The propagators A1;...;5
are linearly dependent; we can therefore eliminate both
A2 and A4 from the integrand in Eq. (4) by partial
fractioning. Partial fractioning produces integrals with
either &1, &3, or &5 equal to zero.When the cutting rule (3)
is applied, such integrals vanish. All phase-space inte-
grals of the form of Eq. (4) can be reduced to a single
‘‘master’’ integral, I"1; 0; 1; 0; 1#. The fact that only par-
tial fractioning relations are required to perform this
reduction is specific to NLO; we will discuss a more
general reduction technique when we consider the
NNLO corrections.

We compute the virtual corrections to the leading order
production process q "qq ! !* in the standard fashion,
since the rapidity constraint leaves this calculation un-
affected. After combining the real and virtual correc-
tions and performing the collinear factorization, we
arrive at the LO and NLO results for the partonic rapidity
distributions [2], which we present here for completeness.

We write the partonic differential cross section for the
process i' j ! !*X, renormalized in the MS scheme, as
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where $s ! $s"M# is the strong coupling constant assum-
ing nf massless quark flavors. The renormalization and
factorization scales are set equal to M; the dependence on
both these scales can be restored using renormalization
group invariance.

At the lowest order in $s, the virtual photon can be
produced only in the collision of a quark and antiquark of
the same flavor. Therefore,
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(6)

where z ! M2=ŝs, ŝs is the partonic Mandelstam invariant,
and y ! &"u% z#="1% z#(="1' u#.

At NLO, the q "qq channel receives O"$s# corrections,
and the qg and "qqg channels contribute. We find
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“Observable”: constraint in the 
integration domain

Reverse unitarity trick still works, but 
generalised propagators (also: θ 
functions…)
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Can we understand the properties of these “generalised” 
Feynman integrals (e.g. regularity conditions to fix b.c. of diff. 
eq. etc)  



Amplitude techniques: more general
Understanding the structure of QCD amplitudes: crucial 
beyond amplitudes themselves

For example


• Soft/collinear regions: insight into large αs lnk(v≪1) contributions to the cross 
section. Starting from 2L: non-trivial limits in the non-planar sector [see G. 
Gambuti’s talk]


• Soft/collinear limits beyond leading power: insight into NP regime of QCD


• (Multi)-Regge limit: insight into physics of high-density QCD / NNLL important 
information for parton distribution functions at N3LO [see E.Gardi’s talk]


• Non-planar soft/collinear interplay at 2 loops and beyond: expose “Glauber” 
modes, responsible for potential breaking of collinear factorisation (foundation 
of perturbative QCD at hadron colliders!) [see G. Gambuti’s talk]

and many more!



“Precision”: back-of-the envelope

SM ~ 100 GeV

ΛNP

direct 

bounds

~ TeV

Typical modification to observable w.r.t. 
standard model prediction: 


δO ~ Q2/ΛNP 2 


Q ~ 100 GeV, ΛNP ≳ 1 TeV →

New physics at a heavy scale ΛNP

… also few percent: ~ α → SM at the quantum level (e.g. W-mass)

“Few percent” deviation from SM
Indirect probe for NP



Higgs couplings at a glance
Higgs sector: in many cases, SM to within ~10% or better
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The	Higgs	boson	Couplings
Results	interpreted	in	terms	of	Higgs	boson	coupling	strength	multipliers	$ in	
multiple	scenarios	

11

Coupling	with	quark	charm
ATLAS:	$c <	5.7	@	95%	C.L.

Generic	parametrization	with	coupling	strength	modifiers	for	W,	Z,	t,	b,	c*,	" and	µ	treated	independently

Universal	coupling	strength	modifiers	
$V (vector	bosons)	and	$F (fermions)
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Coupling	with	quark	charm

CMS:	1.1	<|$c|<	5.5	@	95%	C.L.

μ: starting to probe 
Higgs/matter 
interactions for 2nd 
generation family!

Charm: much more 
difficult


Lighter particles → 
new colliders



The Higgs potential: a long journey

Precision QCD@LHC – NNPDF meeting, September 2023Gavin Salam

Higgs potential — huge energy densities — yet to be experimentaly confirmed

9

V = λ(H†H − v2)2 → 2λv2h2 + 2λvh3 + λh4/4
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Predictions: back-of-the-envelope

SM ~ 100 GeV

ΛNP

direct 

bounds

~ TeV

Typical modification to observable w.r.t. 
standard model prediction: 


δO ~ Q2/ΛNP 2 


Q ~ 100 GeV, ΛNP ≳ 1 TeV →

Imagine BSM at a heavy scale ΛNP

… also few percent: ~ α → SM at the quantum level (e.g. W-mass)

“Few percent” deviation from SM
Indirect probe for NP



Chapter 2. Intersection Theory

where u(z) =
Q

i B
�i
i is a multi-valued function made of the Baikov polynomials,

therefore the function u(z) is a function specific to whatever configuration (family of
integrals) we are trying to decompose, and defines the space of Feynman integrals we
are considering. CR is an arbitrary contour with the only condition that the Baikov
polynomial vanishes on the boundaries of this Bi(@CR) = 0. 'L is a single-valued
differential form

'L(z) =
f(z)

z
n1
1 . . . z

nN
N

dz1 . . . dzN (2.3)

One big assumption that we make when computing these integrals is that the poles
present in 'L are regulated by u, so that the integral is well-defined over all space.
This is often violated in the case of Feynman diagrams, and we will present two
methods to overcome this obstacle later on, for now we assume that the poles are
regulated.

Now as we know that the Baikov polynomials vanish at the boundary of the
contour, we can write

0 =

Z

CR

d(u⇠L) =

Z

CR

du ^ ⇠L + ud⇠L (2.4)

for some differential (N � 1)-form ⇠L, where ^ is the wedge product. We can then
take a factor of u out of this

0 =

Z

CR

u

✓
du

u
^ ⇠L + d

◆
⇠L =

Z

CR

ur!⇠L (2.5)

where we have defined r! = d+ !^ and ! = d log u. Therefore we can write
Z

CR

u(z)'L =

Z

CR

u(z)('L +r!⇠L) (2.6)

So in this integral format, we can say that two differential N -forms 'L and '
0
L are

equivalent to eachother if '0
L = 'L +r!⇠L for some differential (N � 1)-form ⇠L. So

we have an equivalence relation

'L ⇠ 'L +r!⇠L (2.7)

The differential N -forms modulo this equivalence relation define the twisted cohomol-

ogy group H
N
! , and we denote elements of this vector space by h'L| 2 H

N
! . We can

therefore denote the integrals by

I =

Z

CR

u(z)'L(z) = h'L|CR] (2.8)
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where i, j = 1, . . . , ⌫. Now it is easy to find the coefficients ci in the expansion

h'L| =
⌫X

i=1

ci hei| (2.18)

by using the master decomposition formula

ci = h'L|eji (C�1)ji (2.19)

therefore in order to compute the coefficients we need to compute the intersection
numbers

hei|eji , h'L|eii , i, j = 1, . . . , ⌫ (2.20)

It’s worth reiterating that the basis for the vector space and the dual do not have to
be the same, we are free to choose a different basis for each, with the requirement that
they independently form a basis of each of the vector spaces. Just for convenience
here we will use the same basis for both. The final ingredient we need is a way to
actually compute these intersection numbers, which we will discuss now.

2.3 Computing intersection Numbers

To start, we will quote a formula for the intersection number of two differential 1-forms
'
(1)
L (z1) and '(1)

R (z1), given by [18], [19]
D
'
(1)
L

���'(1)
R

E
=

X

p2P1

Resz1=p

⇣
 

(p)
'
(1)
R

⌘
(2.21)

where P1 is the set of poles of !1 = @ log u(z1)
@z1

(including infinity), and  
(1)
p is the

solution to the differential equation

r! 
(p) = d 

(p) + !1 ^  (p) = '
(1)
L (2.22)

around the pole z1 = p. This may look complicated, but there is a simple way to
solve this differential equation, which is to write  (1)

p as an expansion in ⌧ = z1 � p

for each pole p

 
(p) =

maxX

k=min

↵k⌧
k (2.23)
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and we need to determine the minimum and maximum orders needed for this expan-
sion. These are given by

max = �ord
⇣
'
(1)
R

⌘
� 1 (2.24)

min = ord
⇣
'
(1)
L

⌘
+ 1 (2.25)

where we have expanded the differential forms in ⌧ and read off the lowest order
nonzero term in ⌧ . The first equality comes from the fact that we are interested
in the residue of  (1)

p '
(1)
R , so considering any higher order terms in  

(1)
p is futile as

they will not contribute to the residue. The second equality comes from studying the
differential equation, and realising that this is the lowest order term in ⌧ that can
contribute to  (1)

p , as any lower order terms will get a coefficient of zero when we solve
for the coefficients ↵k. Once we have expanded  (1)

p like this, we can then put it into
the differential equations and compare orders of ⌧ to calculate the coefficients ↵k, and
then put this into our formula for the intersection number and compute the residue. I
have written a code in Mathematica that takes two arbitrary 1-forms and the function
!1 and computes the intersection number between them, shown in appendix A.

Now we have looked at 1-form intersection numbers, we can now consider the case
of an intersection number between two 2-forms '(2)

L (z1, z2) and '
(2)
R (z1, z2), with the

function u(z1, z2). The key here is to consider the two variables separately, as the
formal definition for an intersection number is

h'L|'Ri =
1

(2⇡i)n

Z

X

'L ^ 'R (2.26)

for some contour X, and in general, the integral over X can be applied iteratively,
to one variable at a time. Therefore consider ordering the variables as {z1, z2} (the
choice of ordering is arbitrary, as we will see later), and we consider the inner space
corresponding to the z1 variable. We define the one form

! = d log u = !1dz1 + !2dz2 (2.27)

and we can find the dimensions of the inner space ⌫1 as the number of solutions to
the equation !1 = 0 for z1. With this we can define a basis of 1-forms in z1 on this
inner space

D
e
(1)
i

���,
���e(1)i

E
for i = 1, . . . , ⌫1, and expand our differential 2-forms in this

basis
D
'
(2)
L

��� =
D
�
(2)
L,i

��� ^
D
e
(1)
i

��� (2.28)
���'(2)

R

E
=

����(2)
R,i

E
^
���e(1)i

E
(2.29)
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