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Motivation for QFT
Key motivation: consistent combination of Quantum Mechanics + Special Relativity
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Naive combination: relativistic quantum mechanics describes system of fixed number of particles  

E =
p2

2m
+ V(x) .

classical energy-momentum relation:

i∂tϕ(t, x) = (−
1

2m
∇2 + V(x)) ϕ(t, x) = Ĥ ϕ(t, x)

Schrödinger eq.:

plane wave solutions:

ϕ(t, x) ∝ e−i(Et−p⋅x) = e−ip⋅x

E2 = m2 + p2

relativistic energy-momentum relation:

plane wave solutions:

ϕ(t, x) ∝ e−i(Et−p⋅x) = e−ip⋅x

Klein-Gordon eq.:

(∂2
t − ∇2 + m2) ϕ(t, x) = (∂μ∂μ + m2) ϕ(x) = ( □ + m2)ϕ(x) = 0 ,

Problem: negative energy solutions  E = ± p2 + m2

spectrum not bounded from below



Notation/Conventions/SR recap

Space-time coordinate 4-vector:  xμ = ( t
⃗x) = (x0

⃗x )

Metric tensor is:  
 

ημν = gμν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

μ, ν = 0,1,2,3 (greek indices)
i, j = 1,2,3 (latin indices)

c = ℏ = 1

Lorentz transformation:  x′ μ =
3

∑
ν=0

Λμ
ν xν ≡ Λμ

ν xν

Lorentz boost in x-direction:

Use metric to raise/lower indices:  xμ = ημνxν xμ = ημνxν

Einstein’s summation convention
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Notation/Conventions/SR recap

t2 − ⃗x2 = xμxνημν = xμημνxν = xTηx = xμxμ ≡ x2Invariant space-time interval:

Covariant 4-vector:  xμ = ημνxν = (t, − ⃗x)

Lorentz invariant scalar product:  a ⋅ b = ab ≡ aμbμ = aμημνbν .

Important examples of 4-vectors:
‣4-momentum   
“Mass" is the "length" of the 4-momentum.
Note:  is invariant (regularly used in QFT) 

‣4-derivative  is a covariant 4-vector, i.e. , 

pμ = (E, ⃗p), i.e. p2 = pμpμ = E2 − ⃗p2 ≡ m2

p ⋅ x = pμxμ = Et − ⃗p ⃗x

∂μ = (∂0, ∂i) ∂μ = (∂t, − ∂i)
∂μ∂μ = ∂2

t − Δ = □ and ∂μpμ(x) = ∂0p0 + ∂ipi

 relativistic energy-momentum relation
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Lagrange formalism in classical mechanics
Classical mechanics can be formulated  
as a least-action principle.

Action: S[x(t)] = ∫
tB

tA

L(x(t), ·x(t), t) dt

Classical path such that: δS[x(t)] = S[x(t) + δx(t)] − S[x(t)] = 0

with Lagrange function  L = L(x(t), ·x(t), t) = T(x, ·x, t) − V(x, t) = kinetic energy − potential energy

Equivalent with Euler-Lagrange (EL) equation: 

δS[x(t)] = ∫
tB

tA

δL(x(t), ·x(t), t)dt = ∫
tB

tA
( ∂L

∂x
δx(t) +

∂L
∂ ·x

δ ·x(t)) dt

= ∫
tB

tA
( ∂L

∂x
−

d
dt

∂L
∂ ·x ) δx(t)dt +

∂L
∂ ·x

δx(t)
tB

tA

= 0
!

IBP d
dt

∂L
∂ ·x

−
∂L
∂x

= 0
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Example: 

L =
m2

2
·x2 − V(x) →

d
dt

m ·x +
∂V(x)

∂x
= m··x +

∂V(x)
∂x

= 0 .

→ m··x = −
∂V(x)

∂x
= F(x)



Hamilton formalism in classical mechanics
Based on Lagrange function  for a set of generalised coordinates  

define generalised momenta: .

Aim to treat  as dynamical variables (instead of ).  
 
For this define transformation 

EL is equivalent to the Hamilton e.o.m:

The time-dependance of an observable  is then given by  

L = L(qi(t), ·qi(t), t) qi

pi =
∂L
∂ ·qi

qi, pi qi, ·qi

H = ∑
i

pi
·qi − L(qi, ·qi, t)

f = f(qi, pi, t)
df
dt

= {f, H} +
∂f
∂t

dqi

dt
=

∂H
∂qi

,

dpi

dt
= −

∂H
∂qi

.

Poisson bracket: {f, g} =
N

∑
i=1 ( ∂f

∂qi

∂g
∂pi

−
∂f
∂pi

∂g
∂qi )
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Least-action principle for classical fields

Least-action principle for field :   

is equivalent with EL for :   

As in classical mechanics we can define a conjugated momentum field   

and a Hamilton density  

ϕ( ⃗x, t) δS[ϕ] = ∫ d4x ℒ(ϕ, ∂μϕ, x) = 0

ϕ( ⃗x, t) ∂μ
∂ℒ

∂(∂μϕ)
−

∂ℒ
∂ϕ

= 0

π( ⃗x, t) =
∂ℒ

∂(∂0ϕ)

ℋ(ϕ, π, x) = π∂0ϕ − ℒ(ϕ, ∂μϕ, x)

In classical field theory a field value is associated to every point in 
space. For a scalar field  this is a scalar value, while a vector field 

 associates a 4-vector to every point in space.

In order to formulate an action-principle for a field theory it is crucial to 
see the field itself as dynamical variable, while  plays the role of a label.

ϕ( ⃗x, t)
Aμ( ⃗x, t)

⃗x

Lagrange density

L = ∫ d3x ℒ

12



Quantisation
Classical Mechanics 
•  observables:  

•  Poisson bracket 
  
 

qi, pi, f(xi, pi)

{qi, pj} = δij
{qi, qj} = {pi, pj} = 0

Quantum Mechanics 
•  operators:  

•  Commutators
   
   

̂xi, ̂pi, ̂f( ̂xi, ̂pi)

[ ̂qi, ̂pj] = iδij
[ ̂qi, ̂qj] = [ ̂pi, ̂pj] = 0

remember: ℏ = 1

 Field Quantisation
Classical Fields 

•  fields:  

•  Poisson bracket (at equal time) 
  
 

ϕ, π, f(ϕ, π)

{ϕ(t, ⃗x), π(t, ⃗y)} = δ(3)( ⃗x − ⃗y)
{ϕ(t, ⃗x), ϕ(t, ⃗y)} = {π(t, ⃗x), π(t, ⃗y)} = 0

Quantum Fields 
•  Quantum fields:  

•  Commutators (at equal time)
   
   

̂ϕ(x), ̂π(x), ̂f( ̂ϕ(x), ̂π(x))

[ ̂ϕ(t, ⃗x), ̂π(t, ⃗y)] = iδ(3)( ⃗x − ⃗y)
[ ̂ϕ(t, ⃗x), ̂ϕ(t, ⃗y)] = [ ̂π(t, ⃗x), ̂π(t, ⃗y)] = 0
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Free scalar field
Lagrangian for a free real scalar field, describing neutral spin=0 particles with mass :m ℒ = 1

2 ∂μϕ∂μϕ− m2

2 ϕ2

Euler-Lagrange for  yields:    ϕ (∂μ∂μ + m2) ϕ = ( □ + m2) ϕ = 0 Klein-Gordon equation

This is a wave equation!  plane-wave solution as general ansatz→

ϕ(x) =
1

(2π)3/2 ∫
d3k
2k0

[a(k) e−ikx + a*(k) eikx ]

momentum-space coefficients 

This solves the Klein-Gordon equation for    relativistic energy-momentum relationk0 = ⃗k
2

+ m2 ←

Having both  ensures that  remains real.a(k) and a*(k) ϕ(x)

ensures Lorentz-invariance

Now we need to quantise this solution!
14



Free scalar field
General solution of KG equation: ϕ(x) =

1
(2π)3/2 ∫

d3k
2k0

[a(k) e−ikx + a*(k) eikx ]

Determine associated conjugate momentum field , interpret  as operators demandingπ( ⃗x, t) ̂ϕ(x) and ̂π(x)
   
   

[ ̂ϕ(t, ⃗x), ̂π(t, ⃗y)] = iδ(3)( ⃗x − ⃗y)
[ ̂ϕ(t, ⃗x), ̂ϕ(t, ⃗y)] = [ ̂π(t, ⃗x), ̂π(t, ⃗y)] = 0

We thus have to promote  to operators with commutatorsa(k) → ̂a(k) and a(k)* → ̂a†(k)
   
   

[ ̂a( ⃗k), ̂a†( ⃗k′ )] = (2π)3 δ(3)( ⃗k − ⃗k′ )
[ ̂a( ⃗k), ̂a( ⃗k′ )] = [ ̂a†( ⃗k), ̂a†( ⃗k′ )] = 0

This is the algebra of a simple harmonic oscillator (SHO)!!

As for the SHO  can be interpreted as ladder operators that create and annihilate one-particle states:̂a( ⃗k) and ̂a†( ⃗k)

a†(k) |0> = |k>

a(k) |k′ > = 2Ek δ(3)( ⃗k − ⃗k′ ) |0 >

creation operator

annihilation operator
15



SHO in QM

Hamiltonian of SHO:  Ĥ =
̂p2

2m
+

mω2

2
x2

The Schrödinger eq.   can be solved algebraically introducing ladder operatorsiℏ
d
dt

|ψ(t)> = Ĥ |ψ(t)>
̂a =

1

2ℏ ( mω ̂x +
i

mω
̂p)

̂a† =
1

2ℏ ( mω ̂x −
i

mω
̂p)

creation operator

annihilation operator

In terms of these ladder operators the Hamiltonian reads  Ĥ = ℏω ( ̂a† ̂a +
1
2 ) → Ĥ |n> = En |n>

And we have [ ̂a, ̂a†] = 1, [ ̂a, ̂a] = [ ̂a†, ̂a†] = 0

16

−ℏω ̂a, [Ĥ, ̂a†] = ℏω ̂a†

a |n> ∼ |n − 1>
(a†)n |0> ∼ |n> creation operator

annihilation operator[Ĥ, ̂a†] = ℏω, [Ĥ, ̂a] = − ℏω



Back to the scalar field
a†(k) |0> = |k>

a(k) |k′ > = 2k0 δ(3)( ⃗k − ⃗k′ ) |0 >

creation operator

annihilation operator

In terms of these operators we find the Hamiltonian of the free scalar field as

H = ∫ d3k ℋ = ∫
d3k

(2π)3

1
2 ( ̂a†(k) ̂a(k) +

1
2 [ ̂a(k), ̂a†(k)])

infinite number of SHOs ∼ (2π)3δ(3)(0) → ∞

infinite ground-state energy  ignore→

Vacuum state:       and    ̂a(k) |0> = 0 <0 |0> = 1

Generic n-particle state: | ⃗k1… ⃗kn > = (2Ek1
)1/2…(2Ekn

)1/2 ̂a†( ⃗k1)…a†( ⃗kn) |0>

As for SHO states are eigenstates of the Hamiltonian :   a†( ⃗k) |0> Ĥ Ĥ ̂a†( ⃗k) |0> = Ek a†( ⃗k) |0>

formally: “normal ordering”

Note: we have   Bose-Einstein statistics   scalar field is a boson| ⃗k1
⃗k2 > ∼ ̂a†( ⃗k1)a†( ⃗k2) | 0⃗> = | ⃗k2

⃗k1 > → →
[ ̂a†( ⃗k), ̂a†( ⃗k′ )] = 0 17



Particles  Fields↔
The field is a superposition of all possible momentum modes.  
Thus, the field contains all freedom to describe all possible  
configurations of  one or more particles in a given momentum state. 

particles = field excitations

Location of particles

we can define state   | ⃗x> = ̂ϕ(0, ⃗x) |0> =
1

(2π)3/2 ∫
d3k
2k0

[ ̂a(k) e+i ⃗k⋅ ⃗x + ̂a†(k) e−i ⃗k⋅ ⃗x ] |0>

=
1

(2π)3/2 ∫
d3k
2k0

e−i ⃗k⋅ ⃗x | ⃗k> where | ⃗k> = ̂a†( ⃗k) |0>

i.e. is a superposition of single-particle states that have well defined momentum and energy.

Interpretation:   field operator acts on the vacuum and creates a particle at position . That 
particle does not have a unique momentum, but the probability to find it with momentum  is given by

| ⃗x>
̂ϕ(0, ⃗x) ⃗x

⃗k

<0 | ̂ϕ(0, ⃗x) | ⃗k> ∼ e+i ⃗k⋅ ⃗x incoming state

< ⃗k | ̂ϕ(0, ⃗x) |0> ∼ e−i ⃗k⋅ ⃗x outgoing state ∙ − − − − − −

− − − − − − ∙

18
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<0 | ̂ϕ(t, ⃗x) |k> ∼ e−ik⋅x

<k | ̂ϕ(t, ⃗x) |0> ∼ e+ik⋅x
|x> = ̂ϕ(t, ⃗x) |0>

| ⃗x> = ̂ϕ(0, ⃗x) |0>



Based on we can also define a state | ⃗x> |x> = ̂ϕ(x) |0> = ̂ϕ(t, ⃗x) |0>

Amplitude for the propagation from  to :y x <x |y> = <0 | ̂ϕ(x) ̂ϕ(y) |0> ≡ D(x, y)

= D(x − y) = … = ∫
d3k

(2π)3

1
2E ⃗k

e−ik ⋅ (x−y)

 only depends on : only the distance matters.D(x, y) x − y

Feynman Propagator

In order to ensure causality we need to further refine this picture and define the Feynman Propagator

DF(x − y) = {D(x − y) if x0 > y0

D(y − x) if y0 > x0
= D(x − y)Θ(x0 − y0) + D(y − x)Θ(x0 − y0) = <0 | ̂T ̂ϕ(x) ̂ϕ(y) |0>

where we make use of the time-ordering operator :̂T

̂T ̂ϕ(x) ̂ϕ(y) = {
̂ϕ(x) ̂ϕ(y) if x0 > y0

̂ϕ(y) ̂ϕ(x) if y0 > x0

The Feynman propagator is in essential ingredients of the Feynman rules needed to compute Feynman diagrams.
20
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Momentum-space Feynman Propagator

The Feynman propagator is a Green’s function of the inhomogeneous Klein-Gordon equation:
(∂μ∂μ + m2) DF(x − y) = − δ4(x − y)

Solutions to this differential equation can be obtained via Fourier transformation:

DF(x − y) = ∫
d4k

(2π)4
D(k) e−ik(x−y)

In Fourier/momentum-space the inhomogeneous Klein-Gordon equation reads:  

(k2 − m2) D(k) = 1

With the momentum-space Feynman propagator as solution:

i D(k) =
i

k2 − m2 + iϵ

remember: 
δ(4)(x − y) = ∫

d4k
(2π)4

e−i k ⋅ (x−y)

convention
ensures time-ordering i.e. causality
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Momentum-space Feynman Propagator

The Feynman propagator is a Green’s function of the inhomogeneous Klein-Gordon equation:
(∂μ∂μ + m2) DF(x − y) = − δ4(x − y)

Solutions to this differential equation can be obtained via Fourier transformation:

DF(x − y) = ∫
d4k

(2π)4
D(k) e−ik(x−y)

(k2 − m2) D(k) = 1

With the momentum-space Feynman propagator as solution:

i D(k) =
i

k2 − m2 + iϵ
convention

ensures time-ordering i.e. causality

We can see this via

iDF(x − y) = ∫
d4k

(2π)4

ie−ik(x−y)

k2 − m2 + iϵ
=

1
(2π)3 ∫

d3k
2k0 [e−ik(x−y) Θ(x0 − y0) + eik(x−y) Θ(y0 − x0)]

k0= ⃗k
2

+ m2
= <0 | ̂T ̂ϕ(x) ̂ϕ(y) |0>

 integral via contour in lower/upper half-planed0k 22

In Fourier/momentum-space the inhomogeneous Klein-Gordon equation reads:  remember: 
δ(4)(x − y) = ∫

d4k
(2π)4

e−i k ⋅ (x−y)



Quantum Pictures
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Schrödinger picture:

• states  are time-dependent: 

• operators  are time-independent 
|ϕS(t)> |ϕS(t)> = e−iĤS(t−t0) |ϕS(t0)> = U(t, t0) |ϕS(t0)>

̂AS

Heisenberg picture:

• states  are time-independent

• operators  time-dependent: 
|ϕH > = |ϕS(t0)>

̂AH(t) ̂AH = U†(t, t0) ̂AS U(t, t0)

time-evolution operator
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Interaction picture:
• separate   

• states  are time-dependent:  

                                                                                      
 states evolve with interaction Hamiltonian 

• operators   time-dependent: 
 operators evolve with free Hamiltonian 

Ĥ = Ĥ0 + ĤI
|ϕI(t)> |ϕI(t)> = eiĤ0(t−t0) |ϕS(t)> = Û†

0(t, t0) |ϕS(t)>

= e−iĤI(t−t0) |ϕS(t0)> = ÛI(t, t0) |ϕS(t0)>
→ ĤI

̂AI(t) ̂AI = Û†
0(t, t0) ̂AS Û0(t, t0)

→ Ĥ0

To be precise:        as a solution of  ÛI(t, t0) = ̂T e
−i

t
∫
t0

ĤI(t′ )dt′ 

i
∂
∂t

Û(t, t0) = ĤI(t) Û(t, t0)

Quantum Pictures



S-matrix
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Ultimately we want to compute cross sections for scattering processes, i.e. probabilities for 

| in> = |p1, …, pn; in> = |ϕ(t = − ∞)> ⟶ |out> = = |p′ 1, …, p′ n; out> = |ϕ(t = + ∞)>

The projection of this state onto the out-state defines the S-matrix element|ϕ(t)>

Sfi = <f | Ŝ | i > = lim
t→+∞

<f |ϕ(t)> = <out |UI(+∞, − ∞) | in >

p1

pn

p′ 1

p′ n

.

.

.
.
.
.

free in-states free out-statesinteractions

In interaction picture free in-state evolves in interaction region: |ϕ(t)> = UI(t, − ∞) | in>

→ ̂S = Û(+∞, − ∞) = ̂T e−i
∞
∫

−∞
ĤI(t′ )dt′ 

Note:  for ĤI = 0 → S = 1



→ ̂S = Û(+∞, − ∞) = ̂T e−i
∞
∫

−∞
ĤI(t′ )dt′ = ̂T (1 − i

∞

∫
−∞

HI(t′ ) dt′ + …)

S-matrix
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perturbative expansion
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The projection of this state onto the out-state defines the S-matrix element|ϕ(t)>

Sfi = <f | Ŝ | i > = lim
t→+∞

<f |ϕ(t)> = <out |UI(+∞, − ∞) | in >

In interaction picture free in-state evolves in interaction region: |ϕ(t)> = UI(t, − ∞) | in>

= ̂T (1 − i
∞

∫
−∞

ℋI(x′ ) d4x′ + …)
perturbative expansion

| in> = |p1, …, pn; in> = |ϕ(t = − ∞)> ⟶ |out> = = |p′ 1, …, p′ n; out> = |ϕ(t = + ∞)>

p1

pn

p′ 1

p′ n

.

.

.
.
.
.

free in-states free out-statesinteractions

Ultimately we want to compute cross sections for scattering processes, i.e. probabilities for 



Scattering amplitude in -theoryϕ4
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p1

p2

p′ 1

p′ 2

A2→2 = Sfi = <f | Ŝ | i > = <0 | ̂a
p⃗′ 1

̂a
p⃗′ 2

Ŝ ̂a†
p⃗1

̂a†
p⃗2

|0> (assume: vacuum identical for in- and out-states)

̂S ≈ ̂T (1 − i
∞

∫
−∞

ℋI(x′ ) d4x′ ) = ̂T (1 −
i λ
4!

∞

∫
−∞

̂ϕ4 d4x′ )where 

leading order 

  A2→2 = <0 | ̂a ⃗p′ 1
̂a ⃗p′ 2

̂a†
⃗p1

̂a†
⃗p2
|0> −

i λ
4!

<0 | ̂T( ̂a ⃗p′ 1
̂a ⃗p′ 2

̂ϕ ̂ϕ ̂ϕ ̂ϕ ̂a†
⃗p1

̂a†
⃗p2
) |0>

       = 0
 
< f | i> = 0

ℒ =
1
2

∂μϕ∂μϕ −
m2

2
ϕ2 −

λ
4!

ϕ4

ℋI =
λ
4!

ϕ4

= ℒ0 + ℒI
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p1

p2

p′ 1

p′ 2

A2→2 = Sfi = <f | Ŝ | i > = <0 | ̂a
p⃗′ 1

̂a
p⃗′ 2

Ŝ ̂a†
p⃗1

̂a†
p⃗2

|0> (assume: vacuum identical for in- and out-states)

̂S ≈ ̂T (1 − i
∞

∫
−∞

ℋI(x′ ) d4x′ ) = ̂T (1 −
i λ
4!

∞

∫
−∞

̂ϕ4 d4x′ )where 

leading order 

  A2→2 = <0 | ̂a ⃗p′ 1
̂a ⃗p′ 2

̂a†
⃗p1

̂a†
⃗p2
|0> −

i λ
4!

<0 | ̂T( ̂a ⃗p′ 1
̂a ⃗p′ 2

̂ϕ ̂ϕ ̂ϕ ̂ϕ ̂a†
⃗p1

̂a†
⃗p2
) |0>

       = 0
 
< f | i> = 0

ℒ =
1
2

∂μϕ∂μϕ −
m2

2
ϕ2 −

λ
4!

ϕ4

ℋI =
λ
4!

ϕ4

= ℒ0 + ℒI

Wick’s theorem: 
such expectations values of multiple field operators 
can be decomposed into products of 
two-point function = propagators 

e.g.:
<0 | ̂ϕ(x) ̂ϕ(y) |0> = DF(x − y) =

<0 | ̂ϕ ̂ϕ ̂ϕ ̂ϕ |0> =
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p1

p2

p′ 1

p′ 2

A2→2 = Sfi = <f | Ŝ | i > = <0 | ̂a
p⃗′ 1

̂a
p⃗′ 2

Ŝ ̂a†
p⃗1

̂a†
p⃗2

|0> (assume: vacuum identical for in- and out-states)

̂S ≈ ̂T (1 − i
∞

∫
−∞

ℋI(x′ ) d4x′ ) = ̂T (1 −
i λ
4!

∞

∫
−∞

̂ϕ4 d4x′ )where 

leading order 

  A2→2 = <0 | ̂a ⃗p′ 1
̂a ⃗p′ 2

̂a†
⃗p1

̂a†
⃗p2
|0> −

i λ
4!

<0 | ̂T( ̂a ⃗p′ 1
̂a ⃗p′ 2

̂ϕ ̂ϕ ̂ϕ ̂ϕ ̂a†
⃗p1

̂a†
⃗p2
) |0>

       = 0
 
< f | i> = 0

ℒ =
1
2

∂μϕ∂μϕ −
m2

2
ϕ2 −

λ
4!

ϕ4

ℋI =
λ
4!

ϕ4

= ℒ0 + ℒI

Wick’s theorem: 
such expectations values of multiple field operators 
can be decomposed into products of 
two-point function = propagators 

e.g.:
<0 | ̂ϕ(x) ̂ϕ(y) |0> = DF(x − y) =

<0 | ̂ϕ ̂ϕ ̂ϕ ̂ϕ |0> =
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p1

p2

p′ 1

p′ 2

A2→2 = Sfi = <f | Ŝ | i > = <0 | ̂a
p⃗′ 1

̂a
p⃗′ 2

Ŝ ̂a†
p⃗1

̂a†
p⃗2

|0> (assume: vacuum identical for in- and out-states)

̂S ≈ ̂T (1 − i
∞

∫
−∞

ℋI(x′ ) d4x′ ) = ̂T (1 −
i λ
4!

∞

∫
−∞

̂ϕ4 d4x′ )where 

leading order 

  A2→2 = <0 | ̂a ⃗p′ 1
̂a ⃗p′ 2

̂a†
⃗p1

̂a†
⃗p2
|0> −

i λ
4!

<0 | ̂T( ̂a ⃗p′ 1
̂a ⃗p′ 2

̂ϕ ̂ϕ ̂ϕ ̂ϕ ̂a†
⃗p1

̂a†
⃗p2
) |0>

       = 0
 
< f | i> = 0

ℒ =
1
2

∂μϕ∂μϕ −
m2

2
ϕ2 −

λ
4!

ϕ4

ℋI =
λ
4!

ϕ4

= ℒ0 + ℒI

<0 | ̂T( ̂ϕa†
⃗p
) |0> = <0 | ̂ϕ | ⃗p> = 1 ⋅ e−ip⋅x

<0 | ̂T(a ⃗p
̂ϕ) |0> = < ⃗p | ̂ϕ |0> = 1 ⋅ eip⋅x

use:  external lines→

external momentum-space wf 
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p1

p2

p′ 1

p′ 2

A2→2 = Sfi = <f | Ŝ | i > = <0 | ̂a
p⃗′ 1

̂a
p⃗′ 2

Ŝ ̂a†
p⃗1

̂a†
p⃗2

|0> (assume: vacuum identical for in- and out-states)

̂S ≈ ̂T (1 − i
∞

∫
−∞

ℋI(x′ ) d4x′ ) = ̂T (1 −
i λ
4!

∞

∫
−∞

̂ϕ4 d4x′ )where 

leading order 

  A2→2 = <0 | ̂a ⃗p′ 1
̂a ⃗p′ 2

̂a†
⃗p1

̂a†
⃗p2
|0> −

i λ
4!

<0 | ̂T( ̂a ⃗p′ 1
̂a ⃗p′ 2

̂ϕ ̂ϕ ̂ϕ ̂ϕ ̂a†
⃗p1

̂a†
⃗p2
) |0>

ℒ =
1
2

∂μϕ∂μϕ −
m2

2
ϕ2 −

λ
4!

ϕ4

ℋI =
λ
4!

ϕ4

= ℒ0 + ℒI

sum of all connected diagrams at given order   = … = − iλ(2π)4δ(4)(p1 + p2 − p′ 1 − p′ 2) =

drop disconnected diagrams ∫ d4xe−ip1x e−ip2x e+ip′ 1x eip2xvertex rule from external lines 
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ℒ =
1
2

∂μϕ∂μϕ −
m2

2
ϕ2 −

λ
4!

ϕ4

−iλ

i
k2 − m2 + iϵ

Example

p1

p2

p′ 1

p′ 2

q q + p1 − p′ 1

1
2 (−i λ)2 ∫

d4q
(4π)4

i
q2 − m2

i
(q + p1 − p′ 1)2 − m2

+ symmetry factors

∫
d4q

(4π)4

=

× (2π)4δ(4)(p1 + p2 − p′ 1 − p′ 2)



Cross-sections
scattering process     with momenta  a + b → b1 + b2 + ⋯ + bn Pi = pa + pb = Pf = p1 + ⋯ + pn

initial state: | i> = |a(pa), b(pb)> final state:  | f > = |b1(p1), ⋯bn(pn)>

Amplitude for transition from  into   given by S-matrix element| i> | f >

Sfi = < f | ̂S | i > = (2π)4 δ(4)(Pi − Pf) ℳfi (2π)−3(n+2)/2

total momentum conservation matrix-element from Feynman rules

cross section:   σ =
1
N

⋅ probability of interactions

=
1
ℱ

⋅ ∏
f

∫ dΦf (2π)4 δ(4)(Pi − Pf) |ℳfi |
2

=
1

64π2s
| ⃗p1 |
| ⃗pa | ∫ |ℳfi |

2 dΩ

Phase-space integral for final-state particles
Flux factor 
in massless limit 
ℱ ≃ 2s
s = (pa + pb)2

for  scattering2 → 2

dΩ = sinθ dθ dφ
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Alternative field quantisation: Path integral

Wikipedia:
The path integral formulation of quantum field theory represents the 
transition amplitude (corresponding to the classical correlation function) 
as a weighted sum of all possible histories of the system from the initial 
to the final state.

⟨F⟩ =
∫ 𝒟φF[φ]ei𝒮[φ]

∫ 𝒟φei𝒮[φ]
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Field content of the SM
Source: BBC

Source: DOE
Source: Ars Technika

Source: CERN
Source: unkown
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Field content of the SM
Source: The Particle Zoo
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Field content of the SM

spin-0 (complex) scalar field ϕ = Reϕ + i Imϕ

spin-1/2 fermion fields ψ =

ψ1
ψ2
ψ3
ψ4

spin-1 vector fields  
massless and massive

Aμ

}
}
} =

A0

A1

A2

A3

38



Free massive vector fields

The dynamics of a free massive vector field is described by:    ℒProca = −
1
4

FμνFμν −
m2

2
ZμZμ

with the field-strength tensor      and the 4-potential  Fμν = ∂μZν − ∂νZμ Zμ = (ϕZ, ⃗Z )
vector potentialscalar potential

EL eq. with respect to  gives free Proca equations:     Zν [( □ + m2) gμν − ∂μ∂ν] Zν = 0

Plane wave solutions of Proca equations:  ∼ ϵ(λ)
ν ( ⃗k) e−ikx

Maxwell term mass term

polarisation vectors with  (2 x transverse, 1 x longitudinal)λ = 1,2,3

Chosen such that    and we have ϵ(λ) ⋅ k = 0 , ϵ(λ)* ⋅ ϵ(λ′ ) = − δλλ′ 

3

∑
λ=1

ϵ(λ)*
μ ϵ(λ)

ν = − gμν +
kμkν

m2
orthonormal completness
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Free massive vector fields
General solution of Proca equation is given by superposition of plane waves:

Zμ(x) =
1

(2π)3/2 ∑
λ

∫
d3k
2k0 [aλ(k) ϵ(λ)

μ (k) e−ikx + a†
λ (k) ϵ(λ)

μ (k)* eikx ]
creation operator

annihilation operator

a†
λ (k) |0> = |kλ>

aλ(k) |k′ λ′ > = 2k0 δ3( ⃗k − ⃗k ′ ) δλλ′ |0>

wave-functions 
for external state

<0 |Aμ(x) | kλ> ∼ ϵ(λ)
μ (k) e−ikx

<kλ |Aμ(x) | 0> ∼ ϵ(λ)
μ (k)* eikx

incoming massive vector 
outgoing massive vector 

propagator: 
Green’s function of  
inhomogeneous Proca eq.

[( □ + m2) gμρ − ∂μ∂ρ] Dρν(x − y) = gμ
ν δ4(x − y)

momentum space

i Dρν(k) =
i

k2 − m2 + iϵ (−gνρ +
kνkρ

m2 )
[(−k2 + m2) gμρ + kμkρ] Dρν(k) = gμ

ν

momentum-space propagator

.
.
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Free massless vector fields

The dynamics of a free massless vector field is described by:    ℒEM = −
1
4

FμνFμν

EL equation with respect to  gives free Maxwell equations:     Aν □ Aν − ∂ν∂μAμ = 0 = ∂μFμν

Maxwell term

Fμν = ∂μAν − ∂νAμ

propagator: 
Green’s function of  
inhomogeneous Maxwell eq.

(−k2 gμρ + kμkρ) Dρν(k) = gμ
ν not invertible=degeneracy  
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Free massless vector fields

The dynamics of a free massless vector field is described by:    ℒEM = −
1
4

FμνFμν

EL equation with respect to  gives free Maxwell equations:     Aν □ Aν − ∂ν∂μAμ = 0 = ∂μFμν

Maxwell term

propagator: 
Green’s function of  
inhomogeneous Maxwell eq.

(−k2 gμρ + kμkρ) Dρν(k) = gμ
ν

 is invariant under gauge transformations Fμν Aμ(x) → Aμ(x) − ∂μχ(x)

This freedom is related to unphysical degrees of freedom: 2 d.o.f. for massless vector field vs 4 components of Aν

Add gauge-fixing term to the Maxwell Lagrangian: ℒ = −
1
4

FμνFμν −
1
2ξ (∂μAμ)2

i Dρν(k) =
i

k2 + iϵ [−gνρ + (1 − ξ)
kνkρ

k2 ] momentum-space propagator (can e.g. choose  
to simplify computations 

Feynman gauge)

ξ = 1

→

(  arbitrary,
no physical impact)
ξ

42

Fμν = ∂μAν − ∂νAμ

not invertible=degeneracy  



Free Fermion field
The dynamics of a free fermion field is described by the Dirac Lagrangian:    ℒDirac = ψ (iγμ∂μ − m) ψ

i)  is a 4-component spinor field: ψ ψ(x) =

ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

iii)  needed such that   is Lorentz invariantψ = ψ† γ0 = (ψ*1 , ψ*2 , − ψ*3 , − ψ*4 ) ψψ

ii) Dirac -matrices are 4x4 matrices in spinor space with γμ γ0 = (1 0
0 −1), γk = ( 0 σk

−σk 0 )
Pauli matrices

-matrices fulfil   (defining property) γμ {γμ, γν} ≡ γμγν + γνγμ = 2 gμν
anti-commutator

EL eq. for  yields:     ψ (iγμ∂μ − m) ψ = 0 Dirac equation

Two types of plane-wave solutions of Dirac equation: ψ+ = u(p) e−ipx

ψ− = v(p) eipx

incoming fermion

outgoing anti-fermionwith E(p) = ⃗p2 + m2
43



Free Fermion field

Spinors  fulfil the algebraic Dirac equations:    u(p), v(p) ( /p − m) u(p) = 0 , ( /p + m) v(p) = 0

/a = aμγμ

Can be classified according to eigenvalues with respect to helicity operator  ⃗Σ = ( ⃗σ 0
0 ⃗σ)

1
2 ( ⃗Σ ⋅ ⃗n) uσ(p) = σ uσ(p) , −

1
2 ( ⃗Σ ⋅ ⃗n) vσ(p) = σ vσ(p) ⃗n =

⃗p
| ⃗p |

direction of travel

σ = ± 1/2

General solution of Dirac equation is given by superposition of plane waves :ψ±

ψ(x) =
1

(2π)3/2 ∑
σ

∫
d3k
2k0 [aσ( ⃗k) uσ(k) e−ikx + b†

σ( ⃗k) vσ(k) eikx ]
annihilation operators for particles creation operators for anti-particles

<0 |ψ(x) | f, kσ > ∼ uσ(k) e−ikx

< f, kσ |ψ(x) |0 > ∼ uσ(k) eikx

< f̄, kσ |ψ(x) |0 > ∼ vσ(k) eikx

<0 |ψ(x) | f̄, kσ > ∼ vσ(k) e−ikx
wave-functions 
for external state

(similar for )ψ

.
..

.
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Dirac propagator

Determine Green’s function of inhomogeneous Dirac equation:    (iγμ∂μ − m) SF(x − y) = 1 δ(4)(x − y)

Solution via Fourier ansatz:       with   SF(x − y) = ∫
d4k

(2π)4
S(k) e−ik(x−y) ( /k − m) S(k) = 1 .

Fourier

Dirac propagator is 4x4 matrix   i S(k) =
i

/k − m + iϵ
=

i ( /k + m)
k2 − m2 + iϵ
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QED interaction
Maxwell equation sourced by 4-current:         where ∂μFμν = Jν ∂νJν = 0 (current conservation)

Corresponding Lagrangian:  ℒMW = ℒEM + ℒint = −
1
4

FμνFμν − JμAμ

A suitable 4-current in terms of a fermion (electron) field can be constructed as:  Jμ ∼ ψγμψ

Lorentz vector

This is indeed a conserved current iff  is a solution of the Dirac eq: ψ ∂μJμ = ψ̄ ∂ ψ + ψ̄ (∂ψ)
= (−mψ̄)ψ + ψ̄ (mψ) = 0

Fixing the proportionality factor in  to    (charge of electron) yields the QED Lagrangian:Jμ −e

ℒQED = ℒEM + ℒDirac + ℒint = −
1
4

FμνFμν + ψ̄ (i∂ − m)ψ + eψ̄ γμψAμ

= −
1
4

FμνFμν + ψ̄ (iD − m)ψ∂μ → Dμ = ∂μ − ieAμ
covariant derivative

(+ gauge-fixing)
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The Standard Model coffee mug

47



Not a coffee mug
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Summary: QED Feynman rules

+ symmetry factors
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The Feynman van

   
50



Example: Coulomb scattering 

   

e(p) μ(k) → e(p′ ) μ(k′ )

iℳ = ie2 [u(p′ ) γμ u(p)]
gμν

q2
[u(k′ ) γν u(k)]

e(p) e(p′)

µ(k) µ(k′)

↓ q

|ℳ | 2 =
1
2

2

∑
r=1

1
2

2

∑
s=1

2

∑
r′ =1

2

∑
s′ =1

|ℳ |2

=
1
4

e4

(q2)2 ∑
r,r′ 

[ur′ 
(p′ ) γμ ur(p)][ur′ 

(p′ ) γρ ur(p)]*

× ∑
s,s′ 

[us′ 
(k′ ) γμ us(k)][us′ 

(k′ ) γρ us(k)]* ,

=
8e4

(q2)2 ((pk) (p′ k′ ) + (pk′ )(p′ k) + 2m2
e m2

μ − m2
μ(pp′ ) − m2

e (kk′ ))

unpolarised squared amplitude

sum over final-state  
and average over initial-state  
polarisations

completeness relations, 
Dirac equations for spinors 

 trace simplifications,
…
γμ

=
2e4

t2 ((s − m2
e − m2

μ)2 + (u − m2
e − m2

μ)2 + 2t (m2
e + m2

μ))
Mandelstam invariants

Feynman rules

amplitude
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Example: Coulomb scattering 
e(p) μ(k) → e(p′ ) μ(k′ )e(p) e(p′)

µ(k) µ(k′)

↓ q unpolarised squared amplitude: |ℳ | 2 =
2e4

t2 ((s − m2
e − m2

μ)2 + (u − m2
e − m2

μ)2 + 2t (m2
e + m2

μ))

52

dσ
dΩ

=
1

64π2s
| ⃗p |

| ⃗p′ | ∫ |ℳ |2differential cross section:

s ≫ m2
e , m2

μ s = 4p2 , t = − 4p2 sin2(θ/2) , u = − 4p2 cos2(θ/2)

dσ
dΩ

≃
α2

2s
1 + cos4(θ/2)

sin4(θ/2)



Crucial observation: gauge symmetry in QED

The QED Lagrangian      ℒQED = −
1
4

FμνFμν + ψ̄ (i∂ − m)ψ + eψ̄ γμψAμ

a local (=x-dependent) gauge transformation ψ(x) → ψ′ (x) = e−iα(x)ψ(x)

Aμ(x) → A′ μ(x) = Aμ(x) +
1
e

∂μα(x)
Notes:

•  is invariant by construction but the shift of  in interaction term cancels exactly the additional Dirac term

• we can demand this  gauge invariance to construct the QED interaction term

• a term  (see ) is NOT gauge-invariant  massless photon

•   ensures gauge invariance by construction  “minimal coupling”

Fμν Aμ

U(1)
∼ AμAμ ℒProca →

∂μ → Dμ = ∂μ − ieAμ →

53

           is invariant under= −
1
4

FμνFμν + ψ̄ (iD − m)ψ



Guiding principles

• Causality 

• Unitarity (conservation of probability)

• Symmetry
• space-time: Lorentz invariance 

• internal: gauge invariance  

• Renormalisability

• Minimality / Occam's razor 
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‣ QFT = QM + SR

‣ Every quantum field is superposition of quantised SHOs

‣ 
‣ Feynman diagrams: graphical representation of Wick’s theorem

‣ Guiding principle to construct consistent theories: symmetries

‣ Local U(1) symmetry  QED interactions 

Sfi = <f | Ŝ | i > = <out |UI(+∞, − ∞) | in >

→

Conclusions

calculatemeasure



Questions?
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