Field Theory & the EW Standard Model Part I: QFT in a nutshell

University of Sussex

OL OF HIGH-ENERGY PH Peebles, Scotland, UK September 2024

Jonas M. Lindert

Field

Field

Quantum Field Vacuum

Motivation for QFT

Key motivation: consistent combination of Quantum Mechanics + Special Relativity

Naive combination: relativistic quantum mechanics describes system of fixed number of particles

Schrödinger eq.:

$$i\partial_t \phi(t, \mathbf{x}) = \left(-\frac{1}{2m}\nabla^2 + V(\mathbf{x})\right)\phi(t, \mathbf{x}) = \hat{H}\phi(t, \mathbf{x})$$

plane wave solutions:

$$\phi(t, \mathbf{x}) \propto e^{-i(Et - \mathbf{p} \cdot \mathbf{x})} = e^{-ip \cdot \mathbf{x}}$$

classical energy-momentum relation:

$$E = \frac{p^2}{2m} + V(x) \, .$$

Klein-Gordon eq.:

$$\left(\partial_t^2 - \nabla^2 + m^2\right)\phi(t, \boldsymbol{x}) = \left(\partial_\mu\partial^\mu + m^2\right)\phi(x) = (\Box + m^2)\phi(x) =$$

plane wave solutions:

$$\phi(t, \mathbf{x}) \propto e^{-i(Et - \mathbf{p} \cdot \mathbf{x})} = e^{-ip \cdot \mathbf{x}}$$

relativistic energy-momentum relation:

$$E^2 = m^2 + p^2$$

Problem: negative energy solutions $E = \pm \sqrt{p^2 + m^2}$ spectrum not bounded from below

Notation/Conventions/SR recap

$$c = \hbar = 1$$

$$\mu, \nu = 0, 1, 2, 3 \text{ (greek indices)}$$

$$i, j = 1, 2, 3 \text{ (latin indices)}$$
Space-time coordinate **4-vector**: $x^{\mu} = \begin{pmatrix} t \\ \vec{x} \end{pmatrix} = \begin{pmatrix} x^0 \\ \vec{x} \end{pmatrix}$
Einstein's summation converting the second secon

Metric tensor is:

$$\eta_{\mu\nu} = g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Use metric to raise/lower indices: $x_{\mu} = \eta_{\mu\nu} x^{\nu}$ $x^{\mu} = \eta^{\mu\nu} x_{\nu}$

Lorentz boost in x-direction:

Notation/Conventions/SR recap

Invariant space-time interval: $t^2 - \vec{x}^2$

Covariant 4-vector: $x_{\mu} = \eta_{\mu\nu} x^{\nu} = (t, t)$

Lorentz invariant scalar product: $a \cdot$

Important examples of 4-vectors:

• 4-momentum $p^{\mu} = (E, \vec{p}), \quad \text{i.e}$

"Mass" is the "length" of the 4-momentum.

-4-derivative $\partial_{\mu} = (\partial_0, \partial_i)$ is a covariant 4-vector, i.e. $\partial^{\mu} = (\partial_t, -\partial_i)$, $\partial_{\mu}\partial^{\mu} = \partial_t^2 - \Delta = \Box$ and $\partial_{\mu}p^{\mu}(x) = \partial_0p^0 + \partial_ip^i$

$$x^{2} = x^{\mu}x^{\nu}\eta_{\mu\nu} = x^{\mu}\eta_{\mu\nu}x^{\nu} = x^{T}\eta x = x^{\mu}x_{\mu} \equiv x^{2}$$

$$(x, -\vec{x})$$

$$b = ab \equiv a^{\mu}b_{\mu} = a^{\mu}\eta_{\mu\nu}b^{\nu}$$

relativistic energy-momentum relation

e.
$$p^2 = p^{\mu} p_{\mu} = E^2 - \vec{p}^2 \equiv m^2$$

Note: $p \cdot x = p^{\mu}x_{\mu} = Et - \vec{p}\vec{x}$ is invariant (regularly used in QFT)

Lagrange formalism in classical mechanics

Classical mechanics can be formulated as a *least-action principle*.

Action:
$$S[x(t)] = \int_{t_A}^{t_B} L(x(t), \dot{x}(t), t) dt$$

with Lagrange function $L = L(x(t), \dot{x}(t), t) = T(x, \dot{x}, t) - V(x, t) = kinetic energy - potential energy$ Classical path such that: $\delta S[x(t)] = S[x(t) + \delta x(t)] - S[x(t)] = 0$

Equivalent with **Euler-Lagrange** (EL) equation:

Lagrange formalism in classical mechanics

Classical mechanics can be formulated as a *least-action principle*.

Action:
$$S[x(t)] = \int_{t_A}^{t_B} L(x(t), \dot{x}(t), t) dt$$

with Lagrange function $L = L(x(t), \dot{x}(t), t) = T(x, \dot{x}, t) - V(x, t) = kinetic energy - potential energy$ Classical path such that: $\delta S[x(t)] = S[x(t) + \delta x(t)] - S[x(t)] = 0$

Equivalent with **Euler-Lagrange** (EL) equation:

Example:

$$L = \frac{m^2}{2}\dot{x}^2 - V(x) \rightarrow \frac{d}{dt}m\dot{x} + \frac{\partial V(x)}{\partial x} = m\ddot{x} + \frac{\partial V(x)}{\partial x} = 0.$$

$$\rightarrow m\ddot{x} = -\frac{\partial V(x)}{\partial x} = F(x)$$

Hamilton formalism in classical mechanics

Based on Lagrange function $L = L(q_i(t), \dot{q}_i(t), t)$ for a set of generalised coordinates q_i define generalised momenta: $p_i = \frac{\partial L}{\partial \dot{a}_i}$.

Aim to treat q_i, p_i as dynamical variables (instead of q_i, \dot{q}_i).

For this define transformation $H = \sum_{i} p_i \dot{q}_i - L(q_i, \dot{q}_i, t)$ EL is equivalent to the Hamilton e.o.m: $\frac{dq_i}{dt} = \frac{\partial H}{\partial q_i}$, $\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}.$

The time-dependance of an observable $f = f(q_i, p_i, p_i)$

t) is then given by
$$\boxed{\frac{df}{dt} = \{f, H\} + \frac{\partial f}{\partial t}}$$
Poisson bracket: $\{f, g\} = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right)$

Least-action principle for classical fields

In classical field theory a field value is associated to every point in space. For a scalar field $\phi(\vec{x}, t)$ this is a scalar value, while a vector field $A^{\mu}(\vec{x}, t)$ associates a 4-vector to every point in space.

In order to formulate an action-principle for a field theory it is crucial to see the field itself as dynamical variable, while \vec{x} plays the role of a label.

Least-action principle for field
$$\phi(\vec{x}, t)$$
: $\delta S[\phi] = \int d^4x \, \mathscr{L}(\phi, \partial_\mu \phi, x) = 0$
Lagrange density
 $L = \int d^3x \, \mathscr{L}$
is equivalent with EL for $\phi(\vec{x}, t)$: $\partial_\mu \frac{\partial \mathscr{L}}{\partial(\partial_\mu \phi)} - \frac{\partial \mathscr{L}}{\partial \phi} = 0$

and a *Hamilton density* $\mathscr{H}(\phi, \pi, x) = \pi \partial_0 \phi - \mathscr{L}(\phi, \partial_\mu \phi, x)$

As in classical mechanics we can define a *conjugated momentum field* $\pi(\vec{x}, t)$

Classical Mechanics

- observables: $q_i, p_i, f(x_i, p_i)$
- Poisson bracket $\{q_i, p_j\} = \delta_{ij}$ $\{q_i, q_j\} = \{p_i, p_j\} = 0$

Field Quantisation

Classical Fields

- fields: $\phi, \pi, f(\phi, \pi)$
- Poisson bracket (at equal time) $\{\phi(t, \vec{x}), \pi(t, \vec{y})\} = \delta^{(3)}(\vec{x} - \vec{y})$ $\{\phi(t,\vec{x}),\phi(t,\vec{y})\} = \{\pi(t,\vec{x}),\pi(t,\vec{y})\} = 0$

Quantisation

Quantum Mechanics

• operators:
$$\hat{x}_i, \hat{p}_i, \hat{f}(\hat{x}_i, \hat{p}_i)$$

• Commutators

$$\begin{bmatrix} \hat{q}_i, \hat{p}_j \end{bmatrix} = i\delta_{ij}$$

$$\begin{bmatrix} \hat{q}_i, \hat{q}_j \end{bmatrix} = \begin{bmatrix} \hat{p}_i, \hat{p}_j \end{bmatrix} = 0$$
remember: $\hbar = 1$

$$\begin{bmatrix} \hat{q}_i, \hat{q}_j \end{bmatrix} = \begin{bmatrix} \hat{p}_i, \hat{p}_j \end{bmatrix} = 0$$

Quantum Fields

- Quantum fields: $\hat{\phi}(x), \hat{\pi}(x), \hat{f}(\hat{\phi}(x), \hat{\pi}(x))$
- Commutators (at equal time) $[\hat{\phi}(t,\vec{x}),\hat{\pi}(t,\vec{y})] = i\delta^{(3)}(\vec{x}-\vec{y})$ $[\hat{\phi}(t, \vec{x}), \hat{\phi}(t, \vec{y})] = [\hat{\pi}(t, \vec{x}), \hat{\pi}(t, \vec{y})] = 0$

Free scalar field

Lagrangian for a free real scalar field, describing neutral spin=0 particles with mass m:

Euler-Lagrange for ϕ yields:

$$(\partial_{\mu}\partial^{\mu} + m^2)\phi = (\Box + m^2)\phi = 0$$

This is a wave equation! \rightarrow plane-wave solution as general ansatz

$$\phi(x) = \frac{1}{(2\pi)^{3/2}} \int \frac{d}{2}$$

ensures Lorentz-invariance

This solves the Klein-Gordon equation for $k^0 = \sqrt{k^2} + m^2 \leftarrow relativistic energy-momentum relation$ Having both a(k) and $a^*(k)$ ensures that $\phi(x)$ remains real. Now we need to quantise this solution!

$$\mathscr{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi$$

Klein-Gordon equation

$$\begin{bmatrix} a(k) e^{-ikx} + a^*(k) e^{ikx} \end{bmatrix}$$

$$\begin{bmatrix} a(k) e^{-ikx} + a^*(k) e^{ikx} \end{bmatrix}$$
momentum-space coefficients

Free scalar field

General solution of KG equation: $\phi(x) = \frac{1}{(2\pi)^{3/2}} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$

We thus have to promote $a(k) \rightarrow \hat{a}(k)$ and $a(k)^* \rightarrow \hat{a}^{\dagger}(k)$ to operators with commutators

This is the algebra of a **simple harmonic oscillator** (SHO)!! As for the SHO $\hat{a}(\vec{k})$ and $\hat{a}^{\dagger}(\vec{k})$ can be interpreted as ladder operators that create and annihilate one-particle states: $a^{\dagger}(k) | 0 > = | k >$ $a(k) | k' > = 2E_k \delta^{(3)}(\vec{k} - \vec{k}') | 0 >$

$$\frac{\mathrm{d}^{3}k}{2k^{0}} \left[a(k) \, e^{-ikx} \, + \, a^{*}(k) \, e^{ikx} \right]$$

Determine associated conjugate momentum field $\pi(\vec{x},t)$, interpret $\hat{\phi}(x)$ and $\hat{\pi}(x)$ as operators demanding $\begin{bmatrix} \hat{\phi}(t, \vec{x}), \hat{\pi}(t, \vec{y}) \end{bmatrix} = i\delta^{(3)}(\vec{x} - \vec{y}) \\ \begin{bmatrix} \hat{\phi}(t, \vec{x}), \hat{\phi}(t, \vec{y}) \end{bmatrix} = [\hat{\pi}(t, \vec{x}), \hat{\pi}(t, \vec{y})] = 0$

$$\begin{aligned} & [\hat{a}(\vec{k}), \hat{a}^{\dagger}(\vec{k}')] = (2\pi)^3 \,\delta^{(3)}(\vec{k} - \vec{k}') \\ & [\hat{a}(\vec{k}), \hat{a}(\vec{k}')] = [\hat{a}^{\dagger}(\vec{k}), \hat{a}^{\dagger}(\vec{k}')] = 0 \end{aligned}$$

creation operator

annihilation operator

SHO in QM

Hamiltonian of SHO: $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}x^2$ The Schrödinger eq. $i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$ can be solved algebraically introducing ladder operators

In terms of these ladder operators the Hamiltonian re-

And we have $[\hat{a}, \hat{a}^{\dagger}] = 1$, $[\hat{a}, \hat{a}] = [\hat{a}^{\dagger}, \hat{a}^{\dagger}] = 0$ $[\hat{H}, \hat{a}^{\dagger}] = \hbar\omega, \ [\hat{H}, \hat{a}] = -\hbar\omega$

$$\hat{a} = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega} \, \hat{x} + \frac{i}{\sqrt{m\omega}} \, \hat{p} \right) \text{ creation operator}$$
$$\hat{a}^{\dagger} = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega} \, \hat{x} - \frac{i}{\sqrt{m\omega}} \, \hat{p} \right) \text{ annihilation operator}$$
eads $\hat{H} = \hbar \omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) \rightarrow \hat{H} | n > = E_n | n >$

 $(a^{\dagger})^n | 0 > \sim | n >$ creation operator $a \mid n > \sim \mid n - 1 >$ annihilation operator

Back to the scalar field

$$a^{\dagger}(k) | 0 \rangle = |k \rangle$$
 creation
 $a(k) |k' \rangle = 2k^0 \delta^{(3)}(\vec{k} - \vec{k}') | 0 \rangle$ annihila

In terms of these operators we find the Hamiltonian of the free scalar field as

$$H = \int d^{3}k \,\mathcal{H} = \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{2} \left(\hat{a}^{\dagger}(k)\hat{a}(k) + \frac{1}{2} \left[\hat{a}(k), \hat{a}^{\dagger}(k) \right] \right)$$

Vacuum state: $\hat{a}(k) | 0 > = 0$ and < 0 | 0 > = 1As for SHO states $a^{\dagger}(\vec{k}) | 0 >$ are eigenstates of the Hamiltonian \hat{H} : $\hat{H} \hat{a}^{\dagger}(\vec{k}) | 0 > = E_k a^{\dagger}(\vec{k}) | 0 >$ Generic n-particle state: $|\vec{k}_1...\vec{k}_n\rangle = (2E_{k_1})^{1/2}...(2E_{k_n})^{1/2} \hat{a}^{\dagger}(\vec{k}_1)...a^{\dagger}(\vec{k}_n) |0\rangle$ Note: we have $|\vec{k}_1\vec{k}_2 > \sim \hat{a}^{\dagger}(\vec{k}_1)a^{\dagger}(\vec{k}_2)|\vec{0} > = |\vec{k}_2\vec{k}_1 > \rightarrow$ Bose-Einstein statistics \rightarrow scalar field is a **boson** $\mathcal{L}\left[\hat{a}^{\dagger}(\vec{k}), \hat{a}^{\dagger}(\vec{k}')\right] = 0$

- operator
- tion operator

- infinite number of SHOs $\sim (2\pi)^3 \delta^{(3)}(0) \rightarrow \infty$ infinite ground-state energy \rightarrow ignore formally: "normal ordering"

Particles \leftrightarrow Fields

The field is a superposition of all possible momentum modes. Thus, the field contains all freedom to describe all possible configurations of one or more particles in a given momentum state.

particles = field excitations

Location of particles

we can define state $|\vec{x}\rangle = \hat{\phi}(0,\vec{x}) |0\rangle = \frac{1}{(2\pi)^{3/2}} \int \frac{d^3k}{2k^0}$ $=\frac{1}{(2\pi)^{3/2}}\int \frac{\mathrm{d}^3k}{2k^0}$

i.e. $|\vec{x}\rangle$ is a superposition of single-particle states that have well defined momentum and energy.

Interpretation: $\hat{\phi}(0,\vec{x})$ field operator acts on the vacuum and creates a particle at position \vec{x} . That particle does not have a unique momentum, but the probability to find it with momentum \vec{k} is given by

 $<0|\hat{\phi}(0,\vec{x})|\vec{k}> \sim e^{+i\vec{k}\cdot\vec{x}}$ incoming state _ _ _ _ _ _ _ $\langle \vec{k} | \hat{\phi}(0,\vec{x}) | 0 \rangle \sim e^{-i\vec{k}\cdot\vec{x}}$ outgoing state

$$\frac{k}{0} \left[\hat{a}(k) e^{+i\vec{k}\cdot\vec{x}} + \hat{a}^{\dagger}(k) e^{-i\vec{k}\cdot\vec{x}} \right] \left| 0 > \frac{k}{0} e^{-i\vec{k}\cdot\vec{x}} \left| \vec{k} > \right. \text{ where } \left| \vec{k} > = \hat{a}^{\dagger}(\vec{k}) \left| 0 > \right. \right. \right|$$

Particles \leftrightarrow Fields

The field is a superposition of all possible momentum modes. Thus, the field contains all freedom to describe all possible configurations of one or more particles in a given momentum state.

particles = field excitations

Location of particles

we can define state $|\vec{x}\rangle = \hat{\phi}(0,\vec{x}) |0\rangle = \frac{1}{(2\pi)^{3/2}} \int \frac{d^3k}{2k^0}$ $=\frac{1}{(2\pi)^{3/2}}\int \frac{\mathrm{d}^3k}{2k^0}$

i.e. $|\vec{x}\rangle$ is a superposition of single-particle states that have well defined momentum and energy.

Interpretation: $\hat{\phi}(0,\vec{x})$ field operator acts on the vacuum and creates a particle at position \vec{x} . That particle does not have a unique momentum, but the probability to find it with momentum \vec{k} is given by

 $<0|\hat{\phi}(0,\vec{x})|\vec{k}> \sim e^{+i\vec{k}\cdot\vec{x}}$ incoming state $\langle \vec{k} | \hat{\phi}(0,\vec{x}) | 0 \rangle \sim e^{-i\vec{k}\cdot\vec{x}}$ outgoing state

$$\frac{k}{0} \left[\hat{a}(k) \, e^{+i\vec{k}\cdot\vec{x}} + \hat{a}^{\dagger}(k) \, e^{-i\vec{k}\cdot\vec{x}} \right] \left| 0 > \frac{k}{0} e^{-i\vec{k}\cdot\vec{x}} \left| \vec{k} > \right. \quad \text{where} \quad \left| \vec{k} > = \hat{a}^{\dagger}(\vec{k}) \left| 0 > \right. \right| \right|$$

$$---- \cdot < 0 | \hat{\phi}(t, \vec{x}) | k > \sim e^{-ik \cdot x}$$
$$|x > = \hat{\phi}(t, \vec{x}) | 0 > \sim e^{+ik \cdot x}$$

Based on $|\vec{x}\rangle$ we can also define a state $|x\rangle = \hat{\phi}(x)|0\rangle = \hat{\phi}(t, \vec{x})|0\rangle$

Amplitude for the propagation from y to x: $\langle x | y \rangle = \langle 0 | \hat{\phi}(x) \hat{\phi}(y) | 0 \rangle \equiv D(x, y)$

D(x, y) only depends on x - y: only the distance matters.

In order to ensure causality we need to further refine this picture and define the Feynman Propagator

$$D_F(x - y) = \begin{cases} D(x - y) & \text{if } x^0 > y^0 \\ D(y - x) & \text{if } y^0 > x^0 \end{cases} = D(x - y) = D(x - y) = 0$$

where we make use of the time-ordering operator \hat{T} :

$$\hat{T}\hat{\phi}(x)\hat{\phi}(y) = \begin{cases} \hat{\phi}(x)\hat{\phi}(y) & \text{if } x\\ \hat{\phi}(y)\hat{\phi}(x) & \text{if } y \end{cases}$$

The Feynman propagator is in essential ingredients of the Feynman rules needed to compute Feynman diagrams.

 $(-y)\Theta(x^0 - y^0) + D(y - x)\Theta(x^0 - y^0) = \langle 0 | \hat{T}\hat{\phi}(x)\hat{\phi}(y) | 0 \rangle$

$$^{0} > y^{0}$$

 $v^0 > x^0$

Momentum-space Feynman Propagator

The Feynman propagator is a Green's function of the inhomogeneous Klein-Gordon equation:

$$(\partial_{\mu}\partial^{\mu} + m^2) D_F(x - y) = -\delta^4(x - y)$$

Solutions to this differential equation can be obtained via Fourier transformation:

$$D_F(x - y) = \int \frac{d^4k}{(2\pi)^4} D(k) e^{-ik(x-y)}$$

In Fourier/momentum-space the inhomogeneous Klein-Gordon equation reads: $(k^2 - m^2) D(k) = 1$

With the **momentum-space Feynman propagator** as solution:

convention
$$iD(k) = \frac{i}{k^2 - m^2 + c}$$

remember: $\delta^{(4)}(x-y) = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot (x-y)}$

Momentum-space Feynman Propagator

The Feynman propagator is a Green's function of the inhomogeneous Klein-Gordon equation:

$$(\partial_{\mu}\partial^{\mu} + m^2) D_F(x - y) = -\delta^4(x - y)$$

Solutions to this differential equation can be obtained via Fourier transformation:

$$D_F(x - y) = \int \frac{d^4k}{(2\pi)^4} D(k) e^{-ik(x-y)}$$

In Fourier/momentum-space the inhomogeneous Klein-Gordon equation reads: $(k^2 - m^2) D(k) =$

With the momentum-space Feynman propagator as solution:

We can see this via

$$iD_{F}(x-y) = \int \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} \frac{ie^{-ik(x-y)}}{k^{2} - m^{2} + i\epsilon} = \frac{1}{(2\pi)^{3}} \int \frac{\mathrm{d}^{3}k}{2k^{0}} \left[e^{-ik(x-y)}\Theta(x^{0} - y^{0}) + e^{ik(x-y)}\Theta(y^{0} - x^{0}) \right]_{k^{0} = \sqrt{k^{2} + m^{2}}} = <0 \mid \hat{T}\hat{\phi}(x)\hat{\phi}(x) = \sqrt{k^{2} + m^{2}} = <0 \mid \hat{T}\hat{\phi}(x)\hat{\phi}(x)$$

remember: $\delta^{(4)}(x-y) = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot (x-y)}$

ensures time-ordering i.e. causality

Quantum Pictures

Schrödinger picture:

• states $|\phi_S(t)\rangle$ are time-dependent: • operators \hat{A}_{S} are **time-independent**

Heisenberg picture:

- states $|\phi_H\rangle = |\phi_S(t_0)\rangle$ are time-independent
- operators $\hat{A}_{H}(t)$ time-dependent: \hat{A}_{H}

utterstock.com · 145716736

$$|\phi_{S}(t)\rangle = e^{-i\hat{H}_{S}(t-t_{0})} |\phi_{S}(t_{0})\rangle = U(t, t_{0}) |\phi_{S}(t_{0})\rangle$$

$$\swarrow$$
time-evolution operator

$$= U^{\dagger}(t, t_0) \hat{A}_S U(t, t_0)$$

23

Quantum Pictures

Interaction picture:

• separate
$$\hat{H} = \hat{H}_0 + \hat{H}_I$$

• states $|\phi_I(t)\rangle$ are time-dependent: $|\phi_I\rangle$

 \rightarrow states evolve with interaction Hamiltonian \hat{H}_I • operators $\hat{A}_I(t)$ time-dependent: $\hat{A}_I = \hat{U}_0^{\dagger}(t, t_0) \hat{A}_S \hat{U}_0(t, t_0)$

 \rightarrow operators evolve with free Hamiltonian \hat{H}_0

To be precise:
$$\hat{U}_{I}(t, t_{0}) = \hat{T} e^{-i \int_{t_{0}}^{t} \hat{H}_{I}(t')dt'}$$
 as a solution of $i \frac{\partial}{\partial t} \hat{U}(t, t_{0}) = \hat{H}_{I}(t) \hat{U}(t, t_{0})$

$$\begin{aligned}
\varphi_{I}(t) &> = e^{i\hat{H}_{0}(t-t_{0})} | \phi_{S}(t) \rangle = \hat{U}_{0}^{\dagger}(t,t_{0}) | \phi_{S}(t) \rangle \\
&= e^{-i\hat{H}_{I}(t-t_{0})} | \phi_{S}(t_{0}) \rangle = \hat{U}_{I}(t,t_{0}) | \phi_{S}(t_{0}) \rangle \\
\hat{U}_{I}^{\dagger}(t,t_{0}) | \phi_{S}(t_{0}) \rangle = \hat{U}_{I}(t,t_{0}) | \phi_{S}(t_{0}) \rangle
\end{aligned}$$

24

Ultimately we want to compute cross sections for scattering processes, i.e. probabilities for p_n free in-states

In interaction picture free in-state evolves in interaction region: $|\phi(t)\rangle = U_I(t, -\infty)|in\rangle$ The projection of this state $|\phi(t)\rangle$ onto the out-state defines the **S-matrix** element

$$S_{\text{fi}} = \langle \mathbf{f} | \hat{\mathbf{S}} | \mathbf{i} \rangle = \lim_{t \to +\infty} \langle \mathbf{f} | \phi(t) \rangle = \langle \text{out}$$
$$\rightarrow \hat{S} = \hat{U}(+\infty, -\infty) = \hat{T} e^{-i \int_{-\infty}^{\infty} \hat{H}_{I}(t') dt'}$$

Note: for $\hat{H}_I = 0 \rightarrow S = 1$

S-matrix

interactions free out-states

- $|in \rangle = |p_1, ..., p_n; in \rangle = |\phi(t = -\infty)\rangle \longrightarrow |out \rangle = |p'_1, ..., p'_n; out \rangle = |\phi(t = +\infty)\rangle$

 - $|U_{I}(+\infty, -\infty)|$ in >

Ultimately we want to compute cross sections for scattering processes, i.e. probabilities for p_1 p_n free in-states $|in\rangle = |p_1, ..., p_n; in\rangle = |\phi(t = -\infty)\rangle$

In interaction picture free in-state evolves in interaction region: $|\phi(t)\rangle = U_I(t, -\infty)|in\rangle$ The projection of this state $|\phi(t)\rangle$ onto the out-state defines the **S-matrix** element

$$S_{\rm fi} = \langle \mathbf{f} | \hat{\mathbf{S}} | \mathbf{i} \rangle = \lim_{t \to +\infty} \langle \mathbf{f} | \phi(\mathbf{t}) \rangle = \langle \text{out} | \mathbf{U}_{\rm I}(+\infty, -\infty) | \text{in} \rangle$$

$$\rightarrow \hat{S} = \hat{U}(+\infty, -\infty) = \hat{T} e^{-i \int_{-\infty}^{\infty} \hat{H}_{\rm I}(t')dt'} = \hat{T} \left(1 - i \int_{-\infty}^{\infty} H_{\rm I}(t') dt' + \dots \right)$$

perturbative expansion

S-matrix

interactions free out-states

$$\longrightarrow \quad |\operatorname{out}\rangle = = |p'_1, \dots, p'_n; \operatorname{out}\rangle = |\phi(t = +\infty)\rangle$$

Ultimately we want to compute cross sections for scattering processes, i.e. probabilities for p_1 p_n free in-states $|in\rangle = |p_1, ..., p_n; in\rangle = |\phi(t = -\infty)\rangle$

In interaction picture free in-state evolves in interaction region: $|\phi(t)\rangle = U_I(t, -\infty)|in\rangle$ The projection of this state $|\phi(t)\rangle$ onto the out-state defines the **S-matrix** element

$$S_{\mathrm{fi}} = \langle \mathbf{f} | \hat{\mathbf{S}} | \mathbf{i} \rangle = \lim_{t \to +\infty} \langle \mathbf{f} | \boldsymbol{\phi}(\mathbf{t}) \rangle = \langle \mathrm{out} | \mathbf{U}_{\mathrm{I}}(+\infty, -\infty) | \mathrm{in} \rangle$$

$$\rightarrow \hat{S} = \hat{U}(+\infty, -\infty) = \hat{T} e^{-i \int_{-\infty}^{\infty} \hat{H}_{\mathrm{I}}(t') dt'} = \hat{T} \left(1 - i \int_{-\infty}^{\infty} H_{\mathrm{I}}(t') dt' + \dots \right) = \hat{T} \left(1 - i \int_{-\infty}^{\infty} \mathscr{H}_{\mathrm{I}}(x') d^{4}x' + \dots \right)$$

perturbative expansion

S-matrix

interactions free out-states

$$\longrightarrow |\operatorname{out}\rangle = = |p'_1, \dots, p'_n; \operatorname{out}\rangle = |\phi(t = +\infty)\rangle$$

Scattering amplitude in ϕ^4 -theory

 $\mathscr{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4$ $=\mathscr{L}_{0}+\mathscr{L}_{I}$

Scattering amplitude in ϕ^4 -theory

$$\begin{aligned} \mathscr{L} &= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4 \\ &= \mathscr{L}_0 + \mathscr{L}_I \end{aligned}$$

such expectations values of multiple field operators can be decomposed into products of two-point function = propagators

Scattering amplitude in ϕ^4 -theory

$$\begin{aligned} \mathscr{L} &= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4 \\ &= \mathscr{L}_0 + \mathscr{L}_I \end{aligned}$$

such expectations values of multiple field operators can be decomposed into products of

Scattering amplitude in ϕ^4 -theory

$$\begin{aligned} \mathscr{L} &= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4 \\ &= \mathscr{L}_0 + \mathscr{L}_I \end{aligned}$$

$$\hat{T}(\hat{a}_{\vec{p}_{1}'}\hat{a}_{\vec{p}_{2}'}\hat{\phi}\hat{\phi}\hat{\phi}\hat{\phi}\hat{\phi}\hat{a}_{\vec{p}_{1}}^{\dagger}\hat{a}_{\vec{p}_{2}}^{\dagger})|0>$$

 $<0|\hat{T}(\hat{\phi}a_{\vec{p}}^{\dagger})|0> = <0|\hat{\phi}|\vec{p}> = 1 \cdot e^{-ip \cdot x}$ \rightarrow external lines $<0|\hat{T}(a_{\vec{p}}\hat{\phi})|0> = <\vec{p}|\hat{\phi}|0> = 1 \cdot e^{ip \cdot x}$

external momentum-space wf

Scattering amplitude in ϕ^4 -theory

$$\begin{aligned} \mathscr{L} &= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4 \\ &= \mathscr{L}_0 + \mathscr{L}_I \end{aligned}$$

$$\hat{T}(\hat{a}_{\vec{p}_{1}'}\hat{a}_{\vec{p}_{2}'}\hat{\phi}\hat{\phi}\hat{\phi}\hat{\phi}\hat{\phi}\hat{a}_{\vec{p}_{1}}^{\dagger}\hat{a}_{\vec{p}_{2}}^{\dagger})|0>$$

from external lines

+ symmetry

Feynman rules for ϕ^4 theory

1

$$\frac{\frac{1}{2}(-i\lambda)^{2}\int \frac{d^{4}q}{(4\pi)^{4}} \frac{i}{q^{2}-m^{2}} \frac{i}{(q+p_{1}-p_{1}')^{2}-d^{2}} \int \frac{d^{4}q}{(4\pi)^{4}} \int \frac{d^{4}q}{(4\pi)^{4}} \int \frac{d^{4}q}{(4\pi)^{4}} \int \frac{d^{4}q}{(4\pi)^{4}} \int \frac{i}{(2\pi)^{4}\delta^{(4)}(p_{1}+p_{2}-p_{1}'-p_{2}')} \int \frac{d^{4}q}{(4\pi)^{4}} \int \frac{d^{4}q$$

Example

Cross-sections

scattering process $a + b \rightarrow b_1 + b_2 + \dots + b_n$ with momenta $P_i = p_a + p_b = P_f = p_1 + \dots + p_n$ initial state: $|i\rangle = |a(p_a), b(p_b)\rangle$ final state

Amplitude for transition from $|i\rangle$ into $|f\rangle$ given by S-matrix element

$$S_{fi} = \langle f | \hat{S} | i \rangle = (2\pi)^4 \, \delta^{(4)}(P_i - P_f) \, \mathcal{M}_{fi} \, (2\pi)^{-3(n+2)/2}$$

total momentum conservation \checkmark matrix-element from Feynman rules

e:
$$|f\rangle = |b_1(p_1), \cdots , b_n(p_n)\rangle$$

 $= \frac{1}{\mathscr{F}} \cdot \prod_{f} \int d\Phi_{f} (2\pi)^{4} \, \delta^{(4)}(P_{i} - P_{f}) \, |\, \mathscr{M}_{fi}|^{2}$

$$d\Omega = \sin\theta \, d\theta \, d\varphi$$

Alternative field quantisation: Path integral

Wikipedia:

The path integral formulation of quantum field theory represents the transition amplitude (corresponding to the classical correlation function) as a weighted sum of all possible histories of the system from the initial to the final state.

 $\langle F \rangle = \frac{\int \mathcal{D}\varphi F[\varphi] e^{i\mathcal{S}[\varphi]}}{\int \mathcal{D}\varphi e^{i\mathcal{S}[\varphi]}}$

Field content of the SM

Source: Ars Technika

Source: unkown

Standard Model of Elementary Particles

Source: CERN

Source: BBC

STANDARD MODEL OF ELEMENTARY PARTICLES

QUARKS LEPTONS GAUGE BOSONS SCALAR BOSONS

Field content of the SM

Source: The Particle Zoo

Field content of the SM

	field			spin
quarks	$\left(egin{array}{c} u \ d \end{array} ight)_L u_R \ d_R \end{array}$	$\left(egin{array}{c} c \ s \end{array} ight)_L \ c_R \ s_R \end{array}$	$\left(egin{array}{c}t\\b\end{array} ight)_L\t_R\t_R\t_R\t_R\t_R\end{array}$	$1/2 \\ 1/2 \\ 1/2$
leptons	$\left(egin{array}{c} u_e \\ e \end{array} ight)_L \\ e_R \end{array}$	$\left(egin{array}{c} u_\mu \\ \mu \end{array} ight)_L \\ \mu_R \end{array}$	$\left(egin{array}{c} u_{ au} \\ au \end{array} ight)_L \\ au_R$	$1/2 \\ 1/2$
Higgs-doublet		$\left(egin{array}{c} \phi^+ \ \phi^0 \end{array} ight)_L$		0
gauge bosons		$G^a_\mu \ W^i_\mu \ B_\mu$		1 1 1

spin-1/2 fermion fields $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}$

 $\begin{array}{c} \\ -\end{array} \\ \left. \begin{array}{c} \\ \\ \\ \end{array} \right\} \quad \text{spin-0 (complex) scalar field } \phi = \operatorname{Re}\phi + i\operatorname{Im}\phi \\ \\ \\ \\ \\ \end{array} \\ \left. \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \left. \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \right\} \quad \text{spin-1 vector fields } A^{\mu} = \begin{pmatrix} A^{0} \\ A^{1} \\ A^{2} \\ A^{3} \end{pmatrix} \end{array}$

Free massive vector fields

The dynamics of a free massive vector field is desc

with the field-strength tensor

EL eq. with respect to Z^{ν} gives free **Proca equation**

Plane wave solutions of Proca equations: $\sim \epsilon_{\nu}^{(\lambda)}(k)$

Chosen such that $e^{(\lambda)} \cdot k = 0$, $e^{(\lambda)^*} \cdot e^{(\lambda')} = -\delta_{\lambda}$ orthonormal

t polarisation vectors with $\lambda = 1,2,3$ (2 x transverse, 1 x longitudinal)

$$_{\lambda\lambda'}$$
 and we have $\sum_{\lambda=1}^{3} \epsilon_{\mu}^{(\lambda)*} \epsilon_{\nu}^{(\lambda)} = -g_{\mu\nu} + \frac{k_{\mu}k_{\nu}}{m^{2}}$
 t completness

Free massive vector fields

General solution of Proca equation is given by superposition of plane waves:

$$Z_{\mu}(x) = \frac{1}{(2\pi)^{3/2}} \sum_{\lambda} \int \frac{\mathrm{d}^{3}k}{2k^{0}} \left[a_{\lambda}(k) \,\epsilon_{\mu}^{(\lambda)}(k) \,e^{-ikx} \,+\, a_{\lambda}^{\dagger}(k) \,\epsilon_{\mu}^{(\lambda)}(k)^{*} \,e^{ikx} \right]$$

$$a_{\lambda}^{\dagger}(k) | 0 \rangle = | k\lambda \rangle$$
$$a_{\lambda}(k) | k'\lambda' \rangle = 2k^0 \delta^3 (\vec{k} - \vec{k})$$

wave-functions for external state

$$<0 |A_{\mu}(x)| k\lambda > \sim \epsilon_{\mu}^{(\lambda)}(k) e^{-ikx}$$
$$< k\lambda |A_{\mu}(x)| 0 > \sim \epsilon_{\mu}^{(\lambda)}(k) * e^{ikx}$$

propagator: Green's function of inhomogeneous Proca eq.

$$i D_{\rho\nu}(k) = \frac{i}{k^2 - m^2 + i\epsilon} \left(-g_{\nu\rho} + \frac{k_{\nu}k_{\rho}}{m^2} \right)$$

creation operator

- (γ) $\delta_{\lambda\lambda'} | 0 > 0$ annihilation operator
- incoming massive vector outgoing massive vector

$$\begin{bmatrix} \left(\Box + m^2 \right) g^{\mu\rho} - \partial^{\mu} \partial^{\rho} \end{bmatrix} D_{\rho\nu}(x - y) = g^{\mu}_{\ \nu} \,\delta^4(x - y)$$

$$\begin{bmatrix} \left(-k^2 + m^2 \right) g^{\mu\rho} + k^{\mu} k^{\rho} \end{bmatrix} D_{\rho\nu}(k) = g^{\mu}_{\ \nu}$$
 momentum space

momentum-space propagator

Free massless vector fields

The dynamics of a free **massless vector field** is described by:

EL equation with respect to A^{ν} gives free **Maxwell equations**:

propagator: Green's function of inhomogeneous Maxwell eq.

 $\left(-k^2 g^{\mu\rho} + k^{\mu} k^{\rho}\right) D_{\rho\nu}(k) = g^{\mu}_{\ \nu}$

Free massless vector fields

The dynamics of a free **massless vector field** is described by:

EL equation with respect to A^{ν} gives free **Maxwell equations**:

propagator: $\left(-k^{2}g^{\mu\rho} + k^{\mu}k^{\rho}\right) D_{\rho\nu}(k) = g^{\mu}_{\ \nu}$ Green's function of inhomogeneous Maxwell eq.

 $F^{\mu\nu}$ is invariant under gauge transformations $A^{\mu}(x)$

This freedom is related to unphysical degrees of freedom: 2 d.o.f. for massless vector field vs 4 components of $A^{
u}$

Add gauge-fixing term to the Maxwell Lagrangian: \mathscr{L}

$$\checkmark \quad i D_{\rho\nu}(k) = \frac{i}{k^2 + i\epsilon} \left[-g_{\nu\rho} + (1 - \xi) \frac{k_{\nu} k_{\rho}}{k^2} \right]$$

$$A^{\mu}(x) \to A^{\mu}(x) - \partial^{\mu}\chi(x)$$

$$\mathcal{E} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2\xi} \left(\partial_{\mu} A^{\mu} \right)^{2}$$

(ξ arbitrary, no physical impact)

momentum-space propagator

(can e.g. choose $\xi = 1$ to simplify computations \rightarrow Feynman gauge)

Free Fermion field

The dynamics of a free fermion field is described by the **Dirac Lagrangian**: $\psi_1(x)$ i) ψ is a 4-component **spinor** field: $\psi(x) = \begin{vmatrix} \psi_2(x) \\ \psi_3(x) \end{vmatrix}$ $\Psi_{4}($

ii) Dirac γ^{μ} -matrices are 4x4 matrices in spin

 γ^{μ} -matrices fulfil { $\gamma^{\mu}, \gamma^{\nu}$ } $\equiv \gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2 g^{\mu\nu}$ (defining property) iii) $\overline{\psi} = \psi^{\dagger} \gamma^0 = (\psi_1^*, \psi_2^*, -\psi_3^*, -\psi_4^*)$ needed such that $\overline{\psi} \psi$ is Lorentz invariant

EL eq. for $\overline{\psi}$ yields: $(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$

Two types of plane-wave solutions of Dirac equation with $E(p) = \sqrt{\vec{p}^2 + m^2}$

$$\mathscr{L}_{\text{Dirac}} = \overline{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi$$

(x) Pauli matrices
For space with
$$\gamma^0 = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix}, \quad \gamma^k = \begin{pmatrix} 0 & \sigma_k \\ -\sigma_k & 0 \end{pmatrix}$$

Dirac equation

on:
$$\psi_{+} = u(p) e^{-ipx}$$
 incoming fermion
 $\psi_{-} = v(p) e^{ipx}$ outgoing anti-fermion

Free Fermion field

Spinors u(p), v(p) fulfil the algebraic Dirac equations:

Can be classified according to eigenvalues with respe $\frac{1}{2} \left(\vec{\Sigma} \cdot \vec{n} \right) u_{\sigma}(p) = \sigma u_{\sigma}(p), \qquad -\frac{1}{2}$

General solution of Dirac equation is given by superposition of plane waves ψ_+ :

annih

$$<0 | \psi(x) | f, k\sigma > \sim u_{\sigma}(k) e^{-ikx}$$
$$< f, k\sigma | \overline{\psi}(x) | 0 > \sim \overline{u}_{\sigma}(k) e^{ikx}$$

wave-functions for external state

$$i = a_{\mu}\gamma^{\mu}$$

$$: (p - m) u(p) = 0, (p + m) v(p) = 0$$
ect to helicity operator $\vec{\Sigma} = \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix}$

$$\frac{1}{2} (\vec{\Sigma} \cdot \vec{n}) v_{\sigma}(p) = \sigma v_{\sigma}(p) \qquad \vec{n} = \frac{\vec{p}}{|\vec{p}|} \quad \text{direction of the}$$

Dirac propagator

Determine Green's function of inhomogeneous Dira

Solution via Fourier ansatz: S_{i}

inhomogeneous Dirac equation:
$$(i\gamma^{\mu}\partial_{\mu} - m) S_F(x - y) = \mathbf{1} \,\delta^{(4)}(x - y)$$

Fourier
 $S_F(x - y) = \int \frac{\mathrm{d}^4 k}{(2\pi)^4} S(k) \, e^{-ik(x-y)}$ with $(k - m) S(k) = \mathbf{1}$.

Dirac propagator is 4x4 matrix

$$i S(k) = \frac{i}{k - m + i\epsilon} = \frac{i(k + m)}{k^2 - m^2 + i\epsilon}$$

QED interaction

Maxwell equation sourced by 4-current: $\partial_{\mu}F^{\mu
u}=J$

Corresponding Lagrangian: $\mathscr{L}_{MW} = \mathscr{L}_{EM} + \mathscr{L}_{int}$

A suitable 4-current in terms of a fermion (electron)

This is indeed a conserved current iff ψ is a solution

Fixing the proportionality factor in J^{μ} to -e (charge of electron) yields the QED Lagrangian:

$$\mathscr{L}_{\text{QED}} = \mathscr{L}_{\text{EM}} + \mathscr{L}_{\text{Dirac}} + \mathscr{L}_{\text{int}} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} (i\partial - m)\psi + e\bar{\psi} \gamma^{\mu} \psi A_{\mu}$$

 $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - ieA_{\mu} \qquad (= - - ieA_{\mu})$

covariant derivative

where
$$\partial_{\nu}J^{\nu} = 0$$
 (current conservation)
 $f = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - J^{\mu}A_{\mu}$
field can be constructed as: $J^{\mu} \sim \overline{\psi}\gamma^{\mu}\psi$

of the Dirac eq:
$$\partial_{\mu}J^{\mu} = \bar{\psi}\overleftarrow{\partial}\psi + \bar{\psi}(\partial\psi)$$

= $(-m\bar{\psi})\psi + \bar{\psi}(m\psi) = 0$

(+ qauge-fixing)

$$\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \bar{\psi}(i\mathcal{D} - m)\psi$$

The Standard Model coffee mug

Not a coffee mug

Summary: QED Feynman rules

+ symmetry factors

	Outgoing	
$(p+m) \over m^2 + i\varepsilon$	$p \rightarrow$	$\overline{u}(p)$

The Feynman van

sum over final-state and average over initial-state polarisations

$$\times \sum_{s,s'} \left[\overline{u}_{s'}(k') \gamma_{\mu} u_{s}(k) \right] \left[\overline{u}_{s'}(k') \gamma_{\rho} u_{s}(k) \right]^{*},$$

k)
$$(p'k') + (pk')(p'k) + 2m_e^2 m_\mu^2 - m_\mu^2(pp') - m_e^2(kk'))$$

$$-m_e^2 - m_\mu^2)^2 + (u - m_e^2 - m_\mu^2)^2 + 2t \left(m_e^2 + m_\mu^2\right) \bigg)$$

Example: Coulomb scattering

 $s \gg m_e^2, m_\mu^2$ $\zeta s = 4p^2, t = -4p^2 \sin^2(t)$ $\int d\sigma = \alpha^2 1 + \cos^4(\theta/2)$

$$\frac{d\omega}{d\Omega} \simeq \frac{\alpha}{2s} \frac{1 + \cos(\omega/2)}{\sin^4(\theta/2)}$$

$$\begin{aligned} \dot{d} &= \frac{2e^{4}}{t^{2}} \left((s - m_{e}^{2} - m_{\mu}^{2})^{2} + (u - m_{e}^{2} - m_{\mu}^{2})^{2} + 2t (m_{e}^{2} + m_{\mu}^{2})^{2} \right) \\ &= \frac{1}{64\pi^{2}s} \frac{|\vec{p}|}{|\vec{p'}|} \int |\mathcal{M}|^{2} \\ (\theta/2) \,, \qquad u = -4p^{2} \cos^{2}(\theta/2) \end{aligned}$$

Crucial observation: gauge symmetry in QED

The QED Lagrangian $\mathscr{L}_{\text{QED}} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \bar{\psi}(i\partial - m)\psi + e\bar{\psi}\gamma^{\mu}\psi A_{\mu}$ $= -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \bar{\psi}(i\partial - m)\psi \quad \text{is invariant under}$

a local (=x-dependent) gauge transformation ψ

 A_{μ}

Notes:

- $F_{\mu\nu}$ is invariant by construction but the shift of A_{μ} in interaction term cancels exactly the additional Dirac term
- we can demand this U(1) gauge invariance to construct the QED interaction term
- a term $\sim A^{\mu}A_{\mu}$ (see \mathscr{L}_{Proca}) is NOT gauge-invariant \rightarrow massless photon
- $\cdot \partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} ieA_{\mu}$ ensures gauge invariance by construction \rightarrow "minimal coupling"

$$(x) \to \psi'(x) = e^{-i\alpha(x)}\psi(x)$$
$$(x) \to A'_{\mu}(x) = A_{\mu}(x) + \frac{1}{e}\partial_{\mu}\alpha(x)$$

Guiding principles

- Causality
- Unitarity (conservation of probability)

Symmetry

- space-time: Lorentz invariance
- internal: gauge invariance
- Renormalisability
- Minimality / Occam's razor

Conclusions

- QFT = QM + SR
- Every quantum field is superposition of quantised SHOs
- $S_{fi} = \langle f | \hat{S} | i \rangle = \langle out | U_I(+\infty, -\infty) | in \rangle$
- Feynman diagrams: graphical representation of Wick's theorem
- Guiding principle to construct consistent theories: symmetries
- Local U(1) symmetry \rightarrow QED interactions

Questions?

