

Work package 10 Multiple Energy Extraction System

René Steinbrügge Heidelberg Ion Beam Therapy Center

HITRIplus project meeting Marburg, 23.05.2024

WP10 Multiple energy extraction system

Motivation: lon extractions at different energies within one synchrotron cycle → shorten treatment times

Goal:
 Development of architectural model for accelerator control system

Challenges for accelerator control system

- Number and values of beam energy steps not known at the start of the synchrotron cycle → cycle cannot be pre-calculated
- Re-acceleration phase depends on initial and final beam energy
 Huge number of possible combinations

Solution:

- Calculate control data on the fly!
- Perform calculations on the device controllers to avoid network delays

Taks 10.2: Timing requirements

Taks 10.2: Timing requirements

Taks 10.2: Timing requirements

New control data supply module

Calculates data

- For each device
- For each synchrotron phase
- Independent of other devices
- → Dependencies between devices need to be resolved

Last presentation

Inter-device parameter calculation dependencies (simplified view)

A → B: Parameters calculated in A needed for B

Example for quadrupole magnets

```
Function Quadrupole_INIT_SOQG1F:

BprimeL_SOQG1F_INJ = KL_SOQG1F_INJ * Brho_INJ;

I_SOQG1F_INJ = F_I_BprimeL_SOQG1F(abs(BprimeL_SOQG1F_INJ));

I_SOQG1F_INIT[] = make_table(
    make_ramp_INIT(I_Park_SOQGxy, I_SOQG1F_INJ),
    Tgrid_INIT, Nphase_INIT);

dI_SOQG1F_INIT[] = tab_deriv(I_SOQG1F_INIT[]);

{U_SOQG1F_INIT[], DeltaU_SOQG1F_INIT[] } =
    U_of_I_SOQG1F(I_SOQG1F_INIT[], dI_SOQG1F_INIT[]);
```


Example for quadrupole magnets

```
calculates
Dependent on
```

```
Function Quadrupole_INIT_S0QG1F:

BprimeL_S0QG1F_INJ = KL_S0QG1F_INJ * Brho_INJ;

I_S0QG1F_INJ = F_I_BprimeL_S0QG1F(abs(BprimeL_S0QG1F_INJ));

I_S0QG1F_INIT[] = make_table(
    make_ramp_INIT(I_Park_S0QGxy, I_S0QG1F_INJ),
    Tgrid_INIT, Nphase_INIT);

dI_S0QG1F_INIT[] = tab_deriv(I_S0QG1F_INIT[]);

{U_S0QG1F_INIT[], DeltaU_S0QG1F_INIT[]} = 
    U_of_I_S0QG1F(I_S0QG1F_INIT[], dI_S0QG1F_INIT[]);
```


Create a table for each function

Function Quadrupole_INIT	_S0QG1F
Calculates	Depends on
BprimeL_S0QG1F_INJ	KL_S0QG1F_INJ
I_S0QG1F_INJ	Brho_INJ
<pre>I_S0QG1F_INIT[]</pre>	F_I_BprimeL_S0QG1F
dI_S0QG1F_INIT[]	make_ramp_INIT
U_S0QG1F_INIT[]	I_Park_S0QGxy
DeltaU_S0QG1F_INIT[]	Tgrid_INIT
	Nphase_INIT
	U_of_I_S0QG1F

Create a table for each function

Function Quadrupole_INIT_S0QG1F	
Calculates	Depends on
BprimeL_S0QG1F_INJ	KL_S0QG1F_INJ
I_S0QG1F_INJ	Brho_INJ
I_S0QG1F_INIT[]	F_I_BprimeL_S0QG1F
dI_S0QG1F_INIT[]	make_ramp_INIT
U_S0QG1F_INIT[]	I_Park_S0QGxy
DeltaU_S0QG1F_INIT[]	Tgrid_INIT
	Nphase_INIT
	U_of_I_S0QG1F

Calculated in function	
KL_S0QGxz_INJ	
general_calculations	
load_parameters	
INIT_precalc	
load_parameters	
calc_Tgrids	
INIT_precalc	
calc_U_of_I_S0QG1F	

Create dependency graph

Calculated in function KL_S0QGxz_INJ general_calculations load_parameters INIT_precalc load_parameters calc_Tgrids INIT_precalc calc_U_of_I_S0QG1F

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Heavy Ion Therapy Research Integration

Get calculation order

Order of calculation

- load_parameters
- 2. calc U of I SOQG1F
- 3. general transversal tune
- 4. KL SOQGXY INJ
- 5. MEBT parameters
- 6. general_calculations
- 7. general_optic_parameters
- 3. calc Tgrids
- 9. INIT_precalc
- .0. Quadrupole INIT S0QG1F

Automation with Python

Python module written to evaluate dependencies for the whole data supply model

- **Input**: YAML files with function configurations
- Checks if all dependent variables are calculated within the model.
- Output: Calculation order
- → Module will be distributed with deliverable 10.3

```
name: Quadrupole INIT SOQG1F
 dependencies:
  - I Park SOQGxy
  - F I BprimeL SOQG1F
  - KL SOQG1F INJ
  - Brho INJ
  - Tgrid INIT
  - Nphase INIT
  - U of I SOQG1F
  - FitPrec nobm S0QGxy
  - make ramp INIT
-calculates:
  - I SOQGIF INJ
  - SEGPOLY I SOQGIF_INIT
  - I SOQGIF INIT[]
  - dI SOQGIF INIT[]
  - U SOQGIF INIT[]
  - DeltaU SOQGIF_INIT[]
  - SEGPOLY U SOQGIF INIT
  - BprimeL SOQG1F INJ
pseudocode: |
  BprimeL SOQG1F INJ = KL SOQG1F INJ * Brho INJ;
  I SOQG1F INJ = F I BprimeL SOQG1F(abs(BprimeL SOQG1F INJ));
I SOQGIF INIT[] =
    make table(make ramp INIT(I Park SOQGxy, I SOQG1F INJ), Tgrid INIT, Nphase INIT);
  dI SOQG1F INIT[] = tab deriv I SOQG1F INIT[];
  { U SOQG1F INIT[], DeltaU SOQG1F INIT[] } =
    U of I SOQG1F(I SOQG1F INIT[], dI SOQG1F INIT[]);
```


Conclusion

- Task 10.2 finished
 - Report D10.2 delivered
 - Control data computing speed sufficient for multi-energy operation
- Task 10.3 ongoing:
 - Tool developed to resolve dependencies for single device calculation
 - Applied to HIT data supply module
- Upcoming:
 - Perform calculations on prototype of new HIT device controller
- Merge all parts into the description of the architectural model
 - → Report D10.3

Thank you for your attention!

