Field Theory & the EW Standard Model Part I: QFT in a nutshell

BIS

University of Sussex

HOOL OF HIGH-ENERGY PH Peebles, Scotland, UK September 2024

Jonas M. Lindert

1

Field

Field

Quantum Field Vacuum

Motivation for QFT

Key motivation: consistent combination of Quantum Mechanics + Special Relativity

Naive combination: relativistic quantum mechanics describes system of fixed number of particles

$$
E=\frac{p^2}{2m}+V(x).
$$

classical energy-momentum relation:

Schrödinger eq.:
\n
$$
i\partial_t \phi(t, x) = \left(-\frac{1}{2m}\nabla^2 + V(x)\right)\phi(t, x) = \hat{H}\phi(t, x)
$$

Problem: **negative energy solutions** $E = \pm \sqrt{p^2 + m^2}$ spectrum not bounded from below

plane wave solutions:

$$
\phi(t, x) \propto e^{-i(Et - p \cdot x)} = e^{-ip \cdot x}
$$

$$
E^2 = m^2 + p^2
$$

relativistic energy-momentum relation:

plane wave solutions:

$$
\phi(t, x) \propto e^{-i(Et - p \cdot x)} = e^{-ip \cdot x}
$$

Klein-Gordon eq.:

$$
\left(\partial_t^2 - \nabla^2 + m^2\right)\phi(t, x) = \left(\partial_\mu\partial^\mu + m^2\right)\phi(x) = (\Box + m^2)\phi(x) =
$$

Notation/Conventions/SR recap

Metric tensor is:

$$
\eta_{\mu\nu} = g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}
$$

Use metric to raise/lower indices: $x_{\mu} = \eta_{\mu\nu} x^{\nu}$ $x^{\mu} = \eta^{\mu\nu} x_{\nu}$

$$
c = \hbar = 1
$$

\n
$$
\mu, \nu = 0, 1, 2, 3 \text{ (greek indices)}
$$

\n
$$
i, j = 1, 2, 3 \text{ (latin indices)}
$$
 Lorentz

Space-time coordinate 4-vector: $x^{\mu} =$ $($ *t* \vec{x} $=$ (*x*0 *x* \int Lorentz transformation: $x^{'\mu} =$ 3 ∑ *ν*=0 $\Lambda^{\mu}_{\nu} x^{\nu} \equiv \Lambda^{\mu}_{\nu} x^{\nu}$ Einstein's summation convention

Lorentz boost in x-direction:

Notation/Conventions/SR recap

Covariant 4-vector: $x_{\mu} = \eta_{\mu\nu} x^{\nu} = (t, -\vec{x})$

Lorentz invariant scalar product: $a \cdot$

Invariant space-time interval:
$$
t^2 - \vec{x}^2 = x^\mu x^\nu \eta_{\mu\nu} = x^\mu \eta_{\mu\nu} x^\nu = x^T \eta x = x^\mu x_\mu \equiv x^2
$$

"Mass" is the "length" of the 4-momentum. $p \cdot x = p^{\mu}x_{\mu} = Et - \vec{p}\vec{x}$

 \triangleright 4-derivative $\partial_{\mu} = (\partial_0, \partial_i)$ is a covariant 4-vector, i.e. $\partial^{\mu} = (\partial_t, -\partial_i)$, $\partial_{\mu}\partial^{\mu} = \partial_{t}^{2} - \Delta = \Box$ and $\partial_{\mu}p^{\mu}(x) = \partial_{0}p^{0} + \partial_{i}p^{i}$

$$
,-\overrightarrow{x})
$$

$$
b = ab \equiv a^{\mu}b_{\mu} = a^{\mu}\eta_{\mu\nu}b^{\nu}.
$$

Important examples of 4-vectors:

. 4-momentum $p^{\mu} = (E, \vec{p}), \text{ i.e. } |p^2 = p^{\mu}p_{\mu}$

e.
$$
p^2 = p^{\mu}p_{\mu} = E^2 - \vec{p}^2 \equiv m^2
$$

Note: $p \cdot x = p^{\mu} x_{\mu} = Et - \overrightarrow{px}$ is invariant (regularly used in QFT)

relativistic energy-momentum relation

Lagrange formalism in classical mechanics

Classical mechanics can be formulated as a *least-action principle*.

Action:
$$
S[x(t)] = \int_{t_A}^{t_B} L(x(t), \dot{x}(t), t) dt
$$

Classical path such that: $\delta S[x(t)] = S[x(t) + \delta x(t)] - S[x(t)] = 0$ with Lagrange function $L = L(x(t))$, $\dot{\hat{X}}$ $\dot{x}(t), t) = T(x, t)$ $\boldsymbol{\dot{\chi}}$

x, *t*) − *V*(*x*, *t*) = kinetic energy − potential energy

Equivalent with **Euler-Lagrange** (EL) equation:

$$
)\bigg)\,dt
$$

time

$$
\delta S[x(t)] = \int_{t_A}^{t_B} \delta L(x(t), \dot{x}(t), t)dt = \int_{t_A}^{t_B} \left(\frac{\partial L}{\partial x} \delta x(t) + \frac{\partial L}{\partial \dot{x}} \delta \dot{x}(t)\right)
$$

$$
= \int_{t_A}^{t_B} \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}\right) \delta x(t)dt + \frac{\partial L}{\partial \dot{x}} \delta x(t) \Big|_{t_A}^{t_B} = 0
$$

$$
\boxed{\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0}
$$

Lagrange formalism in classical mechanics

Classical mechanics can be formulated as a *least-action principle*.

Action:
$$
S[x(t)] = \int_{t_A}^{t_B} L(x(t), \dot{x}(t), t) dt
$$

Classical path such that: $\delta S[x(t)] = S[x(t) + \delta x(t)] - S[x(t)] = 0$ with Lagrange function $L = L(x(t))$, $\dot{\hat{X}}$ $\dot{x}(t), t) = T(x, t)$ $\boldsymbol{\dot{\chi}}$

x, *t*) − *V*(*x*, *t*) = kinetic energy − potential energy

Equivalent with **Euler-Lagrange** (EL) equation:

$$
\delta S[x(t)] = \int_{t_A}^{t_B} \delta L(x(t), \dot{x}(t), t)dt = \int_{t_A}^{t_B} \left(\frac{\partial L}{\partial x} \delta x(t) + \frac{\partial L}{\partial \dot{x}} \delta \dot{x}(t)\right) dt
$$

$$
= \int_{t_A}^{t_B} \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}\right) \delta x(t)dt + \frac{\partial L}{\partial \dot{x}} \delta x(t) \Big|_{t_A}^{t_B} = 0
$$

$$
\text{IBP}
$$

Example:
\n
$$
L = \frac{m^2}{2} \dot{x}^2 - V(x) \rightarrow \frac{d}{dt} m \dot{x} + \frac{\partial V(x)}{\partial x} = m \ddot{x} + \frac{\partial V(x)}{\partial x} = 0.
$$
\n
$$
\rightarrow m \ddot{x} = -\frac{\partial V(x)}{\partial x} = F(x)
$$

Hamilton formalism in classical mechanics

Based on Lagrange function $L = L(q_i(t), \dot{q}_i(t), t)$ for a set of *generalised coordinates* define *generalised momenta:* $p_i = \frac{p_i}{\partial \dot{a}}$. .
2 ∂*L* $\overline{\partial \dot q_i}$

Aim to treat q_i, p_i as dynamical variables (instead of q_i, \dot{q}_i).

For this define transformation EL is equivalent to the Hamilton e.o.m: $H = \sum$ *i pi* .
2 $\dot{q}_i - L(q_i,$.
2 $\dot{q}_i^{\vphantom{\dagger}}(t)$ *dqi dt* = ∂*H* ∂*qi* , *dpi dt* $=-\frac{\partial H}{\partial x}$ ∂*qi* .

The time-dependance of an observable $f = f(q_i, p_i, t)$ is then given by

 $\dot{q}_i(t), t)$ for a set of *generalised coordinates* q_i

.
2 \dot{q}_i

t) is then given by
$$
\frac{df}{dt} = \{f, H\} + \frac{\partial f}{\partial t}
$$
 Poisson bracket: $\{f, g\} = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right)$

Least-action principle for classical fields

Least-action principle for field $\phi(\vec{x}, t)$: ⃗

is equivalent with EL for $\phi(\vec{x},t)$: $\mid \partial_{\mu}$ \overline{a} ∂ℒ $\partial(\partial_\mu \phi)$

As in classical mechanics we can define a *conjugated momentum field* $\pi(\vec{x},t) =$

and a *Hamilton density* $\mathscr{H}(\phi, \pi, x) = \pi \partial_0 \phi - \mathscr{L}(\phi, \partial_\mu \phi, x)$

⃗ $\partial \mathscr{L}$ $\partial(\partial_0\phi)$

In classical field theory a field value is associated to every point in space. For a scalar field $\phi(\vec{x},t)$ this is a scalar value, while a vector field $A^{\mu}(\vec{x},t)$ associates a 4-vector to every point in space. ⃗ \overline{a}

In order to formulate an action-principle for a field theory it is crucial to see the field itself as dynamical variable, while \vec{x} plays the role of a label.

t):
$$
\delta S[\phi] = \int d^4x \mathcal{L}(\phi, \partial_\mu \phi, x) = 0
$$

\n
$$
\frac{\partial \mathcal{L}}{\partial(\partial_\mu \phi)} - \frac{\partial \mathcal{L}}{\partial \phi} = 0
$$
\n
$$
L = \int d^3x \mathcal{L}
$$

Classical Mechanics

- observables: q_i , p_i , $f(x_i, p_i)$
- Poisson bracket $\{q_i, p_j\} = \delta_{ij}$ ${q_i, q_j} = {p_i, p_j} = 0$

Quantum Mechanics

\n- operators:
$$
\hat{x}_i, \hat{p}_i, \hat{f}(\hat{x}_i, \hat{p}_i)
$$
\n

\n- Commutators
$$
[\hat{q}_i, \hat{p}_j] = i\delta_{ij}
$$
 $[\hat{q}_i, \hat{q}_j] = [\hat{p}_i, \hat{p}_j] = 0$ $[\hat{q}_i, \hat{q}_j] = [\hat{p}_i, \hat{p}_j] = 0$ $[2, 2, 3]$ $[3, 4]$ $[4, 6]$ $[5, 6]$ $[6, 6]$ $[7, 6]$ $[8, 6]$ $[9, 6]$ $[10, 10]$ $[11, 10]$ $[12, 10]$ $[13, 10]$ $[16, 10]$ $[17, 10]$ $[19, 10]$ $$

Field Quantisation

Classical Fields

- fields: ϕ , π , f (ϕ , π)
- Poisson bracket (at equal time) $\{\phi(t, \vec{x}), \pi(t, \vec{y})\} = \delta^{(3)}(\vec{x} - \vec{y})$ $\{\phi(t, \vec{x}), \phi(t, \vec{y})\} = \{\pi(t, \vec{x}), \pi(t, \vec{y})\} = 0$

Quantisation

Quantum Fields

- Quantum fields: $\phi(x)$, $\hat{\pi}(x)$, $f(\phi(x), \hat{\pi}(x))$ ̂
- Commutators (at equal time) $[\hat{\phi}(t,\vec{x}), \hat{\pi}(t,\vec{y})] = i\delta^{(3)}(\vec{x}-\vec{y})$ $[\phi(t, \vec{x}), \phi(t, \vec{y})] = [\hat{\pi}(t, \vec{x}), \hat{\pi}(t, \vec{y})] = 0$

Free scalar field

Lagrangian for a free real scalar field, describing neutral spin=0 particles with mass *m*:

Euler-Lagrange for ϕ yields:

$$
\mathscr{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi
$$

$$
(\partial_{\mu}\partial^{\mu} + m^2)\phi = (\Box + m^2)\phi = 0
$$

This is a wave equation! \rightarrow plane-wave solution as general ansatz

) *ϕ* = 0 *Klein-Gordon equation*

$$
\phi(x) = \frac{1}{(2\pi)^{3/2}} \int \frac{d^3}{2k}
$$

This solves the Klein-Gordon equation for $k^0=\sqrt{\overline{k}^2+m^2} \leftarrow \,$ relativistic energy-momentum relation $\ddot{}$ 2 $+ m^2 \leftarrow$ Having both $a(k)$ and $a^*(k)$ ensures that $\phi(x)$ remains real. Now we need to quantise this solution!

$$
\frac{d^{3}k}{2k^{0}} [a(k) e^{-ikx} + a^{*}(k) e^{ikx}]
$$

momentum-space coefficients

ensures Lorentz-invariance

Free scalar field

General solution of KG equation: $\phi(x) =$ 1 $(2\pi)^{3/2}$ \int

We thus have to promote $a(k)\to\hat a(k)$ and $a(k)^*\to\hat a^\dagger(k)$ to operators with commutators

$$
\frac{\mathrm{d}^3k}{2k^0} \left[a(k) e^{-ikx} + a^*(k) e^{ikx} \right]
$$

Determine associated conjugate momentum field $\pi(\vec{x}, t)$, interpret $\phi(x)$ and $\hat{\pi}(x)$ as operators demanding \overline{a} $\left[\hat{\phi}(t,\vec{x}), \hat{\pi}(t,\vec{y})\right] = i\delta^{(3)}(\vec{x}-\vec{y})$ $[\phi(t, \vec{x}), \phi(t, \vec{y})] = [\hat{\pi}(t, \vec{x}), \hat{\pi}(t, \vec{y})] = 0$

This is the algebra of a **simple harmonic oscillator** (SHO)!! As for the SHO $\hat a(\vec k)$ and $\hat a^\dag(\vec k)$ can be interpreted as ladder operators that create and annihilate one-particle states: $\ddot{}$ ̂ $\ddot{}$ $a^{\dagger}(k)$ | 0 > = | k > $a(k) |k\rangle = 2E_k \delta^{(3)}(\vec{k} - \vec{k}') |0\rangle$

$$
[\hat{a}(\vec{k}), \hat{a}^{\dagger}(\vec{k}')] = (2\pi)^3 \delta^{(3)}(\vec{k} - \vec{k}')
$$

$$
[\hat{a}(\vec{k}), \hat{a}(\vec{k}')] = [\hat{a}^{\dagger}(\vec{k}), \hat{a}^{\dagger}(\vec{k}')] = 0
$$

creation operator

annihilation operator

SHO in QM

Hamiltonian of SHO: $H =$ ̂ \hat{p}^2 **T** 2*m* + *mω*² 2 *x*2 The Schrödinger eq. $i\hbar$ $\frac{1}{\mu}$ $|\psi(t)\rangle$ = $H|\psi(t)\rangle$ can be solved algebraically introducing ladder operators d $\frac{d\mathbf{d}}{dt}$ $|\psi(t)\rangle = H|\psi(t)\rangle$ ̂

In terms of these ladder operators the Hamiltonian re

$$
\hat{a} = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega} \hat{x} + \frac{i}{\sqrt{m\omega}} \hat{p} \right) \text{ creation operator}
$$
\n
$$
\hat{a}^{\dagger} = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega} \hat{x} - \frac{i}{\sqrt{m\omega}} \hat{p} \right) \text{ annihilation operator}
$$
\nleads

\n
$$
\hat{H} = \hbar \omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) \rightarrow \hat{H} \mid n > = E_n \mid n > \text{ }
$$

And we have $[\hat{a}, \hat{a}^{\dagger}] = 1$, $[\hat{a}, \hat{a}] = [\hat{a}^{\dagger}, \hat{a}^{\dagger}] = 0$ ̂ ̂ ̂ ̂ ̂ ̂ ̂

and we have
$$
[\hat{a}, \hat{a}^{\dagger}] = 1
$$
, $[\hat{a}, \hat{a}] = [\hat{a}^{\dagger}, \hat{a}^{\dagger}] = 0$

\n $(a^{\dagger})^n | 0 > \sim | n > \quad \text{creation operator}$

\n $[\hat{H}, \hat{a}^{\dagger}] = \hbar \omega$, $[\hat{H}, \hat{a}] = -\hbar \omega$

\n $a | n > \sim | n - 1 > \quad \text{annihilation operator}$

Back to the scalar field

$$
a^{\dagger}(k) |0\rangle = |k\rangle
$$
 creation

$$
a(k) |k'\rangle = 2k^0 \delta^{(3)}(\vec{k} - \vec{k}') |0\rangle
$$
annihila

In terms of these operators we find the Hamiltonian of the free scalar field as

$$
H = \int d^3k \mathcal{H} = \int \frac{d^3k}{(2\pi)^3} \frac{1}{2} \left(\hat{a}^\dagger(k)\hat{a}(k) + \frac{1}{2} \left[\hat{a}(k), \hat{a}^\dagger(k) \right] \right)
$$

infinite number of SHOs $\longleftrightarrow \sim (2\pi)^3 \delta^{(3)}(0) \to \infty$

Vacuum state: $\hat{a}(k)|0\rangle = 0$ and $\langle 0|0\rangle = 1$ Generic n-particle state: $|\vec{k}_1...\vec{k}_n\rangle=(2E_{k_1})^{1/2}...(2E_{k_n})^{1/2}~\hat{a}^\dagger(\vec{k}_1)...a^\dagger(\vec{k}_n)~|0\rangle$ $\ddot{}$ As for SHO states $a^{\dagger}(\vec{k}) |0\rangle$ are eigenstates of the Hamiltonian \hat{H} : $\hat{H}\hat{a}^{\dagger}(\vec{k}) |0\rangle = E_k a^{\dagger}(\vec{k}) |0\rangle$ $\ddot{}$ ⃗ ⃗ ⃗ ̂

- **c**operator
- **ation operator**
-

- infinite ground-state energy \rightarrow ignore formally: "normal ordering"
- ̂ $\ddot{}$ ̂ ̂ ̂ $\ddot{}$ $\ddot{}$

 \int

Note: we have $|\vec{k}_1\vec{k}_2> \sim \hat{a}^\dagger(\vec{k}_1)a^\dagger(\vec{k}_2)|\vec{0}> = |\vec{k}_2\vec{k}_1> \quad \to \quad$ Bose-Einstein statistics → scalar field is a **boson** $[\hat{a}^\dagger(\vec{k}), \hat{a}^\dagger(\vec{k})]$ $\ddot{}$ ̂ k)] = 0 17

Particles \leftrightarrow Fields

The **field is a superposition of all possible momentum modes**. Thus, the field contains all freedom to describe all possible configurations of one or more particles in a given momentum state.

we can define state $|\vec{x}\rangle = \phi(0,\vec{x})|0\rangle =$ **The Contract of Contract o** 1 $(2\pi)^{3/2}$ d^3k = 1 $(2\pi)^{3/2}$ d^3k 2*k*⁰

i.e. $|\vec{x}\rangle$ is a superposition of single-particle states that have well defined momentum and energy. Interpretation: $\hat{\phi}(0,\vec{x})$ field operator acts on the vacuum and creates a particle at position \vec{x} . That particle does not have a unique momentum, but the probability to find it with momentum k is given by **The Contract of Contract o Solution**

particles = field excitations

Location of particles

$$
\frac{d^{3}k}{2k^{0}} \left[\hat{a}(k) e^{+i\vec{k}\cdot\vec{x}} + \hat{a}^{\dagger}(k) e^{-i\vec{k}\cdot\vec{x}} \right] |0\rangle
$$

$$
\frac{d^{3}k}{2k^{0}} e^{-i\vec{k}\cdot\vec{x}} | \vec{k}\rangle \quad \text{where} \quad |\vec{k}\rangle = \hat{a}^{\dagger}(\vec{k}) |0\rangle
$$

 $<$ 0 $|\hat{\phi}$ (0, \vec{x}) $|\vec{k}$ $>$ \sim $e^{+ik\cdot\vec{x}}$ **incoming state** $\langle k | \hat{\phi}(0,\vec{x}) | 0 \rangle \sim e^{-ik \cdot \vec{x}}$ **outgoing state** ∙ − − − − − −

− − − − − − ∙

Particles \leftrightarrow Fields

The **field is a superposition of all possible momentum modes**. Thus, the field contains all freedom to describe all possible

- configurations of one or more particles in a given momentum state.
	- particles = field excitations

we can define state $|\vec{x}\rangle = \phi(0,\vec{x})|0\rangle =$ **The Contract of Contract o** 1 $(2\pi)^{3/2}$ d^3k = 1 $(2\pi)^{3/2}$ d^3k 2*k*⁰

i.e. $|\vec{x}\rangle$ is a superposition of single-particle states that have well defined momentum and energy. Interpretation: $\hat{\phi}(0,\vec{x})$ field operator acts on the vacuum and creates a particle at position \vec{x} . That particle does not have a unique momentum, but the probability to find it with momentum k is given by **The Contract of Contract o Solution**

Location of particles

$$
\frac{d^{3}k}{2k^{0}} \left[\hat{a}(k) e^{+i\vec{k}\cdot\vec{x}} + \hat{a}^{\dagger}(k) e^{-i\vec{k}\cdot\vec{x}} \right] |0\rangle
$$

$$
\frac{d^{3}k}{2k^{0}} e^{-i\vec{k}\cdot\vec{x}} | \vec{k}\rangle \quad \text{where} \quad |\vec{k}\rangle = \hat{a}^{\dagger}(\vec{k}) |0\rangle
$$

 $<$ 0 $|\hat{\phi}$ (0, \vec{x}) $|\vec{k}$ $>$ \sim $e^{+ik\cdot\vec{x}}$ **incoming state** $\langle k | \hat{\phi}(0,\vec{x}) | 0 \rangle \sim e^{-ik \cdot \vec{x}}$ **outgoing state** ∙ − − − − − −

$$
------\n\cdot
$$
\n
$$
\langle 0 | \hat{\phi}(t, \vec{x}) | k \rangle \sim e^{-ik \cdot x}
$$
\n
$$
---\n\langle k | \hat{\phi}(t, \vec{x}) | 0 \rangle \sim e^{+ik \cdot x}
$$
\n
$$
| x \rangle = \hat{\phi}(t, \vec{x})
$$

̂

Based on $|\vec{x}\rangle$ we can also define a state $|x\rangle = \phi(x)|0\rangle = \phi(t,\vec{x})|0\rangle$

Amplitude for the propagation from *y* to *x*: $\langle x | y \rangle = \langle 0 | \phi(x) \phi(y) | 0 \rangle \equiv D(x, y)$

 $D(x, y)$ only depends on $x - y$: only the distance matters.

In order to ensure **causality** we need to further refine this picture and define the **Feynman Propagator**

$$
D_F(x - y) = \begin{cases} D(x - y) & \text{if } x^0 > y^0 \\ D(y - x) & \text{if } y^0 > x^0 \end{cases} = D(x - y)\Theta(x^0 - y^0) + D(y - x)\Theta(x^0 - y^0) = \left| D\left(\frac{\partial}{\partial y}\right)\hat{\phi}(y)\right|0>
$$

where we make use of the time-ordering operator \hat{T} :

$$
\hat{T}\hat{\phi}(x)\hat{\phi}(y) = \begin{cases} \hat{\phi}(x)\hat{\phi}(y) & \text{if } x^{0} > y^{0} \\ \hat{\phi}(y)\hat{\phi}(x) & \text{if } y^{0} > x^{0} \end{cases}
$$

The Feynman propagator is in essential ingredients of the Feynman rules needed to compute Feynman diagrams.

x

Momentum-space Feynman Propagator

The Feynman propagator is a Green's function of the inhomogeneous Klein-Gordon equation:

$$
(\partial_{\mu}\partial^{\mu} + m^2)D_F(x - y) = -\delta^4(x - y)
$$

In Fourier/momentum-space the inhomogeneous Klein-Gordon equation reads: $(k^2 - m^2) D(k) = 1$

Solutions to this differential equation can be obtained via Fourier transformation:

remember: $\delta^{(4)}(x - y) =$ d^4k $(2\pi)^4$ $e^{-ik \cdot (x-y)}$

$$
D_F(x - y) = \int \frac{d^4k}{(2\pi)^4} D(k) e^{-ik(x - y)}
$$

With the **momentum-space Feynman propagator** as solution:

convention
$$
iD(k) = \frac{i}{k^2 - m^2 +}
$$

Momentum-space Feynman Propagator

The Feynman propagator is a Green's function of the inhomogeneous Klein-Gordon equation:

$$
(\partial_{\mu}\partial^{\mu} + m^2)D_F(x - y) = -\delta^4(x - y)
$$

Solutions to this differential equation can be obtained via Fourier transformation:

$$
D_F(x - y) = \int \frac{d^4k}{(2\pi)^4} D(k) e^{-ik(x - y)}
$$

 $(k^2 - m^2) D(k) = 1$ In Fourier/momentum-space the inhomogeneous Klein-Gordon equation reads: remember:

With the **momentum-space Feynman propagator** as solution:

We can see this via

ensures time-ordering i.e. causality

$$
iD_F(x-y) = \int \frac{d^4k}{(2\pi)^4} \frac{ie^{-ik(x-y)}}{k^2 - m^2 + ie} = \frac{1}{(2\pi)^3} \int \frac{d^3k}{2k^0} \left[e^{-ik(x-y)} \Theta(x^0 - y^0) + e^{ik(x-y)} \Theta(y^0 - x^0) \right]_{k^0 = \sqrt{k^2 + m^2}} = \langle 0 | \hat{T} \hat{\phi}(x) \hat{\phi}(y) | 0 \rangle
$$

$$
d^0k \text{ integral via contour in lower/upper half-plane}
$$

$$
1 \leftarrow
$$

 $\delta^{(4)}(x - y) =$ d^4k $(2\pi)^4$ $e^{-ik \cdot (x-y)}$

Quantum Pictures

Schrödinger picture:

• states $| \phi_S(t) \rangle$ are time-dependent: $| \phi_S(t) \rangle = e^{-i\hat{H}}$ \bullet operators A_{S} are time-independent

Heisenberg picture:

- \cdot states $| \phi_H \rangle = | \phi_S(t_0) \rangle$ are time-independent
- \bullet operators $\hat{A}_H(t)$ time-dependent: $\hat{A}_H = U^{\dagger}$

utterstock.com · 145716736

$$
|\phi_S(t)\rangle = e^{-iH_S(t-t_0)} |\phi_S(t_0)\rangle = U(t, t_0) |\phi_S(t_0)\rangle
$$

\n
$$
\angle
$$

\ntime-evolution operator

$$
= U^{\dagger}(t,t_0) \hat{A}_S U(t,t_0)
$$

24

Interaction picture:

• separate
$$
|\hat{H} = \hat{H}_0 + \hat{H}_I|
$$

• states $| \phi_I(t) \rangle$ are time-dependent: $| \phi_I(t) \rangle = e^{i\hat{H}}$

 \rightarrow states evolve with interaction Hamiltonian H_I \bullet operators $\hat{A}_{I}(t)$ time-dependent: $\hat{A}_{I} = \hat{U}_{0}^{\dagger}$ ̂

 \rightarrow operators evolve with free Hamiltonian H_0 ̂

$$
\begin{aligned} \n\hat{U}_I(t) &> = e^{i\hat{H}_0(t-t_0)} \left| \phi_S(t) \right\rangle = \hat{U}_0^{\dagger}(t, t_0) \left| \phi_S(t) \right\rangle \\ \n& = e^{-i\hat{H}_I(t-t_0)} \left| \phi_S(t_0) \right\rangle = \hat{U}_I(t, t_0) \left| \phi_S(t_0) \right\rangle \\ \n\hat{U}_0^{\dagger}(t, t_0) \hat{A}_S \hat{U}_0(t, t_0) \n\end{aligned}
$$

0

To be precise:
$$
\widehat{U}_I(t,t_0) = \hat{T} e^{-i \int_0^t \hat{H}_I(t')dt'} \quad \text{as a solution of} \quad i \frac{\partial}{\partial t} \hat{U}(t,t_0) = \hat{H}_I(t) \hat{U}(t,t_0)
$$

Quantum Pictures

S-matrix

Ultimately we want to compute **cross sections for scattering processes**, i.e. probabilities for *p*1 p_n . . .

The projection of this state $|\phi(t)\rangle$ onto the out-state defines the **S-matrix** element In interaction picture free in-state evolves in interaction region: $|\phi(t)\rangle = U_I(t, -\infty)|$ in $>$

> Note: for $H_I = 0 \rightarrow S = 1$ ̂

free in-states interactions free out-states

- $|\text{in} \rangle = |p_1, ..., p_n; \text{in} \rangle = |\phi(t = -\infty) \rangle \longrightarrow |\text{out} \rangle = |p'_1, ..., p'_n; \text{out} \rangle = |\phi(t = +\infty) \rangle$
	-
	-
	-

$$
S_{\hat{\mathbf{h}}} = \langle f | \hat{\mathbf{S}} | \mathbf{i} \rangle = \lim_{\mathbf{t} \to +\infty} \langle f | \phi(\mathbf{t}) \rangle = \langle \mathbf{out} | \mathbf{U}_{\mathbf{I}}(+\infty, -\infty) | \mathbf{in} \rangle
$$

$$
\to \hat{\mathbf{S}} = \hat{U}(+\infty, -\infty) = \hat{T} e^{-i \int_{-\infty}^{\infty} \hat{H}_{\mathbf{I}}(\mathbf{t}') d\mathbf{t}'}
$$

S-matrix

$$
S_{\hat{\mathbf{h}}} = \langle f | \hat{\mathbf{S}} | \mathbf{i} \rangle = \lim_{\mathbf{t} \to +\infty} \langle f | \phi(\mathbf{t}) \rangle = \langle \mathbf{out} | U_{\mathbf{I}}(+\infty, -\infty) | \mathbf{in} \rangle
$$

$$
\to \hat{\mathbf{S}} = \hat{U}(+\infty, -\infty) = \hat{T} e^{-i \int_{-\infty}^{\infty} \hat{H}_{\mathbf{I}}(\mathbf{t}') d\mathbf{t}'} = \hat{T} \left(1 - i \int_{-\infty}^{\infty} H_{\mathbf{I}}(\mathbf{t}') d\mathbf{t}' + \dots \right)
$$

$$
\longrightarrow \quad | \text{out} \rangle = | p'_1, ..., p'_n; \text{out} \rangle = | \phi(t = +\infty) \rangle
$$

Ultimately we want to compute **cross sections for scattering processes**, i.e. probabilities for $|$ in > = $|p_1, ..., p_n;$ in > = $|\phi(t = -\infty)$ > *p*1 p_n . . .

The projection of this state $|\phi(t)\rangle$ onto the out-state defines the **S-matrix** element In interaction picture free in-state evolves in interaction region: $|\phi(t)\rangle = U_I(t, -\infty)|$ in $>$

free in-states interactions free out-states

perturbative expansion

S-matrix

$$
S_{\hat{\mathbf{h}}} = \langle f | \hat{\mathbf{S}} | \mathbf{i} \rangle = \lim_{\mathbf{t} \to +\infty} \langle f | \phi(\mathbf{t}) \rangle = \langle \mathbf{out} | \mathbf{U}_{\mathbf{I}}(+\infty, -\infty) | \mathbf{in} \rangle
$$

\n
$$
\to \hat{\mathbf{S}} = \hat{U}(+\infty, -\infty) = \hat{T} e^{-i \int_{-\infty}^{\infty} \hat{H}_{\mathbf{I}}(\mathbf{t}') d\mathbf{t}'} = \hat{T} \left(1 - i \int_{-\infty}^{\infty} H_{\mathbf{I}}(\mathbf{t}') d\mathbf{t}' + \dots \right) = \hat{T} \left(1 - i \int_{-\infty}^{\infty} \mathcal{H}_{\mathbf{I}}(\mathbf{x}') d^4 \mathbf{x}' + \dots \right)
$$

$|in\rangle = |p_1,...,p_n;in\rangle = |\phi(t = -\infty)\rangle$ *p*1 p_n . . . Ultimately we want to compute **cross sections for scattering processes**, i.e. probabilities for

The projection of this state $|\phi(t)\rangle$ onto the out-state defines the **S-matrix** element In interaction picture free in-state evolves in interaction region: $|\phi(t)\rangle = U_I(t, -\infty)|$ in $>$

perturbative expansion

$$
\longrightarrow \quad | \text{out} \rangle = | p'_1, ..., p'_n; \text{out} \rangle = | \phi(t = +\infty) \rangle
$$

free in-states interactions free out-states

Scattering amplitude in ϕ^4 -theory 4

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4
$$

$$
= \mathcal{L}_0 + \mathcal{L}_I
$$

 $\hat{a}^{\dagger}_{\vec{n}}$ ̂ \vec{p}_2 $\ddot{}$ $)|0>$

Scattering amplitude in ϕ^4 -theory 4

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4
$$

$$
= \mathcal{L}_0 + \mathcal{L}_I
$$

such expectations values of multiple field operators can be decomposed into products of two-point function = propagators

Scattering amplitude in ϕ^4 -theory 4

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4
$$

$$
= \mathcal{L}_0 + \mathcal{L}_I
$$

such expectations values of multiple field operators can be decomposed into products of two-point function = propagators

Scattering amplitude in ϕ^4 -theory 4

 $|0\rangle$ = <0 $|\hat{\phi}|\vec{p}\rangle$ = 1 · $e^{-ip\cdot x}$ $<$ 0| $\hat{T}(a_{\vec{p}}\hat{\phi})$ |0> = $<\vec{p}$ | $\hat{\phi}$ |0> = 1 · $e^{ip\cdot x}$ ̂ use: $\frac{1}{2} \left(\frac{\varphi}{p} \right)^{1-\frac{1}{2}}$ \rightarrow external lines external momentum-space wf

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4
$$

$$
= \mathcal{L}_0 + \mathcal{L}_I
$$

(assume: vacuum identical for in- and out-states)

 $\hat{a}^{\dagger}_{\vec{n}}$ ̂ \vec{p}_2 $\ddot{}$ $)|0>$

Scattering amplitude in ϕ^4 -theory 4

$$
\hat{a}_{\vec{p}_1'}\hat{a}_{\vec{p}_2'}\hat{\phi}\hat{\phi}\hat{\phi}\hat{\phi}\hat{a}^\dagger_{\vec{p}_1}\hat{a}^\dagger_{\vec{p}_2})|0\rangle
$$

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4
$$

$$
= \mathcal{L}_0 + \mathcal{L}_I
$$

Feynman rules for ϕ^4 theory 4

+ symmetry

1

Example

$$
\int \frac{1}{2}(-i\lambda)^2 \int \frac{d^4q}{(4\pi)^4} \frac{i}{q^2 - m^2} \frac{i}{(q + p_1 - p_1')^2 - 1} \times (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_1' - p_2')
$$
\n
$$
\int \frac{d^4q}{(4\pi)^4}
$$
\n
$$
\int \text{factors}
$$

Cross-sections

scattering process $a + b \rightarrow b_1 + b_2 + \cdots + b_n$ with momenta $P_i = p_a + p_b = P_f = p_1 + \cdots + p_n$ initial state: $|i\rangle = |a(p_a), b(p_b)\rangle$ final state $\cdots b_n(p_n)$

Amplitude for transition from $|i\rangle$ into $|f\rangle$ given by S-matrix element

$$
S_{fi} = \langle f | \hat{S} | i \rangle = (2\pi)^4 \delta^{(4)}(P_i - P_f) \mathcal{M}_{fi} (2\pi)^{-3(n+2)/2}
$$

total momentum conservation

e:
$$
|f\rangle = |b_1(p_1), \cdots b_n(p_n)\rangle
$$

2 Phase-space integral for final-state particles

$$
l^2 d\Omega = \sin\theta d\theta d\varphi
$$

Alternative field quantisation: Path integral

Wikipedia:

The path integral formulation of quantum field theory represents the transition amplitude (corresponding to the classical correlation function) as a weighted sum of all possible histories of the system from the initial to the final state.

 $\langle F \rangle =$ $\int \mathscr{D}\varphi F[\varphi]e^{i\delta[\varphi]}$ $\int \mathscr{D} \varphi e^{i \mathcal{S}[\varphi]}$

Field content of the SM

Source: Ars Technika

Source: CERN

STANDARD MODEL OF ELEMENTARY PARTICLES

QUARKS LEPTONS GAUGE BOSONS SCALAR BOSONS

A STANDARD MODEL WORKBOOK

Source: unkown

Field content of the SM

Source: The Particle Zoo

Field content of the SM

spin-1/2 fermion fields $\psi =$ *ψ*1 *ψ*2 *ψ*3 *ψ*4

spin-0 (complex) scalar field $\phi = \text{Re}\phi + i\,\text{Im}\phi$ spin-1 vector fields massless and massive *Aμ* $\left\{\n \begin{array}{c}\n \text{spin-1 vector fields } A^{\mu} = \text{massless and massive}\n \end{array}\n\right.$ A^0 *A*1 *A*2 *A*3

}

Free massive vector fields

The dynamics of a free **massive**

with the field-strength tensor

Plane wave solutions of Proca equations *^ν* (

Chosen such that $\epsilon^{(\lambda)} \cdot k = 0$, $\epsilon^{(\lambda)*} \cdot \epsilon^{(\lambda')} = - \delta_{\lambda \lambda'}$ and we have orthonormal

L polarisation vectors with $\lambda = 1.2.3$ (2 x transverse, 1 x longitudinal)

Vector field is described by:

\n
$$
\mathcal{L}_{\text{Proca}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{m^2}{2} Z_{\mu} Z^{\mu}
$$
\n
$$
F^{\mu\nu} = \partial^{\mu} Z^{\nu} - \partial^{\nu} Z^{\mu}
$$
\nand the 4-potential

\n
$$
Z^{\mu} = (\phi_Z, \vec{Z})
$$
\nscalar potential

\n
$$
\mathcal{L}_{\text{vector potential}}
$$
\ntree Proca equations:

\n
$$
\left[\left(\Box + m^2 \right) g^{\mu\nu} - \partial^{\mu} \partial^{\nu} \right] Z_{\nu} = 0
$$
\nquations:

\n
$$
\sim \epsilon_{\nu}^{(\lambda)}(\vec{k}) e^{-ikx}
$$

EL eq. with respect to Z^{ν} gives from

$$
_{\lambda\lambda'}
$$
 and we have $\sum_{\lambda=1}^{3} \epsilon_{\mu}^{(\lambda)*} \epsilon_{\nu}^{(\lambda)} = -g_{\mu\nu} + \frac{k_{\mu}k_{\nu}}{m^2}$
completeness

Free massive vector fields

General solution of Proca equation is given by superposition of plane waves:

annihilation operator $k \int \delta_{\lambda \lambda'} |0\rangle$

$$
Z_{\mu}(x) = \frac{1}{(2\pi)^{3/2}} \sum_{\lambda} \int \frac{d^3k}{2k^0} \left[a_{\lambda}(k) \, \epsilon_{\mu}^{(\lambda)}(k) \, e^{-ikx} + a_{\lambda}^{\dagger}(k) \, \epsilon_{\mu}^{(\lambda)}(k)^* \, e^{ikx} \right]
$$

creation operator

$$
a_{\lambda}^{\dagger}(k) |0\rangle = |k\lambda\rangle
$$

$$
a_{\lambda}(k) |k'\lambda'\rangle = 2k^0 \delta^3(\vec{k} - \vec{k})
$$

wave-functions for external state

$$
\langle 0 | A_{\mu}(x) | k\lambda \rangle \sim \epsilon_{\mu}^{(\lambda)}(k) e^{-ikx}
$$

$$
\langle k\lambda | A_{\mu}(x) | 0 \rangle \sim \epsilon_{\mu}^{(\lambda)}(k) * e^{ikx}
$$

incoming massive vector outgoing massive vector

propagator: Green's function of inhomogeneous Proca eq.

$$
\left[(\Box + m^2) g^{\mu \rho} - \partial^{\mu} \partial^{\rho} \right] D_{\rho \nu} (x - y) = g^{\mu}_{\ \nu} \delta^4 (x - y)
$$
\n
$$
\left[(-k^2 + m^2) g^{\mu \rho} + k^{\mu} k^{\rho} \right] D_{\rho \nu} (k) = g^{\mu}_{\ \nu}
$$
\n
$$
\longrightarrow
$$
\n<math display="block</math>

$$
\left[(-k^{2} + m^{2}) g^{\mu \rho} + k^{\mu} k^{\rho} \right] D_{\rho \nu}(k) = g^{\mu}_{\ \nu}
$$

$$
i D_{\rho \nu}(k) = \frac{i}{k^{2} - m^{2} + i\epsilon} \left(-g_{\nu \rho} + \frac{k_{\nu} k_{\rho}}{m^{2}} \right)
$$

momentum-space propagator

Free massless vector fields

The dynamics of a free massless vector field is described by:

EL equation with respect to A^{ν} gives free **Maxwell equations**:

propagator: Green's function of inhomogeneous Maxwell eq.

$$
\left(-k^2 g^{\mu\rho} + k^{\mu} k^{\rho}\right) L
$$

Free massless vector fields

The dynamics of a free massless vector field is described by:

EL equation with respect to A^{ν} gives free **Maxwell equations**:

propagator: Green's function of inhomogeneous Maxwell eq. $(-k^2 g^{\mu \rho} + k^{\mu} k^{\rho}) D_{\rho \nu}(k) = g^{\mu}$

F^{μν} is invariant under gauge transformations $A^{\mu}(x)$

to simplify computations → Feynman gauge) *(can e.g. choose* $\xi = 1$ *)*

This freedom is related to unphysical degrees of freedom: 2 d.o.f. for massless vector field vs 4 components of *A^ν*

Add gauge-fixing term to the Maxwell Lagrangian: $\mathscr L$

$$
)\rightarrow A^{\mu}(x)-\partial^{\mu}\chi(x)
$$

$$
\varrho = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2\xi} \left(\partial_{\mu} A^{\mu} \right)^2
$$

$$
\sum_{i} i D_{\rho\nu}(k) = \frac{i}{k^2 + i\epsilon} \left[-g_{\nu\rho} + (1 - \xi) \frac{k_{\nu}k_{\rho}}{k^2} \right]
$$

(arbitrary, *ξ* no physical impact)

momentum-space propagator

Free Fermion field

The dynamics of a free fermion field is described by the Dirac Lagrangian: i) *ψ* is a 4-component **spinor** field: *ψ*(*x*) ⁼ $\mathcal{W}_1(x)$ $\psi_2(x)$

ii) Dirac γ^{μ} -matrices are 4x4 matrices in spinor space with $\gamma^{0} =$ $\Big($

 $\psi_3(x)$ $\psi_4(x)$ **1** 0 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \gamma^k = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $0 \quad \sigma_k$ $-\sigma_k$ 0) Pauli matrices

-
-

iii) $\overline{\psi} = \psi^\dagger \gamma^0 = (\psi_1^*, \psi_2^*, -\psi_3^*, -\psi_4^*)$ needed such that $\overline{\psi}\psi$ is Lorentz invariant γ^μ -matrices fulfil $\{\gamma^\mu,\gamma^{\bar{\nu}}\} \equiv \gamma^\mu\gamma^\nu + \gamma^\nu\gamma^\mu = 2\,g^{\mu\nu}$ (defining property) anti-commutator

EL eq. for $\overline{\psi}$ yields: $(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$ **Dirac equation**

Two types of plane-wave solutions of Dirac equation with $E(p) = \sqrt{\vec{p}^2 + m^2}$, with $E(p) = \sqrt{\vec{p}^2 + m^2}$ anti-fermion ⃗

$$
\mathscr{L}_{\text{Dirac}} = \overline{\psi} (i\gamma^{\mu} \partial_{\mu} - m) \psi
$$

on:
$$
\psi_{+} = u(p) e^{-ipx}
$$
 incoming fermion
\n $\psi_{-} = v(p) e^{ipx}$ outgoing anti-fermior

Free Fermion field

Spinors $u(p)$, $v(p)$ fulfil the algebraic Dirac equations:

Can be classified according to eigenvalues with respect to heliangle to heliangle can be classed. 1 $\frac{1}{2} (\overrightarrow{\Sigma} \cdot \vec{n}) u_{\sigma}(p) = \sigma u_{\sigma}(p),$ $-\frac{1}{2}$ $\sigma = \pm 1/2$

General solution of Dirac equation is given by superposition of plane waves $ψ_+$:

$$
\begin{aligned}\n\mathbf{d} &= a_{\mu} \gamma^{\mu} \\
\text{if } \mathbf{p} &= 0, \qquad (\mathbf{p} + \mathbf{m}) \, \mathbf{v}(\mathbf{p}) = 0 \\
\text{let to helicity operator } \overrightarrow{\Sigma} &= \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix} \\
\frac{1}{2} \left(\overrightarrow{\Sigma} \cdot \vec{n} \right) \mathbf{v}_{\sigma}(\mathbf{p}) &= \sigma \, \mathbf{v}_{\sigma}(\mathbf{p}) \qquad \qquad \vec{n} = \frac{\vec{p}}{|\vec{p}|} \text{ direction of the } \n\end{aligned}
$$

ravel

$$
\psi(x) = \frac{1}{(2\pi)^{3/2}} \sum_{\sigma} \int \frac{d^3k}{2k^0} \left[a_{\sigma}(\vec{k}) u_{\sigma}(k) e^{-ikx} + b_{\sigma}^{\dagger}(\vec{k}) v_{\sigma}(k) e^{ikx} \right]
$$
\nannihilation operators for particles

\n
$$
\langle 0 | \psi(x) | f, k\sigma \rangle \sim u_{\sigma}(k) e^{-ikx}
$$
\n
$$
\langle \vec{b} | \psi(x) | 0 \rangle \sim \sqrt{u_{\sigma}(k)} e^{-ikx}
$$
\nstate

\n
$$
\langle f, k\sigma | \overline{\psi}(x) | 0 \rangle \sim \overline{u_{\sigma}(k)} e^{ikx}
$$
\nstate

\n
$$
\langle f, k\sigma | \overline{\psi}(x) | 0 \rangle \sim \overline{u_{\sigma}(k)} e^{ikx}
$$
\nstate

\n
$$
\langle f, k\sigma | \overline{\psi}(x) | 0 \rangle \sim \overline{u_{\sigma}(k)} e^{ikx}
$$
\nstate

\n
$$
\langle f, k\sigma | \overline{\psi}(x) | 0 \rangle \sim \overline{u_{\sigma}(k)} e^{ikx}
$$
\nstate

\n
$$
\langle f, k\sigma | \overline{\psi}(x) | 0 \rangle \sim \overline{u_{\sigma}(k)} e^{ikx}
$$
\nstate

\n
$$
\langle f, k\sigma | \overline{\psi}(x) | 0 \rangle \sim \overline{u_{\sigma}(k)} e^{ikx}
$$
\nstate

\n
$$
\langle f, k\sigma | \overline{\psi}(x) | 0 \rangle \sim \overline{u_{\sigma}(k)} e^{ikx}
$$

$$
\langle 0 | \psi(x) | f, k\sigma \rangle \sim u_{\sigma}(k) e^{-ikx}
$$

$$
\langle f, k\sigma | \overline{\psi}(x) | 0 \rangle \sim \overline{u}_{\sigma}(k) e^{ikx}
$$

wave-functions for external state

44

Dirac propagator

Determine Green's function of inhomogeneous Dirac equation: (*iγμ*∂*^μ* − *m*) *SF*(*x* − *y*) = **1** *δ*(4)

Determine Green's function of inhomogeneous Dirac equation:
$$
(i\gamma^{\mu}\partial_{\mu} - m)S_{F}(x - y) = \mathbf{1} \delta^{(4)}(x - y)
$$

\nSolution via Fourier ansatz: $S_{F}(x - y) = \int \frac{d^{4}k}{(2\pi)^{4}} S(k) e^{-ik(x-y)}$ with $(k - m) S(k) = \mathbf{1}$.

Dirac propagator is 4x4 matrix

$$
i S(k) = \frac{i}{k - m + i\epsilon} = \frac{i(k + m)}{k^2 - m^2 + i\epsilon}
$$

QED interaction

Maxwell equation sourced by 4-current: $\partial_\mu F^{\mu\nu} = J$

Corresponding Lagrangian: $\mathscr{L}_{MW} = \mathscr{L}_{EM} + \mathscr{L}_{int}$

A suitable 4-current in terms of a fermion (electron)

This is indeed a conserved current iff ψ is a solution

Fixing the proportionality factor in J^{μ} to $-e$ (charge of electron) yields the QED Lagrangian:

$$
J^{\nu}
$$
 where $\partial_{\nu}J^{\nu} = 0$ (current conservation)
= $-\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - J^{\mu}A_{\mu}$
Leveler field can be constructed as: $J^{\mu} \sim \overline{\psi}\gamma^{\mu}\psi$

of the Dirac eq:
$$
\partial_{\mu}J^{\mu} = \bar{\psi} \overline{\partial} \psi + \bar{\psi} (\partial \psi)
$$

= $(-m\bar{\psi})\psi + \bar{\psi} (m\psi) = 0$

$$
\mathcal{L}_{\text{QED}} = \mathcal{L}_{\text{EM}} + \mathcal{L}_{\text{Dirac}} + \mathcal{L}_{\text{int}} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} (i\partial - m)\psi + e\bar{\psi} \gamma^{\mu} \psi A_{\mu}
$$

$$
\partial_{\mu} \to D_{\mu} = \partial_{\mu} - ieA_{\mu} \quad \hookrightarrow \quad = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \bar{\psi}(i\cancel{D} - m)\psi
$$

covariant derivative

(+ gauge-fixing)

The Standard Model coffee mug

Not a coffee mug

Summary: QED Feynman rules

+ symmetry factors

 $ie\gamma^{\mu}$

$$
\overbrace{p \rightarrow} \qquad \qquad v(p)
$$

The Feynman van

$$
\times \sum_{s,s'} [\overline{u}_{s'}(k') \gamma_{\mu} u_{s}(k)][\overline{u}_{s'}(k') \gamma_{\rho} u_{s}(k)]^*,
$$

$$
-m_e^2 - m_\mu^2^2 + (u - m_e^2 - m_\mu^2)^2 + 2t (m_e^2 + m_\mu^2)
$$

$$
k) (p'k') + (pk')(p'k) + 2m_e^2m_\mu^2 - m_\mu^2(pp') - m_e^2(kk')\bigg)
$$

sum over final-state and average over initial-state polarisations

 $[\overline{u}_r(p')\gamma^\mu u_r(p)][\overline{u}_r(p')\gamma^\rho u_r(p)]^*$

Example: Coulomb scattering

unpolarised squared amplitude:
$$
|\mathcal{M}|^2 = \frac{2e^4}{t^2} \left((s - m_e^2 - m_\mu^2)^2 + (u - m_e^2 - m_\mu^2)^2 + 2t (m_e^2 + m_\mu^2)^2 \right)
$$

\n $\frac{u^{(k)}}$
\ndifferential cross section: $\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} \frac{|\vec{p}|}{|\vec{p'}|} \int |\mathcal{M}|^2$
\n $s \gg m_e^2, m_\mu^2$ ζ $s = 4p^2$, $t = -4p^2 \sin^2(\theta/2)$, $u = -4p^2 \cos^2(\theta/2)$
\n ζ $\frac{d\sigma}{d\Omega} \approx \frac{\alpha^2}{\pi^2} \frac{1 + \cos^4(\theta/2)}{\alpha^2}$

$$
\frac{d\Omega}{d\Omega} \simeq \frac{1}{2s} \frac{\sin^4(\theta/2)}{\sin^4(\theta/2)}
$$

Crucial observation: gauge symmetry in QED

The QED Lagrangian $\mathscr{L}_{\text{QED}}=-\frac{1}{4}$ 4 1 4 $F^{\mu\nu}F_{\mu\nu} + \bar{\psi}$ (*iD* − *m*) ψ

a local (=x-dependent) **gauge transformation** *ψ*(*x*) → *ψ*′(*x*) = *e*−*iα*(*x*)

 A_{μ} ^{$\prime}$}

$$
(x) \rightarrow \psi'(x) = e^{-i\alpha(x)}\psi(x)
$$

$$
(x) \rightarrow A'_{\mu}(x) = A_{\mu}(x) + \frac{1}{e} \partial_{\mu} \alpha(x)
$$

Notes:

- \cdot $F_{\mu\nu}$ is invariant by construction but the shift of A_μ in interaction term cancels exactly the additional Dirac term
- $\boldsymbol{\cdot}$ we can demand this $U(1)$ gauge invariance to construct the QED interaction term
- \bullet a term \sim $A^{\mu}A_{\mu}$ (see ${\mathscr L}_{\mathrm{Proca}}$) is NOT gauge-invariant \to **massless photon**
- \cdot ∂_μ $\;\rightarrow$ $\; D_\mu = \partial_\mu i e A_\mu$ ensures gauge invariance by construction $\;\rightarrow$ "**minimal coupling**"
- *F^{μν}F_{μν}* + $\bar{\psi}$ (*i* δ − *m*) ψ + $e\bar{\psi}$ γ^μ ψ A_μ
- $=--{F^{\mu\nu}}F_{\mu\nu}+\bar{\psi}\,(i\!\mathcal{D}-m)\psi\qquad\qquad$ is **invariant** under

Guiding principles

- space-time: Lorentz invariance
- internal: gauge invariance
- Renormalisability
- Minimality / Occam's razor

- Causality
- Unitarity (conservation of probability)

•Symmetry

Conclusions

- \triangleright QFT = QM + SR
- ‣ Every quantum field is superposition of quantised SHOs
- \triangleright $S_{\text{fi}} = \langle f | \hat{S} | i \rangle = \langle \text{out} | U_{\text{I}}(+\infty, -\infty) | i \text{n} \rangle$
- ‣ Feynman diagrams: graphical representation of Wick's theorem
- ‣ Guiding principle to construct consistent theories: symmetries
- \blacktriangleright Local $U(1)$ symmetry \rightarrow QED interactions

Questions?

