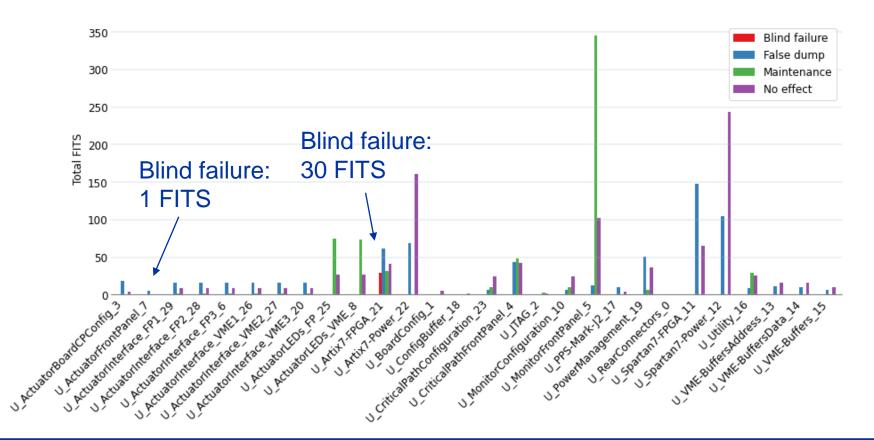
CIBAB FMECA

BISv2 Reliability Study Progress Meetings

List of contents

- 1. Summary statistics
- 2. End-effects' FITS in design pages
- 3. Blind failures
- 4. False dumps
- 5. Questions


Summary statistics

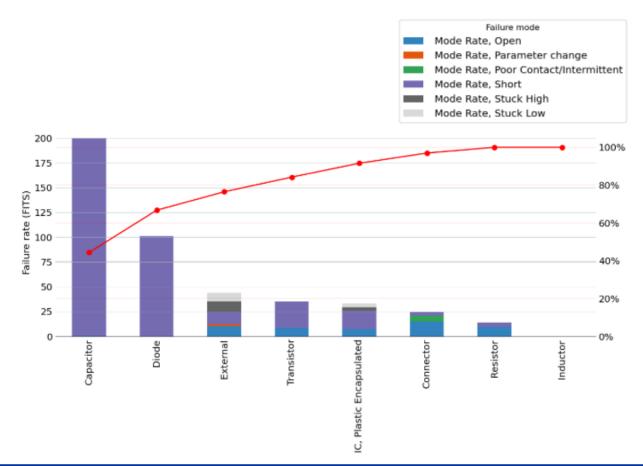
- Total number of components: 681
- Total FITS: 1,867 FITS
- Failure rates:
 - Blind failure rate: 31 FITS
 - False dumps: 451 FITS
 - Maintenance: 591 FITS
 - No effects: 794 FITS

End-effects' FITS in design pages

FITS of design pages Predicted number of failures in 10⁹ hours

Blind failure

Considered from a perspective of a single CIBAB. Failures within the red box preventing the signal from the CIBAB card go to TSU via the red arrow.


Blind failures Causes

- Short or stuck low of the Artix 7 FPGA: 11 FITS (each failure mode)
 - Comment on short: "Short between actuator output and GND -> equivalent to BP true"
 - Comment on stuck low: "Stuck low on actuator output = Beam permit TRUE"
- Parameter change of the oscillator OSC2 in Artix 7 page: 7.8 FITS
 - "Potentially if the timing constraints within the FPGA are not met anymore, though very unlikely because the BPL detection consists of two separate mechanisms + the PLL will become unlocked if it shifts too much. Probably False Dump then" – to be discussed
- Short of connectors J3, J4, J5 in Actuator Interface: 0.3 FITS each
 - Comment: "if short between FB and OUT?"
- Short of har-bus J20 in Rear Connectors: 0.02 FITS
 - Comment: "if short between FB and OUT?"

False dumps

- Individual components triggering a dump of the beam because of an error
- Top contributors:
 - Transistor FDS9926A, T2, short 35 FITS
 - Spartan 7 FPGA (open, short, stuck) 7.3 FITS
 - Oscillators (OSC1, OSC2) in the FPGA pages 6 FITS.
 - 4 diodes (D25-D28) 5.7 FITS.
 - Capactiors in the FPGA pages 3.7 FITS.
 - Artix-7 FPGA (open, stuck high) 3.6 FITS.

Transistor reliability In different standards on BC847BS example

STANDARD	FITS	MAIN PARAMETERS	COMMENTS
217PLUS	15.12	Type, temperature, electric stress	Assuming it is "bipolar, low frequency"
MIL-HDBK-217F	0.6	Application, quality, temperature, power and voltage, connection type, number of pints, theta case/ambient and theta junction case	With some not-exact parameters
TELCORDIA	0.12 – 0.87	Power, voltage, type, packaging, quality	Depending on quality factor
FIDES	10 – 38	Type, case, quality , experience. Placement, theta junction ambient, power	Depending on quality factors
MANUFACTURER	0.23	High Temperature Reverse Bias test	60% CL

Questions

- "Not sure if post mortem/preop check will check the state of this signal, probably not"
 - Should we take a specific approach? End-effect: "Maintenance"
 - Similar "post mortem could fail if PPS/MARK lost" (with an end-effect "false dump")

home.cern