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Theories with NxN matrix degrees of freedom have 1/N expansion <-— useful at strong coupling

’ t Hooft applied this idea to QCD:

The strongly coupled theory is reformulated in terms of new perturbative degrees of freedom: 
these are strings: 

1/N expansion

Powers of N characterizes the topology:



AdS/CFT
AdS/CFT is an example of ’t Hooft’s gauge-string duality where the emergent strings living in a 
higher dimensional theory of quantum gravity.

gauge theory in 4D IIB String theory on AdS5 x S5

Relates bulk semi-classical gravity to strongly coupled quantum 
physics on the boundary

Black holes  and black branes play a distinguished role.  They behave 
like thermal systems with temperature and entropy.   

Useful for studying universal behavior in  strongly coupled QFT, 
e.g. hydrodynamics and chaotic phenomena 



NICA 

FAIRRHIC

Holography and Hydrodynamics at strong coupling

Use holography to probe qualitative behavior near the critical point of non-equilibrium, strongly coupled gauge theory  
at finite density 



Gravitational fluctuations Long wavelength deviations from equilibrium

Quasi normal mode spectrum Hydrodynamical modes (poles of the 
retarded Green’s function

Equations of motion=conservative laws 
+constitutive relations

(Son,Starinets, 2002)  





Classical chaos~ butterfly effect

Chaotic dynamics 

Black hole horizons exhibit the butterfly effect : small perturbation of the horizon area dramatically changes the dynamics

Chaos leads to simplifications, e.g. thermalization : 

Quantum Chaos ~ Spectrum of a chaotic Hamiltonian ``looks like” the 
spectrum of a random matrix 

The black hole density of states                                                 exhibits quantum chaos

(Saad, Shenker, Stanford)



Using black holes to probe quantum chaotic dynamics

Thermalization in a quantum chaotic system is described by a black hole that forms from the 
collapse of matter  

Entanglement dynamics of the boundary theory is described by a membrane  (Mezei)

Black holes also captures more sophisticated chaos indicators like quantum Lyapunov exponents 
and butterfly velocities (Mezei, Stanford 2016, Mezei, van der Schee 2020)



Pure Gravity as a quantum system

Full IIB string theory is dual to a very special quantum system (N=4 SYM).  We want to focus on universal 
behavior on the boundary : this is related to black holes, which are solutions of pure gravity

What is its quantum mechanical system dual of pure gravity?

A basic problem: action is unbounded due to the conformal mode problem. Also not clear which saddles to include (wormholes?) 

In 2D, the sum over geometries can be captured by summing over dense triangulations of a manifold (a la ’t Hooft ! )

In 3D or higher the naive simplicial approach to gravity fails:  the continuum limit of the 
triangulations give singular manifolds that don’t seem to have a gravity interpretation

???

We develop a holographic duality for 3d gravity, which gives new type of simplicial gravity 

(WIP  with Dan Jafferis, Liza Rozenberg, GW)



Euclidean gravity path integral should  includes sum over wormhole topologies.  The 
holographic dual is a random ensemble of Hamiltonians

Insights from 2D holography (SSS)

In 2D, the wormhole topology is needed to  recover the chaotic behavior of the spectral form factor



Pure AdS3 Gravity as an ensemble of CFT’s

Using insights from SSS, we define an ensemble of CFT2 data, given by the conformal dimensions and OPE 
coefficients 

The CFT data is constrained by crossing symmetry

In 2D there is also modular invariance: these are the equations of the conformal bootstrap.



Ensemble of approximate CFT’s

The rigid constraints suggests we should consider an ensemble of approximate CFT2 data.  Assume 
central charge c>>1, and only the vacuum as the light state.

Dilatation operator as a 
random matrix

parameterizes violation of 
crossing

is defined to be minimized on the solutions of the bootstrap .

We expand in           and let the path integral impose the constraints via the perturbative expansion

OPE coefficient as a 
random tensor 

The rigid constraints suggests we should consider an ensemble of approximate CFT2 data.  Assume 
central charge c>>1, and only the vacuum as the light state.  Truncate to finite N number of primaries



Ensemble of approximate CFT’s

The rigid constraints suggests we should consider an ensemble of approximate CFT2 data.  Assume 
central charge c>>1, and only the vacuum as the light state.  Truncate to finite N number of primaries

Dilatation operator as a 
random matrix

parameterizes violation of 
crossing

OPE coefficient as a 
random tensor 

’t Hooft diagrams for Cijk become triple line diagrams.  The perturbative sum becomes a sum over 3 
manifolds, reproducing 3d gravity ! 



Quartic potential and 3 manifolds

Tetrahedral /6JPillow

The Feynman rules build up 3 manifolds from these wormhole geometries.   Equivalently, they can be viewed as simplicial decompositions 

The Feynman rules build up 3 manifolds from these wormhole geometries.   Equivalently, they can be viewed as simplicial decompositions 



The chaotic dynamics of 2D conformal field theories is equivalent  by AdS3 gravity + wormholes

The punchline



In 2D the chaotic dynamics of conformal field theories is  equivalent  by AdS3 gravity + 
wormholes

The CFT ensemble gives a new formulation and interpretation of 3D  simplicial gravity

It may shed light on the conformal bootstrap and 3D TQFT involving irrational CFT’s



Quantum Chaos ~ Spectrum of a chaotic Hamiltonian ``looks like” the 
spectrum of a random matrix 

Classical chaos~ butterfly effect

Quantum Chaos

Black hole horizons exhibit the butterfly effect : small 
perturbation of the horizon area dramatically changes the 
dynamics

Chaos leads to simplifications, e.g. thermalization : 

The black hole density of states                                                 exhibits quantum chaos

It’s much easier to find the spectrum of a RMT then to diagonalize a 
complicated Hamiltonian (Wigner-Dyson)

(Saad, Shankar, Stanford)


