Field Theory & the EW Standard Model Part II: SM in a nutshell

University of Sussex

UROPFAN 2024 Fl

CHOOL OF HIGH-ENERGY PHYSICS Peebles, Scotland, UK September 2024

Jonas M. Lindert

The Standard Model

 $\mathcal{L}_{\rm SM}^{\rm classical} = \mathcal{L}_{\rm Yang-Mills} + \mathcal{L}_{\rm Dirac} + \mathcal{L}_{\rm Yukawa} + \mathcal{L}_{\rm Higgs}$

Guiding principles

- Causality
- Unitarity (conservation of probability)

Symmetry

- space-time: Lorentz invariance
- internal: gauge invariance
- Renormalisability
- Minimality / Occam's razor

5

Symmetry transformations

Discrete transformations

Parity: $\phi'(t, \vec{x}) = P\phi(t, \vec{x}) = \phi(t, -\vec{x})$ Time-reversal: $\phi'(t, \vec{x}) = T\phi(t, \vec{x}) = \phi(-t, \vec{x})$ Charge-conj.: $\phi'(t, \vec{x}) = C\phi(t, \vec{x}) = \phi^{\dagger}(t, \vec{x})$

Given a system is invariant under such a transformation \leftrightarrow symmetry

Transformation of a quantum state: $|\phi'\rangle = U|\phi$ If symmetry: $\langle \phi'|\phi'\rangle = \langle \phi|U^{\dagger}U|\phi\rangle = \langle \phi|U^{\dagger}U|\phi\rangle$

Continuous transformations

Space-time symmetry : $\phi'(x) = \phi(x - a)$ Internal symmetry : $\phi'(x) = e^{i\alpha(x)}\phi(x)$ Im $\phi(x)$ $\phi'(x)$ $\phi'(x) = e^{i\alpha}\phi(x)$

$$\phi >$$

$$\langle \phi | \phi \rangle \rightarrow U^{\dagger}U = 1$$
 i.e. U is unitary

Group theory

- Mathematical language of symmetry transformations: group theory
- Group: set with operation "•", such that $g_3 = g_1 \cdot g_2$ is also element of the group, where
 - $g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$
 - unity element e is element of a group: $e \cdot g$
 - for every group element there is an inverse

- Abelian group: $g_i \cdot g_j = g_i \cdot g_i$ for all group elements • Non-abelian group: $g_i \cdot g_j \neq g_j \cdot g_i$ for any two group elements
- Lie group: "a group on which you can make differential calculus"
- \Rightarrow any group element can be obtained as $U(x) = 1 + \alpha^a(x)T^a + \ldots = e^{i\alpha^a(x)T^a}$ $\rightarrow T^a = 1 \rightarrow U(1)$

$$f = g$$
$$g \cdot g^{-1} = e$$

(examples: integers with addition, rotations in 2D, modular arithmetic,...)

Example: U(1) of QED Example: SU(3) of QCD

 \frown T^a : generators of the group linear combination

The Standard Model

Symmetry:

$SU(3)_C \times SU(2)_L \times U(1)$

Matter content:

- 3 families of matter particles (quarks and leptons) in "fundamental representations"
- •8+3+1 Gauge fields in "adjoint representations"
- 1 Higgs doublet in "fundamental representation" of SU(2) acquires vacuum expectation
 - → electroweak symmetry breaking (EWSB)

$$)_Y \xrightarrow{\langle H \rangle} SU(3)_C \times U(1)_{\rm EM}$$

Some SU(N) group theory

SU(N): NxN unitary matrices U with determinant This is a Lie group, thus every group element can T^a : generators of the group with commutator [T $a = 1...N^2 - 1$ $N \times N$ matrices E.g. $SU(3)_C \times SU(2)_L \times 3$ 8 + 3 + 3

1:
$$UU^{\dagger} = U^{\dagger}U = 1$$
, $\det(U) = 1$.
In be obtained as $U = e^{i\alpha^{a}T^{a}}$ (summation over a)
 $T^{a}, T^{b}] = if^{abc}T^{c}$ conventional normal
 $Tr(T^{a}T^{b}) = \frac{1}{2}\delta$
structure constants
 $U(1)_{Y}$
1 = 12 generators

 \rightarrow gauge bosons

Some more SU(N) group theory

All particles are embedded in a **representation** D(U) of the gauge groups.

E.g. "fundamental representation": $D(U) = U_{ii}$ for all U in SU(N)• fundmental rep: • anti-fundmental rep: $\overline{\psi} \to \overline{\psi}' = \overline{\psi} U^{\dagger}$, where $\overline{\psi}$ is N-component row vector, called " \overline{N} " $\phi \rightarrow \phi' = \phi$, i.e. D(U) = 1, called "1" • singlet rep: .adjoint rep:

In the SM matter particles (fermions, Higgs) transform in the fundamental rep or as singlet. Gauge bosons always transform in the adjoint representation.

- - $(D: G \rightarrow \text{invertible matrices})$
- $\psi
 ightarrow \psi' = U \psi$, where ψ is N-component column vector, called "N"

 - $W \rightarrow W' = U W U^{\dagger}$, where $W = W_{ij}$ is a matrix, i, j = 1...N, called " $\mathbb{N}^2 \mathbb{1}$ "

Source: The Particle Zoo

11

		spin		
quarks	$\left(egin{array}{c} u \ d \end{array} ight)_L u_R \ d_R \end{array}$	$\left(egin{array}{c} c \ s \end{array} ight)_L \ c_R \ s_R \end{array}$	$\left(egin{array}{c} t \ b \end{array} ight)_L \ t_R \ b_R \end{array}$	$1/2 \\ 1/2 \\ 1/2$
leptons	$\left(egin{array}{c} u_e \\ e \end{array} ight)_L \\ e_R \end{array}$	$\left(egin{array}{c} u_\mu \\ \mu \end{array} ight)_L \\ \mu_R \end{array}$	$\left(egin{array}{c} u_{ au} \\ au \end{array} ight)_L \\ au_R$	$1/2 \\ 1/2$
Higgs-doublet		$\left(egin{array}{c} \phi^+ \ \phi^0 \end{array} ight)_L$		0
gauge bosons		$G^a_\mu \ W^i_\mu \ B_\mu$		1 1 1

		spin		
quarks	$\left(egin{array}{c} u \ d \end{array} ight)_L u_R \ d_R \end{array}$	$\left(egin{array}{c} c \ s \end{array} ight)_L \ c_R \ s_R \end{array}$	$\left(egin{array}{c} t \ b \end{array} ight)_L \ t_R \ b_R \end{array}$	$1/2 \\ 1/2 \\ 1/2$
leptons	$\left(egin{array}{c} u_e \\ e \end{array} ight)_L \\ e_R \end{array}$	$\left(egin{array}{c} u_\mu \\ \mu \end{array} ight)_L \\ \mu_R \end{array}$	$\left(egin{array}{c} u_{ au} \\ au \end{array} ight)_L \\ au_R$	$1/2 \\ 1/2$
Higgs-doublet		$\left(egin{array}{c} \phi^+ \ \phi^0 \end{array} ight)_L$		0
gauge bosons		$G^a_\mu \ W^i_\mu \ B_\mu$		1 1 1

$SU(3)_C \times SU(2)_L \times U(1)_Y$

		field		spin	$SU(3)_C$	$\times SU(2)_L$	$\times U(1)_{Y}$
quarks	$\left(egin{array}{c} u \ d \end{array} ight)_L u_R$	$\left(egin{array}{c} c \ s \end{array} ight)_L \ c_R$	$\left(egin{array}{c} t \ b \end{array} ight)_L \ t_R$	1/2 $1/2$	3 3	2 1	1/3 $4/3$
	d_R	s_R	b_R	1/2	3	1	-2/3
leptons	$\left(egin{array}{c} u_e \\ e \end{array} ight)_L$	$\left(egin{array}{c} u_\mu \\ \mu \end{array} ight)_L$	$\left(egin{array}{c} u_{ au} \\ au \end{array} ight)_L$	1/2	1	2	-1
	e_R	μ_R	$ au_R$	1/2	1	1	-2
Higgs-doublet		$\left(egin{array}{c} \phi^+ \ \phi^0 \end{array} ight)_L$		0	1	2	1
		G^a_μ		1	8	1	0
gauge bosons		W^i_μ		1	1	3	0
		B_{μ}		1	1	1	0

$\alpha \mathbf{T}(\mathbf{a}) \qquad \alpha \mathbf{T}(\mathbf{a})$ $U(1)_Y$

Consider: $\mathscr{L}_{\text{Dirac}} = \overline{\psi} (i\partial - m) \psi$ and we demand $\psi / \overline{\psi}$ to transform as $\mathbf{N} / \overline{\mathbf{N}}$: $\psi = \psi_i, \overline{\psi} = \overline{\psi}_j$ under SU(N)

Consider:
$$\mathscr{L}_{\text{Dirac}} = \overline{\psi} (i \partial - m) \psi$$
 and we demand
 $\mathscr{L}_{\text{Dirac}} = \overline{\psi}_i (i \partial \delta_{ij} - m \delta_{ij}) \psi_j$ this is inv

 $\psi/\overline{\psi}$ to transform as $\mathbf{N}/\overline{\mathbf{N}}$: $\psi = \psi_i, \overline{\psi} = \overline{\psi}_j$ under SU(N)

ivariant under global $\psi \to U\psi$, but not under local U = U(x)

17

Consider:
$$\mathscr{L}_{\text{Dirac}} = \overline{\psi} (i \partial - m) \psi$$
 and we demand
 $\langle \mathscr{L}_{\text{Dirac}} = \overline{\psi}_i (i \partial \delta_{ij} - m \delta_{ij}) \psi_j$ this is invitation of the second sec

This introduces a coupling between the the fermion and the vector field: $\mathscr{L}_{\text{Dirac}} \to \mathscr{L} = \mathscr{L}_{\text{Dirac}} + \mathscr{L}_{\text{int}} \quad \text{with} \quad \mathscr{L}_{\text{int}} = g \,\overline{\psi} \gamma^{\mu} \mathbf{V}_{\mu} \psi = g \,\overline{\psi} \gamma^{\mu} T_{a} \psi V_{\mu}^{a}$

new Lagrangian is invariant under local gauge transformation

$$\psi \to \psi' = U\psi$$
$$\mathbf{V}_{\mu} \to \mathbf{V}_{\mu}' = U\mathbf{V}_{\mu}U^{\dagger} - \frac{i}{g}(\partial_{\mu}U)U$$

 $\psi/\overline{\psi}$ to transform as N/\overline{N} : $\psi = \psi_i, \overline{\psi} = \overline{\psi}_j$ under SU(N)

ivariant under global $\psi \to U\psi$, but not under local U = U(x)

$$U)U^{\dagger}$$

18

Generalisation of field-strength tensor

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \frac{i}{e}[D_{\mu}, D_{\nu}] \quad \rightarrow$$

$$\mathbf{F}_{\mu\nu} = \frac{i}{g} [\mathbf{D}_{\mu}, \mathbf{D}_{\nu}]$$

We need to add a kinetic term for the gauge field to allow it to propagate $~~\sim\sim\sim\sim\sim$

Generalisation of field-strength tensor

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \frac{i}{e}[D_{\mu}, D_{\nu}] \quad \rightarrow$$

$$\rightarrow \mathbf{F}_{\mu\nu} = \partial_{\mu} \mathbf{V}_{\nu} - \partial_{\nu} \mathbf{V}_{\mu} - i g \left[\mathbf{V}_{\mu}, \mathbf{V}_{\nu} \right] =$$

Generalisation of field-strength tensor

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \frac{i}{e}[D_{\mu}, D_{\nu}] \rightarrow \mathbf{F}_{\mu\nu} = \frac{i}{g}[\mathbf{D}_{\mu}, \mathbf{D}_{\nu}]$$

$$\rightarrow \mathbf{F}_{\mu\nu} = \partial_{\mu}\mathbf{V}_{\nu} - \partial_{\nu}\mathbf{V}_{\mu} - ig[\mathbf{V}_{\mu}, \mathbf{V}_{\nu}] = \overline{T^{a}F_{\mu\nu}^{a}} \qquad \mathbf{V}_{\mu} = T^{a}V_{\mu}^{a}$$

$$(\mathbf{F}_{\mu\nu}^{a} = \partial_{\mu}V_{\nu}^{a} - \partial_{\nu}V_{\mu}^{a} + gf^{abc}V_{\nu}^{b}V_{\nu}^{c}$$

$$F^{a}_{\mu\nu} = \partial_{\mu}V_{\nu}^{a} - \partial_{\nu}V_{\mu}^{a} + gf^{abc}V_{\nu}^{b}V_{\nu}^{c}$$

$$F^{a}_{\mu\nu} = \partial_{\mu}V_{\nu}^{a} - \partial_{\nu}V_{\mu}^{a} + gf^{abc}V_{\mu}^{b}V_{\nu}^{c}$$

Under trace cyclic $\operatorname{Tr}(\mathbf{F}'_{\mu\nu}\mathbf{F}'^{\mu\nu}) = \operatorname{Tr}(\widetilde{U}\mathbf{F}_{\mu\nu}U^{\dagger}U\mathbf{F}^{\mu\nu}\widetilde{U}^{\dagger}) = \operatorname{Tr}(U^{\dagger}U\mathbf{F}_{\mu\nu}U^{\dagger}U\mathbf{F}^{\mu\nu}) = \operatorname{Tr}(\mathbf{F}_{\mu\nu}\mathbf{F}^{\mu\nu}) \text{ is gauge invariant}$

Kinetic term for non-abelian gauge bosons $\mathscr{L}_{\rm YM} = -\frac{1}{2} \operatorname{Tr}(\mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu}) = -\frac{1}{2} \operatorname{Tr}(T^a T^b) F^a_{\mu\nu} F^{b,\mu\nu} = -\frac{1}{4} F^a_{\mu\nu} F^{a,\mu\nu}$

Kinetic term for non-abelian gauge bosons

$$\begin{aligned}
\frac{1}{2} \delta^{ab} \\
\mathscr{L}_{YM} &= -\frac{1}{2} \operatorname{Tr}(\mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu}) = -\frac{1}{2} \operatorname{Tr}(T^{a}T^{b}) F^{a}_{\mu\nu} F^{b,\mu\nu} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a,\mu\nu} \\
&= -\frac{1}{4} \left(\partial_{\mu} V^{a}_{\nu} - \partial_{\nu} V^{a}_{\mu} \right) \left(\partial^{\mu} V^{a,\nu} - \partial^{\nu} V^{a,\mu} \right) \\
&= -\frac{1}{4} \left(\partial_{\mu} V^{a}_{\nu} - \partial_{\nu} V^{a}_{\mu} \right) \left(\partial^{\mu} V^{a,\nu} - \partial^{\nu} V^{a,\mu} \right) \\
&= -\frac{g^{2}}{4} f_{abc} \left(\partial_{\mu} V^{a}_{\nu} - \partial_{\nu} V^{a}_{\mu} \right) V^{b,\mu} V^{c,\nu} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c,\mu} V^{c,\mu} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} f_{abc} f_{ade} V^{b}_{\mu} V^{c,\mu} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} f_{abc} f_{ade} f_{ade} f_{abc} f_{ade} f_{abc} f_{ade} f_{abc} f_{ade} f_{abc} f_{ade} f_{ade} f_{abc} f_{ade} f_{abc} f_{ade} f_{ade} f_{abc} f_{ade} f_{ade$$

Kinetic term for non-abelian gauge bosons

$$\begin{aligned}
\frac{1}{2} \delta^{ab} \\
\Re_{YM} &= -\frac{1}{2} \operatorname{Tr}(\mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu}) = -\frac{1}{2} \operatorname{Tr}(T^{a}T^{b}) F^{a}_{\mu\nu} F^{b,\mu\nu} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a,\mu\nu} \\
&= -\frac{1}{4} (\partial_{\mu} V^{a}_{\nu} - \partial_{\nu} V^{a}_{\mu}) (\partial^{\mu} V^{a,\nu} - \partial^{\nu} V^{a,\mu}) \quad \text{kinetic-term} \\
&= -\frac{1}{4} (\partial_{\mu} V^{a}_{\nu} - \partial_{\nu} V^{a}_{\mu}) (\partial^{\mu} V^{a,\nu} - \partial^{\nu} V^{a,\mu}) \quad \text{kinetic-term} \\
&= -\frac{g^{2}}{4} f_{abc} (\partial_{\mu} V^{a}_{\nu} - \partial_{\nu} V^{a}_{\mu}) V^{b,\mu} V^{c,\nu} \quad \text{trilinear interactions} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \quad \text{quartic interactions} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \quad \text{quartic interactions} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \quad \text{quartic interactions} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \quad \text{quartic interactions} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \quad \text{quartic interactions} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \quad \text{quartic interactions} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \quad \text{quartic interactions} \\
&= -\frac{g^{2}}{4} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \quad \text{quartic interactions} \\
&= -\frac{g^{2}}{4} f_{abc} f_{abc} f_{ade} V^{b}_{\mu} V^{c}_{\nu} V^{d,\mu} V^{e,\nu} \quad \text{quartic interactions} \\
&= -\frac{g^{2}}{4} f_{abc} f_{$$

aotaro

$$\mathscr{L} = \mathscr{L}_{\rm YM} + \mathscr{L}_{\rm Dirac} = -\frac{1}{2} \operatorname{Tr}(\mathbf{F}_{\mu\nu}\mathbf{F}^{\mu\nu}) + \Psi(i\mathbf{D} - m\delta_{ij})\Psi$$
$$\mathscr{L} = \mathscr{L}_{\rm YM} + \mathscr{L}_{\rm cKG} = -\frac{1}{2} \operatorname{Tr}(\mathbf{F}_{\mu\nu}\mathbf{F}^{\mu\nu}) + (\mathbf{D}_{\mu}\Phi)^{\dagger}(\mathbf{D}^{\mu}\Phi) - m$$

7 ν

gauge-invariant fermion

 $m^2 \Phi^{\dagger} \Phi$

gauge-invariant complex scalar

The Standard Model

Symmetry:

$$SU(3)_C \times SU(2)_L \times U(1)_Y \xrightarrow{\langle H \rangle} SU(3)_C \times U(1)_{\rm EM}$$

Matter content:

- 3 families of matter particles (quarks and leptons) in "fundamental representations"
- •8+3+1 Gauge fields in "adjoint representations"
- •1 Higgs doublet in "fundamental representation" of SU(2) acquires vacuum expectation
 - → electroweak symmetry breaking (EWSB)

- QCD = invariance under local SU(3)
- the corresponding gauge field (=gluons) transforms in the adjoint rep. of SU(3), i.e. as ${f 8}$

• quarks transform in fundamental rep of SU(3) \rightarrow triplets, i.e. they carry an additional colour-charge index

- QCD = invariance under local SU(3)
- the corresponding gauge field (=gluons) transforms in the adjoint rep. of SU(3), i.e. as $\bf 8$

• quarks transform in fundamental rep of SU(3) \rightarrow triplets, i.e. they carry an additional colour-charge index

$$\mathscr{L}_{\text{QCD}} = -\frac{1}{4} G^{a\mu\nu}_{\mu\nu} G^a_{\mu\nu} + \overline{\psi}_i (i \mathcal{D}_{ij} - m \,\delta_{ij}) \,\psi_j$$
gluon-colour index, a=1...8
$$quark-colour index$$

$$i,j=1,2,3$$

$$duark-colour index$$

$$i,j=1,2,3$$

$$generators of SU(3) \text{ in fundamental rep: 3x3 matrix}$$

$$[t^a, t^b] = i f^{abc} t^c$$

- QCD = invariance under local SU(3)
- the corresponding gauge field (=gluons) transforms in the adjoint rep. of SU(3), i.e. as $\bf 8$

QCD Lagrangian for f={u,d,c,s,t,b} quarks:

\sim

')(`)

• quarks transform in fundamental rep of SU(3) \rightarrow triplets, i.e. they carry an additional colour-charge index

$$\mathscr{L}_{\text{QCD}} = -\frac{1}{4} G^{a\mu\nu} G^a_{\mu\nu} + \sum_f \overline{\psi}^f_i (i \not{D}_{ij} - m^f \delta_{ij}) \psi^f_j$$

$$\checkmark \quad 6 \text{ identical copies}$$

QCD Feynman rules $lg_{s}\gamma^{\mu}$ all the same $g_{s}^{\mu\nu}f^{abc}\left(g^{\mu\nu}(p-q)^{\rho}+g^{\nu\rho}(q-r)^{\mu}+g^{\rho\mu}(r-p)^{\nu}\right)$ J $-ig_s^2 \left(f^{abe} f^{cde} (g^{\mu\rho} g^{\nu\sigma} - g^{\mu\sigma} g^{\nu\rho}) \right)$ $+f^{ace}f^{bde}(g^{\mu\nu}g^{\rho\sigma}-g^{\mu\sigma}g^{\nu\rho})$ $+f^{ade}f^{bce}(g^{\mu\nu}g^{\rho\sigma}-g^{\mu\rho}g^{\nu\sigma})\Big)$ 5

$$\delta_{kj} \; \frac{i(p+m)}{p^2 - m^2 + i\varepsilon}$$

 \rightarrow Gavin's QCD course after the coffee break

The Standard Model

Symmetry:

$$SU(3)_C \times SU(2)_L \times U(1)_Y \xrightarrow{\langle H \rangle} SU(3)_C \times U(1)_{\rm EM}$$

Matter content:

- 3 families of matter particles (quarks and leptons) in "fundamental representations"
- •8+3+1 Gauge fields in "adjoint representations"
- •1 Higgs doublet in "fundamental representation" of SU(2) acquires vacuum expectation
 - → electroweak symmetry breaking (EWSB)

The unbroken Standard Model

$$SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$$

$$\mathscr{L}_{YM} = -\frac{1}{4}G^{a\ \mu\nu}G^{a}_{\mu\nu} - \frac{1}{4}W^{i\ \mu\nu}W^{i}_{\mu\nu} - \frac{1}{4}B^{\mu\nu}B_{\mu\nu}$$
with the field strength tensors:
$$G^{a}_{\mu\nu} = \partial_{\mu}G^{a}_{\nu} - \partial_{\nu}G^{a}_{\mu} + g_{s}f^{abc}G^{b}_{\mu}G^{c}_{\nu},$$

$$W^{i}_{\mu\nu} = \partial_{\mu}W^{i}_{\nu} - \partial_{\nu}W^{i}_{\mu} + g_{2}\epsilon^{ijk}W^{j}_{\mu}W^{k}_{\nu},$$

$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

structure constants

 G^a_μ : $SU(3)_C$ bosons, 8 gluons W^i_μ : $SU(2)_L$ bosons, W^0 , W^1 , W^2 bosons B_μ : $U(1)_Y$ boson

gauge couplings

Chiral fermions

Wu experiment 1957: weak inter charged currents only involve lef under $SU(2)_L$ left-handed fermi

		field		spin	$SU(3)_C$	$SU(2)_L$	Y
	$\left(\begin{array}{c} u\\ d\end{array}\right)_{L}$	$\left(\begin{array}{c}c\\s\end{array}\right)_{L}$	$\left(\begin{array}{c}t\\b\end{array}\right)_{L}$	1/2	3	2	1/3
quarks	u_R L	c_R	t_R	1/2	3	1	4/3
	d_R	s_R	b_R	1/2	3	1	-2/3
leptons	$\left(\begin{array}{c} \nu_e \\ e \end{array}\right)_{I}$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array}\right)_{I}$	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{\tau}$	1/2	1	2	-1
_	e_R	μ_R	τ_R	1/2	1	1	-2

- Wu experiment 1957: weak interactions violate parity conservation
- charged currents only involve left-handed particles (right-handed anti-particles)
- under $SU(2)_L$ left-handed fermions: doublets, while right-handed fermions: singlets

assign hyper-charge Y such that $Q = I_3 + \frac{Y}{2}$ Q=electromagnetic charge (Gell-Mann - Nishijima relation)

Chiral fermions II

Starting from a Dirac ψ fermion we define $\psi_L = -$

 $SU(2)_L \times U(1)_Y$ - invariant covariant derivatives:

$$\mathbf{D}_{\mu}^{L} = \partial_{\mu} + i g_{2} \mathbf{I}^{i} W_{\mu}^{i} + i g_{1} \frac{Y}{2} \mathbf{1} B_{\mu}$$
$$\mathbf{D}_{\mu}^{R} = \partial_{\mu} + i g_{1} \frac{Y}{2} \mathbf{1} B_{\mu}$$

$$\frac{-\gamma_{5}}{2}\psi, \quad \psi_{R} = \frac{1+\gamma_{5}}{2}\psi$$
for massless fermions
 μ, c, t

$$u, c, t$$

$$\psi_{R+}^{j} \qquad \text{R up-type} = e, \mu, \tau, u, c,$$
 τ, d, s, b

$$\psi_{R-}^{j} \qquad \text{R down-type} = d, s, b$$
no right-handed neutrinos

$$SU(2)_L$$
 generator $\mathbf{I}^i = \frac{1}{2}\sigma^i$ (Pauli matrices)

 $---U(1)_{Y}$ generator

S:

The unbroken Standard Model

$$\mathscr{L}_{\rm YM} = -\frac{1}{4}G^{a\ \mu\nu}G^{a}_{\mu\nu} - \frac{1}{4}W^{i\ \mu\nu}W^{i}_{\mu\nu} - \frac{1}{4}B^{\mu\nu}B_{\mu\nu}$$
with the field strength tensors:

$$G^{a}_{\mu\nu} = \partial_{\mu}G^{a}_{\nu} - \partial_{\nu}G^{a}_{\mu} + g_{s}f^{abc}G^{b}_{\mu}G^{c}_{\nu},$$

$$W^{i}_{\mu\nu} = \partial_{\mu}W^{i}_{\nu} - \partial_{\nu}W^{i}_{\mu} + g_{2}\epsilon^{ijk}W^{j}_{\mu}W^{k}_{\nu},$$

$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

structure constants

➡ F-F-V, V-V-V (TG) and V-V-V (QG) couplings are related!

The unbroken Standard Model

$$\mathscr{L}_{\rm SM}^{\rm classical} = \mathscr{L}_{\rm YM} + \mathscr{L}_{\rm I}$$
$$\mathscr{L}_{\rm YM} = -\frac{1}{4}G^{a\ \mu\nu}G^{a}_{\mu\nu} - \frac{1}{4}W^{i\ \mu\nu}W^{i}_{\mu\nu} - \frac{1}{4}B^{\mu\nu}B_{\mu\nu}$$

still: $W^{i}_{\mu\nu}W^{i\,\mu\nu}$ terms not allowed by gauge invariance \rightarrow no vector-boson mass terms allowed

left- and right-handed fields,

Solution: Spontaneous Symmetry Breaking (SSB)

also: **no fermion mass terms allowed** as $m\overline{\psi}\psi = m\left(\overline{\psi}_L\psi_R + \overline{\psi}_R\psi_L\right)$ would mix

Spontaneous Symmetry Breaking

Key idea: Lagrangian is invariant under gauge symmetry, but vacuum is not = vacuum breaks symmetry.

Goldstone theorem: for every broken generator there is a massless mode Goldstone theorem combined with gauge theories: massless goldstone modes are absorbed

unbroken symmetry

broken symmetry

- (=eaten) to become longitudinal modes of the gauge bosons associated to the broken generators.

source: quantumdiaries.org

s mechanism

$$Dirac + \mathscr{L}_{Higgs} + ...$$

Higgs potential:
 $V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \frac{\lambda}{4} (\Phi^{\dagger} \Phi)^2$
 $(M_{\mu})^2 = -\mu^2 \Phi^{\dagger} \Phi + \frac{\lambda}{4} (\Phi^{\dagger} \Phi)^2$
 μ^2, λ
 $(\sqrt{2} \Phi)^2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \nu \end{pmatrix}$ with $v = \frac{2\mu}{\sqrt{\lambda}}$
vacuum expectation

such that
$$Q < \Phi > = \left(I_3 + \frac{Y}{2}\right) < \Phi > = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ v \end{pmatrix} = 0$$

 \blacktriangleright vacuum electrically neutral / invariant under $U(1)_{\rm EM}$

v vacuum NOT invariant under $SU(2)_L \times U(1)_Y$ transformations

. . .

Expand Φ -field around minimum: $\Phi(x) = \begin{pmatrix} \phi^+(x) \\ \frac{1}{\sqrt{2}}(v+h^0(x)+i\chi^0(x)) \end{pmatrix}$

Gauge bo

ons V, B‼

Gauge bo

$$\begin{array}{c} \varphi^{+}(x) \\ \frac{1}{\sqrt{2}}(v+h^{0}(x)+i\chi^{0}(x)) \\ \frac{1}{\sqrt{2}}\left(v+h^{0}(x)+i\chi^{0}(x)\right) \\ \frac{1}{\sqrt{2}}\left(0 \\ v+h^{0}(x)\right) \\ Would-be Goldstone bose \\ Wuld-be Goldstone bose \\ Wuld-be Goldstone bose \\ \mathbf{W}^{2}_{1}+W^{2}_{2}\right) + \frac{1}{2}\left(\frac{v}{2}\right)^{2}\left(W^{3}_{\mu},B_{\mu}\right) \begin{pmatrix} g^{2}_{2} & g_{1}g_{2} \\ g_{1}g_{2} & g^{2}_{1} \end{pmatrix} \begin{pmatrix} W^{3,\mu} \\ B^{\mu} \end{pmatrix} + \dots \\ \mathbf{W}^{2}_{1}+W^{2}_{2}\right) + \frac{1}{2}\left(\frac{v}{2}\right)^{2}\left(W^{3}_{\mu},B_{\mu}\right) \begin{pmatrix} g^{2}_{2} & g_{1}g_{2} \\ g_{1}g_{2} & g^{2}_{1} \end{pmatrix} \begin{pmatrix} W^{3,\mu} \\ B^{\mu} \end{pmatrix} + \dots \\ \mathbf{W}^{4}_{\mu} + \frac{1}{2}(A_{\mu},Z_{\mu})\begin{pmatrix} 0 & 0 \\ 0 & M^{2}_{Z} \end{pmatrix} \begin{pmatrix} A^{\mu} \\ Z^{\mu} \end{pmatrix} + \dots \\ \mathbf{W}^{4}_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_{W} & \sin\theta_{W} \\ -\sin\theta_{W} & \cos\theta_{W} \end{pmatrix} \begin{pmatrix} W^{3}_{\mu} \\ B_{\mu} \end{pmatrix} \\ \mathbf{W}^{3}_{\mu} = \int_{0}^{0} \frac{\cos\theta_{W}}{\cos\theta_{W}} \left(\frac{W^{3}_{\mu}}{B_{\mu}} \right) \\ \mathbf{W}^{4}_{\mu} = \int_{0}^{0} \frac{\cos\theta_{W}}{\theta_{W}} \left(\frac{W^{3}_{\mu}}{B_{\mu}} \right) \\ \mathbf{W}^{4}_{\mu} = \int_{0}^{0} \frac{\cos\theta_{W}}{\theta_{W}} \left(\frac{W^{3}_{\mu}}{B_{\mu}} \right) \\ \mathbf{W}^{4}_{\mu} = \int_{0}^{0} \frac{\cos\theta_{W}}{\theta_{W}}$$

ons V, B!!

Gauge bo

$$\begin{array}{c} \varphi^{+}(x) \\ \frac{1}{\sqrt{2}}(v+h^{0}(x)+i\chi^{0}(x)) \\ \frac{1}{\sqrt{2}}\left(v+h^{0}(x)+i\chi^{0}(x)\right) \\ \frac{1}{\sqrt{2}}\left(0 \\ v+h^{0}(x)\right) \\ Would-be Goldstone bose \\ Wuld-be Goldstone bose \\ Wuld-be Goldstone bose \\ \mathbf{W}^{2}_{1}+W^{2}_{2}\right) + \frac{1}{2}\left(\frac{v}{2}\right)^{2}\left(W^{3}_{\mu},B_{\mu}\right) \begin{pmatrix} g^{2}_{2} & g_{1}g_{2} \\ g_{1}g_{2} & g^{2}_{1} \end{pmatrix} \begin{pmatrix} W^{3,\mu} \\ B^{\mu} \end{pmatrix} + \dots \\ \mathbf{W}^{2}_{1}+W^{2}_{2}\right) + \frac{1}{2}\left(\frac{v}{2}\right)^{2}\left(W^{3}_{\mu},B_{\mu}\right) \begin{pmatrix} g^{2}_{2} & g_{1}g_{2} \\ g_{1}g_{2} & g^{2}_{1} \end{pmatrix} \begin{pmatrix} W^{3,\mu} \\ B^{\mu} \end{pmatrix} + \dots \\ \mathbf{W}^{4}_{\mu} + \frac{1}{2}(A_{\mu},Z_{\mu})\begin{pmatrix} 0 & 0 \\ 0 & M^{2}_{Z} \end{pmatrix} \begin{pmatrix} A^{\mu} \\ Z^{\mu} \end{pmatrix} + \dots \\ \mathbf{W}^{4}_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_{W} & \sin\theta_{W} \\ -\sin\theta_{W} & \cos\theta_{W} \end{pmatrix} \begin{pmatrix} W^{3}_{\mu} \\ B_{\mu} \end{pmatrix} \\ \mathbf{W}^{3}_{\mu} = \int_{0}^{0} \frac{\cos\theta_{W}}{\cos\theta_{W}} \left(\frac{W^{3}_{\mu}}{B_{\mu}} \right) \\ \mathbf{W}^{4}_{\mu} = \int_{0}^{0} \frac{\cos\theta_{W}}{\theta_{W}} \left(\frac{W^{3}_{\mu}}{B_{\mu}} \right) \\ \mathbf{W}^{4}_{\mu} = \int_{0}^{0} \frac{\cos\theta_{W}}{\theta_{W}} \left(\frac{W^{3}_{\mu}}{B_{\mu}} \right) \\ \mathbf{W}^{4}_{\mu} = \int_{0}^{0} \frac{\cos\theta_{W}}{\theta_{W}}$$

ons V, B!!

gauge transformation =''unitary gauge''

II. kinetic term (diagonalised)

$$\begin{array}{l} y\overline{\psi}\phi\psi \\ \mathscr{D}_{SM} & \mathscr{D}_{SM}^{classical} = \mathscr{D}_{YI} \\ Yukawa \ couplings \end{array}$$

$$\mathcal{L}_{Yukawa} = -\sum_{i,j=1}^{3} \left[y_{ij}^{d}(q_{L}^{i})^{\dagger}\Phi d_{R}^{j} + y_{ij}^{u}(q_{L}^{i})^{\dagger}\Phi^{c}u_{R}^{j} + y_{ij}^{l}(d_{R}^{i})^{\dagger}\Phi^{c}u_{R}^{j} + y_{ij}^{l}(d_{R}^{i})^{\dagger}\Phi^{c}u_{R}^{$$

$$\Phi^c \equiv i\sigma^2 \Phi^*$$

$$\begin{aligned} &\mathcal{Y}_{\text{SM}}^{\text{classical}} = \mathscr{L}_{\text{YI}} \\ &\mathcal{L}_{\text{SM}}^{\text{classical}} = \mathscr{L}_{\text{YI}} \\ &\mathcal{L}_{\text{Yukawa}} = -\sum_{i,j=1}^{3} \left[y_{ij}^{d} (q_{L}^{i})^{\dagger} \Phi d_{R}^{j} + y_{ij}^{u} (q_{L}^{i})^{\dagger} \Phi^{c} u_{R}^{j} + y_{ij}^{l} (q_{L}^{i})^{\dagger}$$

$$\sim -\sum_{f} m_{f} \overline{\psi}_{f} \psi_{f} - \sum_{f} \frac{m_{f}}{v} \overline{\psi}_{f} \psi_{f} h^{0}$$

$$\Phi^c \equiv i\sigma^2 \Phi^*$$

$$\begin{aligned} &\mathcal{Y}_{\text{SM}}^{\text{classical}} = \mathscr{L}_{\text{YI}} \\ &\mathcal{Y}_{\text{SM}}^{\text{classical}} = \mathscr{L}_{\text{YI}} \\ &\mathcal{Y}_{\text{Vukawa}} \text{ couplings} \end{aligned}$$

$$\mathcal{L}_{\text{Yukawa}} = -\sum_{i,j=1}^{3} \left[y_{ij}^{d} (q_{L}^{i})^{\dagger} \Phi d_{R}^{j} + y_{ij}^{u} (q_{L}^{i})^{\dagger} \Phi^{c} u_{R}^{j} + y_{ij}^{l} (d_{R}^{i})^{\dagger} \Phi^{c} u_{$$

$$\begin{pmatrix}
\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h^0 \end{pmatrix} \\
\sim -\sum_{f} m_f \overline{\psi}_f \psi_f - \sum_{f} \frac{m_f}{v} \overline{\psi}_f \psi_f h^0
\end{pmatrix}$$

to be precise:
$$m_{ij}^f = \frac{v}{\sqrt{2}} y_{ij}^f$$

diagonalised: $m_{f,i} = \frac{v}{\sqrt{2}} \sum_{k,m}^3 U_{ik}^{f,L} y_{km}^f \left(U_{mi}^{f,R}\right)^\dagger \equiv \frac{1}{\sqrt{2}} \sum_{k,m}^3 U_{ik}^{f,L} y_{km}^f \left(U_{mi}^{f,R}\right)^\dagger$

$$\Phi^c \equiv i\sigma^2 \Phi^*$$

$$\begin{aligned} & \mathbf{Fermion} \cdot \mathbf{g}_{SM} \\ \mathscr{L}_{SM}^{classical} = \mathscr{L}_{YM} + \\ & \mathscr{L}_{Dirac} = \sum_{i=1}^{3} \left[q_{L}^{i\dagger} \bar{\sigma}^{\mu} D_{\mu} q_{L}^{i} + u_{R}^{i\dagger} \sigma^{\mu} D_{\mu} u_{R}^{i} + d_{R}^{i\dagger} \sigma^{\mu} D_{\mu} d_{R}^{i} \right. \\ & \left. + l_{L}^{i\dagger} \bar{\sigma}^{\mu} D_{\mu} l_{L}^{i} + e_{R}^{i\dagger} \sigma^{\mu} D_{\mu} e_{R}^{i} \right] \\ & \left(\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{W} & \sin \theta_{W} \\ -\sin \theta_{W} & \cos \theta_{W} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix} \right) \\ & W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (W_{\mu}^{1} \mp i W_{\mu}^{2}) \end{aligned}$$

┢

 $+\mathscr{L}_{\text{Dirac}} + \mathscr{L}_{\text{Higgs}} + \mathscr{L}_{\text{Yukawa}}$

$$\begin{aligned} & \mathcal{F}ermion.grad{}\\ \mathcal{L}_{SM}^{classical} = \mathcal{L}_{YM} + \\ & \mathcal{L}_{Dirac} = \sum_{i=1}^{3} \left[q_{L}^{i^{\dagger}} \bar{\sigma}^{\mu} D_{\mu} q_{L}^{i} + u_{R}^{i^{\dagger}} \sigma^{\mu} D_{\mu} u_{R}^{i} + d_{R}^{i^{\dagger}} \sigma^{\mu} D_{\mu} d_{R}^{i} \right. \\ & \left. + l_{L}^{i^{\dagger}} \bar{\sigma}^{\mu} D_{\mu} l_{L}^{i} + e_{R}^{i^{\dagger}} \sigma^{\mu} D_{\mu} e_{R}^{i} \right] \\ & \left(\begin{array}{c} Z_{\mu} \\ A_{\mu} \end{array} \right) = \left(\begin{array}{c} \cos \theta_{W} & \sin \theta_{W} \\ -\sin \theta_{W} & \cos \theta_{W} \end{array} \right) \left(\begin{array}{c} W_{\mu}^{3} \\ B_{\mu} \end{array} \right) \\ & \mathcal{L} \end{array} \right) \\ & \mathcal{L} \\ & \mathcal{L}_{Dirac} = \ldots + J_{em}^{\mu} A_{\mu} + J_{NC}^{\mu} Z_{\mu} + J_{CC}^{\mu} W_{\mu}^{+} + J_{CC}^{\mu} \end{aligned}$$

$$\begin{aligned} & \operatorname{Fermion-ga}_{SM} \\ \mathscr{L}_{SM}^{classical} = \mathscr{L}_{YM} + \\ \mathscr{L}_{Dirac} = \sum_{i=1}^{3} \left[q_{L}^{i}{}^{\dagger} \bar{\sigma}^{\mu} D_{\mu} q_{L}^{i} + u_{R}^{i}{}^{\dagger} \sigma^{\mu} D_{\mu} u_{R}^{i} + d_{R}^{i}{}^{\dagger} \sigma^{\mu} D_{\mu} d_{R}^{i} \\ & + l_{L}^{i}{}^{\dagger} \bar{\sigma}^{\mu} D_{\mu} l_{L}^{i} + e_{R}^{i}{}^{\star} \sigma^{\mu} D_{\mu} e_{R}^{i} \right] \\ & \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{W} & \sin \theta_{W} \\ -\sin \theta_{W} & \cos \theta_{W} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix} \\ & W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (W_{\mu}^{1} \mp i W_{\mu}^{2}) \\ \\ \mathscr{L}_{Dirac} = \dots + J_{em}^{\mu} A_{\mu} + J_{NC}^{\mu} Z_{\mu} + J_{CC}^{\mu} W_{\mu}^{+} + J_{CC}^{\mu} \\ & J_{EM}^{\mu} = -e \sum_{f=l,q} Q_{f} \overline{\psi}_{f} \gamma^{\mu} \psi_{f}, \\ & J_{NC}^{\mu} = \frac{g_{2}}{2 \cos \theta_{W}} \sum_{f=l,q} \overline{\psi}_{f} (v_{f} \gamma^{\mu} - a_{f} \gamma^{\mu} \gamma_{5}) \psi_{f}, \quad a_{f} = I_{3}^{f} \\ & J_{CC}^{\mu} = \frac{g_{2}}{\sqrt{2}} \left(\sum_{i=1,2,3} \overline{\nu}^{i} \gamma^{\mu} \frac{1 - \gamma_{5}}{2} e^{i} + \sum_{i,j=1,2,3} \overline{u}^{i} \gamma^{\mu} \frac{1 - \gamma_{5}}{2} V_{ij} d^{j} \right)^{VC} \end{aligned}$$

$$\mathcal{F}ermion-ga$$
$$\mathscr{L}_{SM}^{classical} = \mathscr{L}_{YM} + \mathcal{L}_{SM}^{classical} = \mathcal{L}_{YM} + \mathcal{L}_{SM}^{classical} = \mathcal{L}_{YM} + \mathcal{L}_{M}^{classical} + \mathcal{L}_{M}^{cl$$

 $\mathscr{L}_{\text{Dirac}} + \mathscr{L}_{\text{Higgs}} + \mathscr{L}_{\text{Yukawa}}$

$$\mathscr{L}_{\rm SM}^{\rm classical} = \mathscr{L}_{\rm YM} +$$
$$\mathscr{L}_{\rm YM} = -\frac{1}{4}G^{a\ \mu\nu}G^{a}_{\mu\nu} - \frac{1}{4}W^{i\ \mu\nu}W^{i}_{\mu\nu} - \frac{1}{4}B^{\mu\nu}B_{\mu\nu}$$

$$\begin{split} \mathscr{L}_{\rm YM} &= \ldots + e \left[(\partial_{\mu} W_{\nu}^{+} - \partial_{\nu} W_{\mu}^{+}) \, W^{-\mu} A^{\nu} + W_{\mu}^{+} W_{\nu}^{-} F^{\mu\nu} + h \, . \, c \, . \, \right] \\ &+ e \cot \theta_{W} \left[(\partial_{\mu} W_{\nu}^{+} - \partial_{\nu} W_{\mu}^{+}) \, W^{-\mu} Z^{\nu} + W_{\mu}^{+} W_{\nu}^{-} Z^{\mu\nu} + h \, . \\ &- e^{2} / (4 \sin \theta_{W}) \left[(W_{\mu}^{-} W_{\nu}^{+} - W_{\nu}^{-} W_{\mu}^{+}) W_{\mu}^{+} W_{\nu}^{-} + h \, . \, c \, . \right] \\ &- e^{2} / 4 \, \left(W_{\mu}^{+} A_{\nu} - W_{\nu}^{+} A_{\mu} \right) (W^{-\mu} A^{\nu} - W^{-\nu} A^{\mu}) \\ &- e^{2} / 4 \, \cot^{2} \theta_{W} \, (W_{\mu}^{+} Z_{\nu} - W_{\nu}^{+} Z_{\mu}) (W^{-\mu} Z^{\nu} - W^{-\nu} Z^{\mu}) \\ &+ e^{2} / 2 \, \cot \theta_{W} \, (W_{\mu}^{+} A_{\nu} - W_{\nu}^{+} A_{\mu}) (W^{-\mu} Z^{\nu} - W^{-\nu} Z^{\mu}) + h \, . \end{split}$$

SM input parameters

- Unbroken theory $\mathcal{L}_{SM}^{classical}$:
 - Couplings: g_1, g_2, g_5
 - Parameters of the Higgs potential: μ , λ
 - , Yukawa couplings: y_{ii}^{f}
- •After EWSM:
 - Couplings: g_1, g_2, g_S or $\alpha_{\rm EM}$, $\sin \theta_W, \alpha_S$
 - EW boson masses: m_{h^0} , m_W , m_Z , m_f
 - CKM matrix elements: V_{CKM}
 - \rightarrow Important tree-level relations between input parameters: e.g.: $\cos \theta_W = \frac{m_W}{m_H}$, ...
 - EW couplings and EW boson masses are not independent
 - Yukawa couplings and masses are not independent
 - These tree-level relations receive higher-order corrections: in general depend on all inputs.

EW input schemes

- \blacktriangleright Common input schemes: $e = \sqrt{4\pi\alpha}, g_1 = e/\cos\theta_W, g_2 = e/\sin\theta_W$ \blacktriangleright { $\alpha(0), m_W, m_Z$ }-scheme: • $\{G_{\mu}, m_W, m_Z\}$ -scheme: $\alpha|_{G_{\mu}} = \sqrt{2}/\pi G_{\mu} m_W^2 \sin^2 \theta_W \approx 1/132 = 0.0076...$ • { $\alpha(m_Z), m_W, m_Z$ }-scheme: $\alpha(m_Z) \approx 1/128 = 0.0078...$ from: $|\frac{8}{\sqrt{2}}G_{\mu}|^2 = |\frac{g_2^2}{m_W^2}|^2 = |\mathcal{M}|^2$

where: $G_{\mu} = 1.1663710^{-5} \text{GeV}^{-2}$

 \blacksquare Additional inputs: $\{m_h^0, m_f\}$

$\alpha(0) \approx 1/137 = 0.0073...$ (Thomsen limit: $Q \to 0$)

(relation between squared matrix elements for the muon decay in the Fermi theory to corresponding W-exchange matrix elements in the low-energy limit)

EW input schemes

➤ Common input schemes:
$$e = \sqrt{4\pi\alpha}$$
, $g_1 = e/\alpha$
 $\{\alpha(0), m_W, m_Z\}$ -scheme: $\alpha(0) \approx 1/137$
 $\{G_\mu, m_W, m_Z\}$ -scheme: $\alpha|_{G_\mu} = \sqrt{2}/\pi G$
 $\{\alpha(m_Z), m_W, m_Z\}$ -scheme: $\alpha(m_Z) \approx 1/128$
from: $|\frac{8}{\sqrt{2}}G_\mu|^2 = |\frac{g_2^2}{m_W^2}|^2 = |\mathcal{M}|^2$ (relation betwee muon decay in W-exchange muon decay in W-exchange

where: $G_{\mu} = 1.1663710^{-5} \text{GeV}^{-2}$

Differences between these scheme at 5-7% level (scheme uncertainties). Scheme dependence reduced when including higher-order corrections. One scheme might be more appropriate than others for different processes.

 \Rightarrow Additional inputs: $\{m_h^0, m_f\}$

$\cos \theta_W, g_2 = e / \sin \theta_W$ = 0.0073... (Thomsen limit: $Q \rightarrow 0$) $G_{\mu} m_W^2 \sin^2 \theta_W \approx 1/132 = 0.0076...$ 8 = 0.0078...

een squared matrix elements for the n the Fermi theory to corresponding matrix elements in the low-energy limit)

EW input schemes

interactions at (or above) the EW scale.

Additional inputs:
$$\{m_h^0\}$$

$$+2\frac{c_W}{s_W}\frac{\Sigma_T^{AZ}(0)}{M_Z^2} + \frac{\alpha}{4\pi s_W^2} \left(6 + \frac{7 - 4s_W^2}{2s_W^2}\log c_W^2\right) \quad \text{(depends on all parameters of the second second$$

 $\Rightarrow G_{\mu}$ -scheme incorporates these universal corrections into LO couplings improved perturbative convergence for processes dominated by SU(2)

Conclusions

Symmetry:

$SU(3)_C \times SU(2)_L \times U(1)$

$$)_Y \xrightarrow{\langle H \rangle} SU(3)_C \times U(1)_{\rm EM}$$

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{AL} F^{AL} \\ &+ i F \mathcal{D} \mathcal{J} + h.c. \end{aligned}$ + X: Yij Xs\$ the $+ |\mathcal{D}_{\mathcal{P}}|^{2} - \vee (\phi)$

Questions?

SM input parameters

Generally, only a well defined set of independent input parameters are "free" parameters of the model
 derived parameters are only short-hands to keep the notation tidy.
 when performing measurements (comparing data with theory), only input parameters of used calculation can be extracted from data.

Mixed EW input schemes

▶external (on-shell) photons effectively couple with $Q \rightarrow 0$ ▶natural to consider a mixed scheme

$\mathcal{O}(lpha(0)lpha|_{G_{\mu}}lpha_{S})$ wrt $\mathcal{O}(lpha(0)lpha_{S})$

