

CMS Status

Matthew Nguyen LHCC Open Session February 28th, 2024

Laboratoire Leprince-Ringuet

Recent physics results

Preparation for 2024

Overview

Progress on Phase-2 upgrades

LHCC Open Session: CMS Status

CMS

LUM-22-001	Luminosity measurement in pp c
EXO-22-022	Search for new resonances deca
EXO-23-002	Search for soft unclustered energy
EXO-22-015	Search for new physics with eme
TOP-22-003	Search for baryon number violat
HIN-23-013	Observation of double-J/ ψ meso
BPH-23-002	Observation of the $\Xi_b^- \to \psi(2S)$

New results since last LHCC

- collisions at 13.6 TeV in 2022
- aying to pairs of highly merged photons
- gy patterns in proton-proton collisions at 13 TeV
- erging jets in proton-proton collisions at $\sqrt{s} = 13$ TeV
- tion in top production and decay
- on production in pPb collisions at 8.16 TeV
- Ξ^- decay and studies of $\Xi_{\rm b}^{*0}$ baryon
- + many more coming from spring conferences

Luminosity measurement in pp collisions at 13.6 TeV in 2022

Ε	Х

Source	Correction (%)	Uncertainty (%)
Calibration		
Beam current	3.4	0.2
Ghost and satellite charges	0.4	0.2
Orbit drift	0.1	0.1
Residual beam positions	0.0	0.3
Beam-beam effects	1.0	0.4
Length scale	-1.0	0.1
Factorization bias	1.0	0.8
Scan-to-scan variation	-	0.5
Bunch-to-bunch variation	-	0.1
Cross-detector consistency	-	0.4
Integration		
HFET OOT pileup corrections		0.2
Cross-detector stability		0.5
Cross-detector linearity		0.5
Calibration		1.2
Integration		0.8
Total	24	1.4

1.4% uncertainty

CMS-PAS-LUM-22-001

xtensive Van der Meer scan program + novel non-factorization analyses

Cross-detector stability (0.5%) & co-linearity (0.5%) with several luminometers

LHCC Open Session: CMS Status

4

Search for new resonances decaying to pairs of highly merged photons

Extended Higgs sectors predicted by many BSM theories with spin-0 particles X and ϕ with unknown masses

Probe range of $m_{X/}m_{\phi}$ where photons from ϕ overlap in ECAL

Merged diphoton candidates (Γ) identified & characterized w/ CNNs

ML model validated on $\eta \rightarrow \gamma \gamma$

Most sensitive search of its kind at the LHC

Search for soft unclustered energy patterns in pp collisions

SM

Hidden Valley models include a dark sector that extends the SM via new non-Abelian gauge group "Dark QCD" w/ large coupling above its confinement scale \rightarrow isotropic particle production Soft Unclustered Energy Patterns = high multiplicity, isotropic, low p_T tracks final state

QCD background subtracted using track multiplicity & sphericity in an extended ABCD method

Limits set in $T_{\rm D}$ - $m_{\rm S}$ - m_{ϕ} - $m_{{\rm A}'}$ parameter space

- T_D depends on dark confinement scale
- S = mediator particle
- ϕ = dark meson
- A' = dark photon

First dedicated SUEP search at the LHC

In this dark QCD scenario the mediator (X_{dark}) decays to a SM quark & a dark quark (Q_{dark})

Dark hadrons tend to decay into b quarks giving rise to emerging jets containing a large # of displaced vertices

Limits set for "unflavored" model where mediator couples only to one quark flavor and "flavor-aligned" model where three dark flavors couple to SM down-type quarks (d, s, b)

Search for new physics with emerging jets in pp collisions

Improved limits for unflavored scenario & first direct exclusion of flavor aligned scenario

Search for Baryon Number Violation (BNV) in top production & decay

LHC provides highest sensitivity for BNV processes involving top quarks Looking at dilepton final state: two oppositely charged leptons (e or μ) + one b-jet

single top BNV production

Improves previous top BNV bounds by orders of magnitude

TOP-22-003 to appear on arXiv

Observation of double-J/ ψ production in pPb collisions

Double Parton Scattering (DPS) of great interest, e.g., to probe flavor correlations in the parton distributions Should be enhanced in pA by large parton density & probe impact parameter dependence of nuclear PDFs

Upper limit on DPS corresponding to $\sigma_{\rm eff}$ > 1 mb (95% CL)

<u>CMS-PAS-HIN-23-013</u>

LHCC Open Session: CMS Status

Observation of $\Xi_{\rm b}^- \to \psi(2S) \Xi^-$ decay & studies of $\Xi_{\rm b}^{*0}$ baryon

10

Run 3 performance plots

LHCC Open Session: CMS Status

11

Readiness for 2024 data taking

Year-end technical stop activities

Two iRPC (RE-3/1) chambers

Installed some chambers of Phase-2 forward muon upgrades on the -z end

- Relocation of CMS control room into new building
- Preparation of Phase-2 infrastructure: CO₂ cooling, electricity, cranes, laser labs
- Consolidation of the magnet system to ensure operational stability
- Standard maintenance & repair

Two GEM (GE-2/1) chambers

New forward shielding

Muon systems

Maintenance of a few muon chambers to ensure optimal functionality in 2024 run

Two full RPC chambers extracted using a new procedure including replacement of the gas pipes

Two CSC chambers extracted for repairs

Muon system successfully restarted last week & commissioning ongoing to validate interventions

Two GEM (GE-1/1) chambers replaced

- New laser facilities
 - ECAL: New lab commissioned in Nov 23, old one removed to make way for Phase-2 cooling plant • HCAL: New laser room completed, ready to install upgraded laser box with reduced timing jitter
- Operations
 - HCAL: No showstoppers, during YETS replaced a few sub-performing components
 - ECAL: Preparing for '24 data: HV calibration, new laser commissioning
- Detector performance
 - ECAL: New "cross-correlation" timing algorithm deployed for offline reconstruction
 - HCAL: Using timing & (new) depth- and η -dependent pulse shape to improve energy determination

Calorimeters

Activities over technical stop

- DCS migration complete, new Detector Safety System panel successfully tested
- Improved "high-granularity" alignment procedure \rightarrow significant bias reduction!
- Strip and pixel detectors are powered ON
 - Initial hiccups: pixel rack turbine failure, faulty strips cooling values \rightarrow swiftly addressed
 - Two previously problematic strip FEDs now running without issue
- Starting to derive alignment calibrations from cosmic ray data

Tracker

Precision Proton Spectrometer (PPS)

LHCC Open Session: CMS Status

17

- L1 Trigger restarted after YETS & running in cosmics
- Preparing to collect data at ~110 kHz, pushing towards 115 kHz
- ▶ New seeds for 2024:
- Low p_T "very high quality" single muon seeds for B physics
- Displaced dimuon seeds for LLP searches
- Lepton+HT seeds for $HH \rightarrow bbWW$
- Anomaly detection: AXOL1TL (<u>DP-2023-079</u>) & CICADA (<u>DP-2023-086</u>)

Level-1 Trigger

Dedicated system to readout, process & analyze data from L1 Trigger @40Mhz

Phase-2 scouting @40 MHz

- Goal: scout every bunch crossing in Phase-2
- Demonstrator taking data with muons & (as of last year) calorimeter information
- Output now stored as a standard dataset
- Plans for 2024: 100 Gb/s acquisition

High Level Trigger

- Improvements in HLT reconstruction
 - Recovery of muon inefficiency from 2023
 - ParticleNet for b-tagging & τ -ID
 - Migration of heterogeneous (CPU+GPU) HLT reconstruction (Pixel, ECAL, Particle-Flow clustering) to Alpaka framework
- Parking
 - New triggers to increase efficiency for $HH \rightarrow bb+X$
 - Addition of low p_T single-muon triggers
- Scouting
 - Reconstruction improvements, e.g., full tracking in particle flow
 - More information to extend coverage, e.g., low-p_T tracks
 - New single-muon scouting triggers

Latest results on HLT performance on 2023 data - CMS-DP-2023-089: PNet b-tagging at HLT <u>CMS-DP-2023-094</u>: jet-substructure triggers <u>CMS-DP-2024-005</u>: HLT muons

Software & Computing

Offline Software and Computing is ready for data taking

- CMSSW data taking release is frozen and undergoing physics validation & testing at Tier-0
- Data challenge DC24 was a great success: reached target rate of 125 GB/s, 25% of Run 4 goal
- Technology testing for required Run 4 operations also successful: ~ 50% of transfers were done with token authorization We sincerely thank the File Transfer System & Rucio teams, as well as all operational teams that made DC24 a success

• Expect to fit into approved resource request for '24, including expanded physics program based on increased parking & scouting

		max	
24	- Total	153 GB/s	64
	 T1_US_FNAL_Disk 	29.0 GB/s	10
	- T2_CH_CERN	19.6 GB/s	7.1
	 T1_IT_CNAF_Disk 	9.30 GB/s	3.7
	T1_DE_KIT_Disk	16.5 GB/s	3.3
	T1_RU_JINR_Disk	7.24 GB/s	3.2
	 T1_FR_CCIN2P3_Disk 	11.3 GB/s	3.0
	 T1_UK_RAL_Disk 	9.37 GB/s	2.3
	 T1_ES_PIC_Disk 	7.43 GB/s	1.8

Improved reconstruction of Ultra-Peripheral Collisions

From the last LHCC: Integration of the Zero Degree Calorimeters into the L1 trigger system allowed us to collect a large sample of ultra-peripheral collisions

Data reprocessed w/ aggressive settings to improve low p_T reach of charged hadrons & photons/electrons

Phase-2 Highlights: Tracker

► Outer Tracker

- Assembly of pre-production mechanical structures (e.g. ladders) ongoing
- Pre-production of hybrid circuits ongoing
- Macro-pixel ASIC wafer testing: high throughput verified with company
- ►Inner Tracker
 - Final ASIC (CROCv2): First 16 wafers received & tested, 25 more ordered
 - Sensors
 - First planar production sensors received: good IV curves, next batches ordered
 - 3D sensor pre-production ordered
 - Bump bonding contracts signed for 80% of volume, rest in progress

CROCv2

Phase-2 Highlights: Timing & trigger

- ► MIP Timing Detector (MTD)
 - Barrel (BTL): First LYSO crystal production batch received, SiPM gluing tests successful
 - Endcap (ETL): Completing sensor studies to freeze LGAD sensor specifications
 - •ASIC (ETROC2): last prototype testing continues: all looks good
- ► Level-1 Trigger
 - Important milestone: Phase-2 back-end Electronics Systems Review (ESR)
 - New SAMTEC12 Firefly optical system received: extensive testing, only 1/400 channels failed

LGAD+ETROC2 test suitcase

SAMTEC firefly

Phase-2 Highlights continued

- High Granularity Calorimeter (HGCAL)
 - Silicon sensor: production going according to plan, excellent quality
 - ASIC: First HGCROC V3b arrived in early Feb. and are being tested
 - Several issues with previous version have been fixed
 - Bug identified in final version of HGCROC (v3b), investigations are ongoing
 - Final Endcap Concentrator ASIC pre-production engineering run ongoing w/ vendor
 - Hexaboards:
 - Pre-production bare low-density PCBs being tested at CERN
 - Design complete for all 10 other hexaboard PCB variants
- Fast Beam Condition Monitor (Luminosity)
 - ASIC prototype passed initial irradiation tests, further beam tests planned
- Muons
 - All projects are in production
 - Prototype Phase-2 electronics for drift tubes operational
- Barrel Calorimeter & DAQ progressing smoothly

Summary of Si sensor deliveries

Bare low-density hexaboard PCBs **Drift tube setup @ Legnaro (INFN)**

CMS released a number of new results since the last LHCC

Luminosity for 2022, 4 BSM searches, 2 observations of rare processes + more coming!

- Several interventions were conducted to ensure robust performance for the rest of Run 3
- Expanded program of scouting & parking to make the most out of the data

Work on the Phase-2 upgrades is continuing with high priority

- We are entering the production phase for many of the components
- We continue to hit major milestones \rightarrow now entering a critical phase w/little contingency

- After a lot of work during the YETS, we are ready for data taking in '24'

