

WP3 Clinical networking

PIERO FOSSATI (MEDAUSTRON)

WP3: Clinical networking

WP NA3	Start Date Month 1 End Date Month 48				h 48						
WP Title:	Clinical Net	Clinical Networking									
Participant no.											
Participant	MEDA	HIT	CNA	O MI	Т						
Person months	19	25	33 17								
Objectives											
Task 3.1: Trial design for innovativ	e use of heavy	ion therapy									

- Review preclinical data to identify promising novel approaches to exploit heavy ion therapy advantage
- Design one trial as a template for bringing innovative heavy ion therapy approaches in the clinics

Task 3.2: European registry of heavy ion therapy patients

• Set up a European registry to collect data on rare cancers treated with heavy ion therapy

Task 3.3: European agreement for OARs dose constraints with heavy ion therapy

- Review existing data on OARs dose constraints in use in the clinical facilities
- Perform pooled data analysis to validate constraints on critical OARs

Hypoxia and reoxygenation Synergistic effect of CIRT and immunotherapy LET based optimization

LETd evaluation for targets

	No	Citation	Purpose	Population	Tumor Volume (TV) (cc)	RBE Model	Dose prescription	Results	Drawback / limitations
1	N a	Лаtsumoto et I [26]	Role of LET in Chondrosarcomas recurrence	N = 45, Unresectable chondrosarcoma June 2000 -February 2012 at NIRS-QST	PTV= 50- 1750cc (median 400 cc)	Non - LEM RBE model (RBE profile was taken from measurements in HSG cells- Kanai et al 1999)	70.4 Gy (RBE) / 16 fractions	LETdmax (PTV) = 124 keV/ μ m, LETdmin (PTV) = 37 keV/ μ m (@ isocenter, LETd50% (w. r)= 37.8 to 46.8 keV/ μ m, LETd50% (wo r.) = 38.5 to 70.6 keV/ μ m, LETd50% (No recurrence) > 46.8 keV/ μ m, LETd _{mean} (w. r)= 38.7 to 52.2 keV/ μ m, LETd _{mean} (wo r.) = 41.4 to 72.3 keV/ μ m, PTV _(L1 ml) (w. r)= 24.7 to 54.9 keV/ μ m, PTV _(L1 ml) (wo r.) = 22.4 to 36.3 keV/ μ m, PTV _(L1 ml) (No recurrence) > 36.3 keV/ μ m, PTV _(L1 ml) (No recurrence) > 36.3 keV/ μ m, Correlation - PTV(L1 ml) vs TV (r=-0.90, p<0.01), V _{50 keV/μm (wo r.) = 0 - 0.85, correlation - V50 keV/μm vs TV (r=0.86, p<0.01)}	LETd evaluation only
2	N 2	Aolineli et al [8]	To D _{RBE} and LETd parameters of CIRT for sacral chordomas	N = 52, Sacral Chordoma March 2013 -August 2018 at CNAO	Relapsed: GTV = 337 (2–1738) cc HD-CTV = 844 (104– 2397) cc, LD-CTV = 1621 (286–3411) cc, Controlled: GTV = 466 (22–2678) cc, HD-CTV = 1145 (89– 4351) cc, LD-CTV = 1883 (182– 4714) cc	LEM-I optimization, c, mMKM recomputation	70.4 -73.6 Gy (RBE) / 16 fractions	$\begin{split} &D_{RBE}:\\ Δ\;[D_{MMKM 50\%]}=10\%\;(wrt\;mMKM\;PD),\\ Δ\;[_{DmMKM 95\%]}=18\%\;(wrt\;mMKM\;PD)\\ &LETd:\\ >V\\ &LETd50\%\;(w.\;r.)=25.0\pm2.3\;keV/\mum\\ &LETd50\%\;(wo\;r.)=28.6\pm4.0\;keV/\mum,\\ &PTV(L1\;ml)\;(w.\;r)=18.7\pm2.1\;keV/\mum,\\ &PTV(L1\;ml)\;(wo\;r.)=20.2\pm6.0\;keV/\mum,\\ &LETd50\;keV/\mum\;(w.\;r)=0.7\pm1.0\;(\%),\\ &LETd50\;keV/\mum\;(wo\;r.)=2.7\pm2.8\;(\%),\\ &HD\text{-}CTV\\ &LETd50\%\;(wo\;r.)=30.2\pm3.3\;keV/\mum,\\ &LETd50\%\;(wo\;r.)=30.2\pm3.3\;keV/\mum,\\ &PTV(L1\;ml)\;(wo\;r.)=19.0\pm5.6\;keV/\mum,\\ &PTV(L1\;ml)\;(wo\;r.)=19.0\pm5.6\;keV/\mum,\\ &LETd50\;keV/\mum\;(w.\;r)=2.2\pm2.6\;(\%),\\ &LETd50\;keV/\mum\;(m\;m)=2.2\pm2.6\;(\%),\\ &LETd50\;keV/\mum\;(m\;m)=2.2\pm2.6\;(\%),\\ &LETd50\;keV/\mum\;(m\;m)=2.2\pm2.6\;(\%),\\ &LETd50\;m\;m\;m\;m\;m\;m\;m\;m$	Severely compromised D _{mMKM} and LETd distribution in the nominal CIRT plans compared to other series . Limitations with dose and LETd computation with Syngo TPS

LETd evaluation for targets

3	Hagiwara et al [Evaluation of how LET	N = 18,	GTV = 28.7 (5.9–62.8) co	Non - LEM RBE model	55.2 Gy (RBE) / 12	GTV	LETd50 keV/µm lower in spite
	27]	contributes to a therapeutic effect in pancreatic cancers	Pancreatic adenocarcinoma April 2013 -November 2013 at NIRS-QST			fractions	DMKM 98%, GTV D _{MKM min} = No difference those with or without local relapse LETdmin (w. r) = 40.1 keV/µm (median), LETdmin (wo r.) = 45 keV/µm (median), LETd98% < 45 keV/µm 18 m LC = 43.8 mo, >/= 45 keV/µm, 18 m LC = 100 mo (p< 0.05), LETdmin < 44 keV/µm 18 m LC = 34.3 mo, >/= 44 keV/µm 18 m LC = 100 mo (p< 0.05)	of low tumor volumes
4	Moreli et al [50]	To investigate prognostic biomarkers : survival models fed with Dosiomics features and conventional DVH metrics (D _{RBE}) and (LETd) maps	: N = 50 Sacral Chordoma March 2013 -August 2018 at CNAO		LEM-I optimization, mMKM recomputation	70.4 -73.6 Gy (RBE)		

LETd optimization for targets

No	Citation	Population	Tumor Volume (TV) (cc)	RBE Model	Dose prescription	LETd optimization goals	Results	Drawback / limitations
1	Kohno et al [30]	N = 13 Head and neck cancer March 2013 - August 2018 at NIRS-QST	GTV = 5.9 - 143.1 cc, PTV= 29.41 - 287.97 cc	mMKM	60.8 - 70.4 Gy (RBE) / 16 fractions	LP beam design similar to nominal IMIT plans. LETd constraints GTV: LETdmin= L-5, LETd goal = L, LETdmax= L + 10 [here L = L= 45, 55, 65, 75, 85, 95, and 105 keV/µm for PTV DmMKM 90%, DmMKM 50%	PTV $D_{MKM 90\%}$ deteriorated for L = > 75 keV/µm, GTV LETdmin = 45.9 ± 6.0 keV/µm (IMIT), LETdmin = 59.2 ± 7.9 keV/µm [LP> increased mean 13.2 (8 - 24) keV/µm], LETdmean = 69.2 ± 7.0 keV/µm (LP), LETdmean = 58.5 ± 5.7 keV/µm (IMIT), LETdmax = 90.0 ± 6.1 keV/µm (LP), LETdmax = 94.9 ± 14.5 keV/µm (IMIT)	Total optimization time for the LP took 1.5 times longer than that for the IMIT Planning comparison with IMIT and LETd painting (No clinical evaluation)
2	Nachankar et al [33]	N = 22 Pelvic sarcomas/ Chordoma September 2020 - June 2022 at MedAustron	small : GTV = 55.9 ± 39.8 cc, HD-CTV = 116.3 ± 52.6 cc, LD- CTV = 195.1 ± 76.8 cc, Large: GTV = 301 ± 243.5 cc, HD-CTV = 551.7 ± 211.3 cc, LD- CTV = 776.7 ± 257.7 cc	LEM-I optimization, mMKM recomputation	70.4-73.6 Gy (RBE) / 16 fractions	 (1. LETd optimization using 'distal patching': Distal-patching structures were created to stop beams 1–2 cm beyond the HD-PTV-midplane. 2. LETd goals for evaluation only (LETd goals for evaluation a. HD-CTV: V–27 cm³ ≥ 33 - 39 keV/µm, b. GTV: V–9 cm3 ≥ 33 - 39 keV/µm, c. HD-PTV: V–56 cm3 ≥ 33 -42 keV/µm d. GTV: V[LETd50keV/µm] > 50% 	1. $D_{RBE LEM-I}$, $D_{RBE mMKM}$ statistics (D98%, D95%, D50%, and D2%) for distally patched plans for HD-CTV and for HD-PTV and GTV were (goal ±3%, compared to unpatched plans) Distal patching increased LETd50% in HD- CTV (from 38 ± 3.4 keV/µm to 47 ± 8.1 keV/µm) (24% increase), 2. LETdmean in low-LETd regions of the HD-CTV (from 40.1 ± 3.5 keV/µm to 48.6± 8 keV/µm) (21% increase), 3. LETdmin in low-LETd regions of the HD- CTV (from 32 ± 2.3 keV/µm to 36.2 ± 3.6 keV/µm), LETdmean in GTV fraction receiving LETd of > 50 keV/µm, (from <10% to >50%) high-LETd component in the central region of the GTV. by 7.1 ± 6.5 keV/µm, HD-CTV by 8.5 ± 7.3 keV/µm, GTV by 10 ± 8.8 keV/µm.	Distal patching is sensitive to setup/range uncertainties, there is a always a tradeoff between target coverage with DRBE and LETd and CIRT plan robustness. Retrospective evaluation and LETd optimization planning study (No clinical evaluation)

LETd optimization for targets

3	Schafasand et	N = 10		LEM-I optimization,	73.6 Gy (RBE) / 16	LETd goals	LETd	With mixed field CIRT LETd
	al. [51]	Pelvic sarcomas/		mMKM	fractions	HD-CTV: V-27 cm3 \ge 40 keV/ μ m	optimization method with LETdmin = 60	optimization (Single ion) LETdmin ≥
		Chordoma		recomputation		GTV V−9 cm3 ≥ 42 keV/µm	keV/μm	80-100 keV/μm goal cannot be
		at MedAustron					HD-CTV, LETd98% increased by 8.9±1.5	reached without compromising
							keV/μm (27%)	target coverage and homogeneity.
							HD-CTV, LETd50% increased by 6.9±1.3	LETd optimization planning study
							keV/μm (17%)	(No clinical evaluation)
							By compromising target prescription by ±5%	
							HD-CTV, LETd98% increased by 11.3±1.2	
							keV/μm (34%)	
							HD-CTV, LETd50% increased by 11.7±3.4	
							keV/μm(29%)	
							robustness evaluation, the pass rate of	
							the LETdmin = 60 keV/ μ m optimized	
							plans in achieving the OAR goals was in	
							the same level as the reference plans in	
							all scenarios	
4	Koto et al.	N = 12	SCC, ACC, AD,DC, ME	mMKM,	64 Gy (RBE) / 16	LETd goals	GTV	Longer follow up period is required
	[2024]	Head and neck		LEIVI-I optimization	fractions	GTV: LETdmin ≤ 70 keV/µm	LE I dmin = increased from 52 keV/ μ m (for validation of clinical benefits.
		cancer					No LEId optimization) to 63 keV/µm	Dosimetric correlation with G4 optic
		October 2021-					(LETd optimization)	nerve toxicity is not reported.
							(No LETd optimization) to 73 keV/ μ m	
		MINJ-QJI					(IETd optimization)	
							Clinical result:	
							No acute / late toxicity \geq G3 at 180 days	
							except G4 optic nerve toxicity.	
							Treatment response rate (CR + PR) 67%	
							(Koto et al IJROBP 2024) vs 56% (
							previously reported by Mizoe et al	
							Radiother Oncol 2012) at 180 days.	-
							(Koto et al IJROBP 2024) vs 56% (previously reported by Mizoe et al Radiother Oncol 2012) at 180 days.	

LETd evaluation for OARs

No	Citation	Aim	Population	Tumor Volume (TV)	RBE Model	Dose prescription	Results	Drawback / limitations
1	Okonogi et al [42]	To assess predictive factors for late morbidities in the rectum and bladder after carbon-ion C-ion RT for uterus carcinomas	N = 134 uterus carcinomas June 1995 - January 2010, at NIRS-QST		Non - LEM RBE model (RBE profile was taken from measurements in HSG cells- Kanai et al 1999)	52.8 Gy (RBE)– 74.4 Gy (RBE) / 20-24 fractions	 D2cc > 60.2 Gy (RBE) grade 3 late rectal complications (p = 0.012). No trends between grading of late rectal complications and these LETd histograms 	Studies LETd as a sole parameter without studying the dose in in same voxel
2	Mori et al [43]	To investigate the effects of LETd and dose on pelvic insufficiency fractures after CIRT	N = 134 uterus carcinomas June 1995 and January 2010 - NIRS-QST		mMKM model	52.8 Gy (RBE)– 74.4 Gy (RBE) / 20-24 fractions	 D50% RBE-weighted dose was a valuable predictor of SIF. patients over 50 years of age validated that current smoking habit were risk factors for SIF 	Studies LETd as a sole parameter without studying the dose in in same voxel
3	Nachankar et al [48]	To evaluate results of sacral nerve sparing strategy (SNSo-CIRT) and investigate the effects of LETd and D _{RBE} on Radiation induced lumbosacral neuropathy after CIRT	N = 35 Pelvic sarcomas/ Chordoma August 2019 - August 2022 at MedAustron	HD-CTV: 503.3 ± 402.1 cc	LEM-I optimization, mMKM recomputation	70.4 Gy (RBE)- 73.6 Gy (RBE) / 16 fractions	1. No difference in sole D_{RBE} or LETd distribution on sacral nerves in patient with or without neuropathy. 2. RILSN-free survival at $D_{RBE LEM-I}$ cutoff = 65 Gy (RBE) and LETd < 55 keV/µm for sacral-nerves-to-spare was 100% and those with LETd ≥ 55 keV/µm was 70% (CI, 47-100) (p = 0.03).	

LETd evaluation for OARs

4	Nachankar et al [49]	To evaluate results of	N = 55	LEM-I optimization,	65.6 Gy (RBE)-	1. Average D _{RBE} LETd after filtering-out RBE-weighted?)
		mucosa-sparing-strategy	Non-squamous Head and	mMKM recomputation	73.6 Gy (RBE)/16	doses (D _{RBE} -filtered LETd) for mucosa were higher in	
		(MSS-CIRT) and investigate	neck cancer		fractions	patients with LMT3 (without MSS-CIRT) compared to	
		the effects of LETd and D_{RBE}	August 2019 - October			those treated with MSS-CIRT, [$_{DRBE LEM-I 0.1 cc}$ =73.2 vs	
		on G3 late mucosal toxicity	2023 at MedAustron			66.8 Gy (RBE) and $D_{RBE mMKM 0.1 cc}$ =74.2 vs 64.4 Gy	
		after CIRT				(RBE) (Figure 2, n: MSS-CIRT=25, LMT3=2)]	
						respectively.	
						2. Limiting D _{RBE} -filtered LETd for MTS substructure	
						receiving $D_{RBE mMKM 0.1cc}$ >69 and >70 Gy (RBE) appears	
						critically important.	

Two possible strategy for LET painting

- Blocking
- Let optimization in TPS

DVH | LEM | Small vs Large vs Large Blocked

Satisfactory LEM: For blocked cases: Satisfactory coverage in terms of LEM RBE weighted dose

DVH | MKM | Small vs Large vs Large Blocked

MKM: FOR BLOCKED CASES: SATISFACTORY COVERAGE, BUT HOTSPOT ESPECIALLY FOR PTV2

LVH | LET | Small vs Large vs Large Blocked

Satisfactory LET: For blocked cases: Significantly better LET Distribution most benefit with GTVc

LET in central portion of GTV | Small vs Large vs Large Blocked

Dose, LET outside PTV | Small vs Large vs Large Blocked

LET LET: For blocked cases: LET DISTRIBUTION OUTSIDE PTV1 IS ALSO IMPROVED DUE TO SPATIAL REDISTRIBUTION OF LET IN THE CENTER OF GTV/PTV

First Patient experience sin MedAustron

Parameters used in clinical cases in MA

Acceptable clinical goals for targets

	Target	Internally (MedAustron) validated LETd Constraints	Constraints extrapolated form other series	Priority
	HD-CTV	CTV - 27 cc > 40 keV/µm (Chordomas/sarcomas)		Moderate
	GTV	GTV - 9 cc > 40 keV/µm (Chordomas/sarcomas)		High
		V[LETd50 keV/µm] > 50% (Chordomas/sarcomas)		High
			LETdmin > 59 keV/µm (Bulky, non-squamous Head and neck cancers)	High
			LETdmin > 80 keV/µm (Pancreatic cancers, renal cell carcinoma)	High
	HD-PTV	PTV - 56 cc > 42 keV/μm		Moderate to low
	Sacral-nerves (outside HD-CTV)	at D _{RBE LEM-I} cutoff = 64 Gy (RBE), <12% of volume should receive > LETd < 55 keV/μm (Dose filtered LETd)		Moderate
нітс	Cauda equina	at D _{RBE LEM-I} cutoff = 63 Gy (RBE), <10% of volume should receive > LETd < 50 keV/μm (Dose filtered LETd)		Moderate
Heavy Ion Therapy Resear	rch Integration		research and i	nnovation programme

m the European Union's Horizon 2020 under grant agreement No 101008548

Draft of the protocol is being finalised

										Previous car	ncer		
Patient ID Sex	Date of birth Age	Type of diagnosis	Comorbidity	Previous cancer	Specify cancer	Year of diagnosis	Radiotherapy treatme	ent Year o	f radiotherapy	Specify energy	Total dose	Chemotherapy treatmen	t? Yea
		/			_\			/					_
		/						/					
	Campo Chiara: - Primary Tumor			Campo Chiara:			Campo Chiara:		Campo - Carbor	Chiara:		Campo Chiara:	
	 Relapsed Tumor Relapsed Tumor 	- Local (T) - Regional (N)		- Yes - No			- Yes		- Proton: - Photon	s IS		- Yes - No	_
	 Relapsed Tumor Radiation-induce 	- Metastatic (M) d Tumor		- Unknown			- Unknown		<mark>- Unkon</mark>	wn		- Unknown	
		Campo C	hiara:										
		According	to MedDRA										
													_

The database has so far been used only by CNAO

In the last phase of the project the database will be used to support the activity of task 3.3.

Task 3.3

A	В	С	D	E	F	G			
	M	edAustron * red constraints	must be respected in th	he LEM optimized plan and in the MKM recalculated plan					
	japanese fraction	iation (> 4 Gy RBE LEM per	fraction)	german fraction	hation (3 Gy RBE LEM per fr	action)			
	optimal	acceptable	high risk (to be used	optimal	acceptable	high risk (to be used			
			only on one side)			only on one sidej			
	D1% < 45 Gy RBE LEM	D1% < 50Gy RBE LEM	D1% < 54 Gy RBE						
	D20%< 40 Gy RBE LEM	D20%< 40 Gy RBE	LEM D20%< 40	D (BBE, 2%) < 50 Gu BBE	D (BBE, 2%) < 54 Gu BBE	D (RBE, 2%) < 56 Gy			
	D1%< 40 Gy RBE MKM	LEM D1%< 40 Gy	Gy RBE LEM	= (==, =, , , , , , , , , , , , , , , ,	- (,,,	RBE			
optic nerve	D20%< 30 Gt RBE MKM	RBE MKM D20%<	D1%< 40 Gt RBE						
	D1% < 45 Gy RBE LEM								
	D20%< 40 Gy RBE LEM	na	na	D (RBE, 2%) < 50 Gy RBE	D (RBE, 2%) < 54 Gy RBE	na			
optic chiasm	D1%< 40 Gy RBE MKM D0.1cc < 46 Gy RBE LEM								
	D0.7cc< 38 Gy RBE LEM			D (RBE, 0,01 ccm) < 54 Gy					
	D0.1cc < 40 Gy RBE	na	na	(RBE), D (RBE, 2%) < 50 Gy	na	na			
	MKM D0.7cc< 30 Gu			RBE					
brainstem	RBE MKM								
	D0.1cc < 46 Gy RBE LEM			D (RBE, 0,01 ccm) < 54 Gy					
	D0.7cc< 38 Gy RBE LEM	na	na	(RBE), D (RBE, 2%)	na	na			
spinal cord	D0.1cc < 40 Gy RBE			< 50 Gy RBE					
	D1cc < 60 Gy RBE	D1cc < 64 Gy RBE	D 2	Dice / 65 Gu BBE	Dicc / 69 Gu BBE	D 2			
brain parenchyma	D5cc < 54 Gy RBE L	D5cc < 60 Gy RBE L	110	Dicc Coolagnibe	Dicc Cos agribe	114			
parotid gland	Dmean < 20 Gy RBE	na	Drnean < 26 Gy RBE	Dmean < 20 Gy RBE	na	Dmean < 26 Gy RBE			
mandible (teeth bearing)				D (RBE, 2%) < 50 Gy RBE	na	na			
	D (RBE,1cc) < 53 Gy RBE,	D (RBE,3cc) < 60 Gy RBE,							
	D (RBE,3cc) < 50 Gy RBE ,	D (RBE,5cc) < 50 Gy RBE,	na	D (RBE, 2%) < 50 Gy RBE	na	na			
mandible (ramus)	D (RBE,5cc) < 38 Gy RBE	D (RBE 8cc) < 38 Gy RBE							
	D2% < 30 Gu BBE	D2% < 40 Gy (RBE),	na	D2% < 30 Gu BBE	D2% < 40 Gy (RBE),	na			
cornea		D10% < 30 Gu RBE			D10% < 30 Gy RBE				
retina	D (RBE, 2%) < 40 Gy (RBE)	D (RBE, 2%) < 45 Gy	na	D (RBE, 2%) < 40 Gy (RBE)	D (RBE, 2%) < 45 Gy (RBE)	na			
cochlea	Dmean < 30 Gy RBE	Dmean < 43 Gy RBE	na	Dmean < 30 Gy RBE	Dmean < 43 Gy RBE	na			
skin	D5sqcm < 60 Gy RBE	na	na	none	none	none			
	D (RBE, 0.1 ccm) < 46 Gy RBE,	D (RBE, 0.1 ccm) < 48 Gy							
	D (RBE, 5 ccm) < 36 Gy RBE,	RBE	na	not used	not used	not used			
duodenum	D (RBE, 25 ccm) < 25 Gu RBE								
	D (RBE, 0.1 com) < 46 Gy RBE,	D (RBE, 0.1 com) < 48 Gy							
Chamach	D (RBE, 5 ccm) < 36 Gy RBE,	RBE	na	hot used	not used	notused			
Stomach	D [RBE, 25 ccm] < 25 Git RBE								
small bound	D (RBE, 0.1 ccm) < 45 Gy RBE,		na	not used	not used	not used			
smailbower		DIRBE, COMIKE, 2							
	D (RBE, 1 com) < 66 Gy RBE,	RBE, D (RBE, 5 ccm)							
	D (RBE, 5 ccm) < 60 Gy RBE,	< 63 Gy RBE, D	na	not used	not used	not used			
rectum/sigmoid colon	D (HBE, 10 ccm) < 47 Gy RBE	(BBE 10 com) / 55 Gu							
unin and have a	D (RBE, 1 com) < 66 Gy RBE,	na	na	not used	not used	not used			
unnary Dower	D (BBE, 50 ccm) < 50 Gu RBE	D (DDE =) + 40.0**			D (DDE) + 10 C ::				
Kianey	D (RBE, mean) < 10 Gy RBE;	D (RBE, mean) < 18 Gy	na	D (RBE, mean) < 10 Gy RBE;	D (HBE, mean) < 18 Gy	na			
cauga equina	D (RBE, 0.1%) < 66 GU RBE	D (HBE, 0.1%) < 70 GU HBE	na	not used	not used	not used			
nerveroots outside high dose CTV	D1% < 63 GU RBE	D1% < 71 Gij RBE	na	not used	not used	not used			
nerveroots inside high dose CTV	D1% < /1 Git RBE	D1% < 73 Gij RBE	na	not used	not used	not used			

Brain has been selected as organ at risk for pooled analysis

Carola Lütgendorf-Caucig MA+HIT

CLINICAL INVESTIGATION

Prospective Analysis of Radiation-Induced Contrast Enhancement and Health-Related Quality of Life After Proton Therapy for Central Nervous System and Skull Base Tumors

Carola Lütgendorf-Caucig, D. Med., MBA, MPH,^a Maciej Pelak, Dr hab. n. med.,^{a,b} Eugen Hug, Prof. Dr. Med.,^a Stott Flechl, Dr. Med., Iog. PhD,^a Birgit Surböck, Dr. Med.,^c Christine Marosi, Prof. Dr. Med.,^d Ulrike Mock, Univ.-Doz. Dr. Med.,^a Leor Zach-or. Med.,⁻¹ Med Mardor, Dr. Med.,^{fa} Orit Furman, PhD,^e Harald Hentschel, MSC,¹ Joanna Gora, Pt D,^a Piero Fossati, Proj Dr. Med.,^a Markus Stock, Prof. PD Dr.,^a Uwe Graichen, PhD,^b Sascha Klee, Prof. Dr.,^b and Petra Georg, Assoc. Prof. PD Dr. Medⁱ

⁶MedAustron Ion Therapy Center, Wiener Neustadt, Austria; ⁶University Clinic for Radiotherapy and Radiation Oncology, Uniklinkum Salzburg, Salzburg, Austria; ⁵Department of Neurology, Klinikum Favoriten, Vienna, Austria; ⁵Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; ⁵Department of Radiation Oncology, Tel Aviv Sourasky, Medical Center, Tel Aviv, Israel; ¹Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv, Israel; ⁹Advanced Technology Center, Sheba Medical Center, Ramat Gan, Israel; ⁶Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria; and ¹Department of Radiotherapy, Karl Landsteiner University of Health Sciences, University Hospital Krems, Nettria

Received Oct 15, 2023; Accepted for publication Jan 4, 2024

ORIGINAL ARTICLE | VOLUME 172, P54-64, JULY 2022 🗠 Download Full Issue

Radiation-induced contrast enhancement following proton radiotherapy for low-grade glioma depends on tumor characteristics and is rarer in children than adults

Tanja Eichkorn Ջ ⊠ • Julia Bauer ⊠ • Emanuel Bahn ⊠ • ... Jürgen Debus ⊠ • Laila König ¹ ⊠ • Semi Harrabi ¹ ⊇ • Show all authors • Show footnotes

Published: May 10, 2022 • DOI: https://doi.org/10.1016/j.radonc.2022.05.005 • (R) Check for updates

Radiotherapy and Oncology 167 (2022) 211-218

Original Article

Semi B. Harrabi ^{a,b,c},^{e,*}, Bastian von Nettelbladt^{a,c,d}, Clemens Gudden^a, Sebastian Adeberg^{a,c,d}, Katharina Seideperaal ^{a,c,d}, Julia Bauer^{b,c,d}, Emanuel Bahn^{a,c,d,e}, Andrea Mairani^{b,g}, Markus Alber^{a,c,d}, Thomas Haberer^b, Juergen Debus^{a,b,c,d,e,f}, Klaus Herfarth^{a,b,c,d}

^a Department of Radiation Oncology, Heidelberg University Hospital; ^bHeidelberg Ion-Beam Therapy Center (HIT); ^cHeidelberg Institute for Radiation Oncology (HIRO); ^dNational Center for Tumor Diseases (NCT); ^cClinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ); ¹German Cancer Consortium (DKTK), partner site, Heidelberg, Cermany; ⁴Medical Physics Unit, CNAO Foundation, Pavia, Italy

🗞 cancers

Article

Patterns of Temporal Lobe Reaction and Radiation Necrosis after Particle Radiotherapy in Patients with Skull Base Chordoma and Chondrosarcoma—A Single-Center Experience

Matthias Mattke ^{1,2,3,*}, Matteo Ohlinger ^{2,3}, Nina Bougatf ^{2,3,4,5}, Robert Wolf ^{2,3}, Thomas Welzel ^{2,3}, Falk Roeder ^{1,6}, Sabine Gerum ¹, Christoph Fussl ¹, Natalee Annon-Eberharter ¹, Malte Ellerbrock ^{3,5}, Oliver Jäkel ^{2,3,5,7}, Thomas Haberer ^{3,5}, Klaus Herfarth ^{2,3,5}, Matthias Uhl ⁸, Jürgen Debus ^{2,3,4,5,9,10}, Katharina Seidensaal ^{2,3,†} and Semi Harrabi ^{2,3,†}

Happy to answer your questions

