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EW precision  
observables

EW radiative  
corrections

Global EW/EFT fit The EW SM 

@

➡Study dynamics of the EW SM at the TeV scale
➡Test BSM via indirect EW probes
➡Constrain backgrounds in direct searches for New Physics



Classical tests I of EW theory @ LEP

3
 EW precision observables→

•Correlation between different EW parameters (at higher-order)
‣ 
‣ 
‣ -pole observables

mW = 1
2 g2v

sin θW = mW /mZ
Z
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Figure 1: Prediction of the top quark mass versus year as obtained by various analysis groups using
electroweak precision data (grey [5], light blue [4], green [6]). The bands indicate the 68% confidence
level. The direct mt measurements after the top quark discovery are displayed by the data points (or-
ange [2, 3, 11, 15, 16], red [13, 14, 20], black [12]).
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Figure 2: Prediction of the Higgs boson mass versus year as obtained by various analysis groups using elec-
troweak precision data (grey [5], light blue [4], dark blue [6]) and including direct search results (green [6]).
The bands indicate the 68% confidence level. The direct MH measurements after the Higgs boson discovery
are displayed by the red data points [9, 10, 17–19].



Classical tests II of EW theory @ LEP

4

e+e− → W+W−

no ZWW vertex 

 tails of kinematic distributions→

only t-channel 

SM @ NLO EW
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The global EW fit 
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Drell-Yan: MW measurements

MW determination at hadron colliders: observables and techniques

Alessandro Vicini - University of Milano                                                                                                                                                                  Amsterdam, May 3rd 2017                                                                                                   

charged-lepton transverse momentum distribution
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Challenging shape measurement: 
a distortion at the few per mil level of the distributions 
yields a shift of O(10 MeV) of the MW value

5

MW is extracted from the shape of the distribution 
   → large global K-factor are not relevant
   → radiative effects that distort the shapes are crucial

pT,l

• Motivation: precise measurement is a stringent test of SM! 
• Method: template fits of sensitive CC DY distributions (                         )

MW = 80.385± 0.015 GeV

pT,l, MT , Emiss

• Need to control shape effects at the  
 sub-1% level!

• Dominant effects: QCD ISR and QED FSR 
•

[Calame, Chiesa, Martinez, Montagna, Nicrosini, Piccinini, Vicini;’16]

→Theory precision essential for improvements in mW determination!
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Drell-Yan: MW measurements
CMS-PAS-SMP-23-002

→The LHC is an EW precision machine!

MiNNLOPS
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Diboson production at the LHC

Electroweak di-boson production

V

V′

V

V′

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 21
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Complementarity in WW / WZ / ZZ production 

WW

WZ

ZZ

Electroweak di-boson production

V

V′

V

V′

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 21•overlay of γWW/ZWW in WW 
•onlyZWW inWZ
•γZZ/ZZZ  in ZZ 

Sensitivity to different aTGCs: 

Complementarity in WW / WZ / ZZ production
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Diboson production at the LHC
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• ud̄/dū in W+Z/W−Z
• γγ in WW

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 22

Complementarity in WW / WZ / ZZ production

WW production:

γ/Z
W

W

W

W

g

g

W

W

γ

γ

W

W

W

WZ production:

W
Z

W

Z

W

ZZ production:
Z

Z

g

g

Z

Z

Sensitivity to different PDF combinations:

• qq̄ in WW/ZZ
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•qq ̅in WW/ZZ
•ud/̅du ̅in WZ
•γγ in WW
•gg in WW/ZZ

Sensitivity to different PDF combinations: 

Diboson production at the LHC
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Kinematic tails

ATLAS-CONF-2023-012

 tails of kinematic distributions→
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SM

EFT

Kinematic tails

ATLAS-CONF-2023-012

ℒSMEFT = ℒSM +
2499

∑
i=1

CD6
i

Λ2 𝒪D6
i

∼ E2/Λ2

 tails of kinematic distributions→



13

SM

EFT

BSM

resonance

Kinematic tails

ATLAS-CONF-2023-012

ℒSMEFT = ℒSM +
2499

∑
i=1

CD6
i

Λ2 𝒪D6
i tails of kinematic distributions→
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The global EFT/SMEFT fit 

dimensional scale

Wilson coefficients 

[Ellis, Madigan, Mimasu, Sanze,  You]

flavour  
universality

 John’s course on Higgs, Top & Beyond starting next Thursday→

ℒSMEFT = ℒSM +
2499

∑
i=1

CD6
i

Λ2 𝒪D6
i
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The global EFT/SMEFT fit 

dimensional scale

Wilson coefficients 

[Ellis, Madigan, Mimasu, Sanze,  You]

flavour  
universality

 John’s course on Higgs, Top & Beyond starting next Thursday→

ℒSMEFT = ℒSM +
2499

∑
i=1

CD6
i

Λ2 𝒪D6
i +

∼50000

∑
i=1

CD8
i

Λ4 𝒪D8
i + …



EW standard candles at the LHC
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Precision EW  Top

Rare processes

DY V+jets tt̄ tt̄+X

VBS VVV

VV

….

Higgs

precision couplings high-pT HH

 John’s course on Higgs, Top & Beyond starting next Thursday→



Rare electroweak processes

W

W

W

W

vector-boson scattering

W

W

W

W

VVV production

→ talk of E.Maina

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 32

Physics goals in VBS and VVV production

• direct access to quartic EW gauge couplings

W
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W

W

• longitudinal gauge bosons at high energies

↪→ probe SM unitarization mechanism

• window to electroweak symmetry breaking

via off-shell Higgs exchange
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Note: severe QCD background to VBS signatures
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W
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Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 33

Vector-boson scattering at LHC

Signatures: 
ssWW-VBS: 
WW-VBS: 
ZZ-VBS: 
WZ-VBS: 
Wγ-VBS: 
Zγ-VBS: 

`+`+ + ⌫̄⌫̄ + 2jets

`+`� + ⌫̄⌫ + 2jets

`+`�`+`� + 2jets

`+`�`+⌫̄ + 2jets

`±⌫ + � + 2jets

`+`� + � + 2jets
17

•direct access to quartic EW gauge couplings 
•VBS: longitudinal gauge bosons at high energies 
•window to electroweak symmetry breaking  
via off-shell Higgs exchange (ensures unitarity)
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Polarisation measurements

W+
L W−

L → W+
L W−

L

a)

b)

[Denner, Hahn, ’97]

c)
∼ E4

∼ E2

∼ 1/E2
a)+b)+c)

a)+b)

a),b) cancellation ensures unitarity!

 crucial test of EWSB→
 problem: we can’t directly observe longitudinal vector-bosons→
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Polarisation measurements

W+
L W−

L → W+
L W−

L

a)

b)

[Denner, Hahn, ’97]

c)
∼ E4

∼ E2

∼ 1/E2
a)+b)+c)

a)+b)

a),b) cancellation ensures unitarity!

 crucial test of EWSB→
 problem: we can’t directly observe longitudinal vector-bosons→

 exploit angular information→
ss-WW+2jets

 currently limited by stats  →

[Physics Letters B 812 (2021) 136018]



Running couplings

20

 Gavin’s lecture yesterday→Also the  couplings run!g1, g2

Hint of gauge unification?



Running couplings
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Also the  couplings run!g1, g2

Hint of gauge unification?

All couplings run! Incl. yukawas, trilinear



Running couplings
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All couplings run! Incl. yukawas, trilinear

and the leading contributions to β(4)
yt (gs, yt) and β(4)

λ (gs, yt), as given in (3.5) and (3.4).

Fig. 5 shows the result compared to the largest remaining uncertainties on the theory and

on the experimental side. The smaller error band marks the 1σ uncertainty stemming from

the top matching, i.e. we vary yt by ±0.0005 (see (5.3)). The larger error band marks the

1σ uncertainty stemming from the top pole mass.

The difference between the evolution of λ with three-loop β-functions (blue curve) and

including the leading four-loop terms (red curve) should give some indication on the un-

certainty stemming from the truncation of the perturbative series for the β-functions. In

order to see this difference we have to zoom in. We choose to do this at the scale where

λ becomes negative, which is shown in Fig. 6. The error bands are calculated using the

partial four-loop results and hence centered around the red curve.
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Figure 5: Evolution of λ: top matching and top measurement uncertainties for Mt =

173.39 GeV.

In order to further illustrate the dependence of the vacuum stability problem on the top

mass and the importance of the issues related to the top pole mass as an input parameter we

show the evolution of λ also for the PDG value extracted from cross section measurements

of the top pole mass (5.1) and the corresponding uncertainties in Fig. 7.

The conclusion for vacuum stability remains the same as in our previous works [10, 11, 13–

15]. It looks as if λ becomes negative at around log10

( µ
GeV

)

∼ 9.6 (or log10

( µ
GeV

)

∼ 8.7 in

Fig. 7) rendering the SM not stable if extended up to scales above, but a definitive answer is

pending on a more precise extraction of yt(µ0) from experimental data. It is worth noting,

– 13 –

 [Chetyrkin, Zoller, ’16]
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– 13 –

 [Chetyrkin, Zoller, ’16]

V (�) = �µ2�†�+
�

4
(�†�)2 ,

[arXiv:2401.08811] 

➡Precise knowledge of top mass and  crucial!αS



The need for precision

d� = d�LO + ↵S d�NLO + ↵EW d�NLOEW

+↵2

S d�NNLO + ↵2

EW
d�NNLOEW + ↵S↵EW d�NNLOQCDxEW

NLO QCD

NNLO QCD

+ …+↵3

S d�NNLO

N3LO QCD

O(100%) 
 
 

O(10%) 
 
 

O(1%)

➡Higher-order predictions mandatory for reliable predictions 
24

↵S⇠ 0.1

ATLAS Standard Model Summary Plots February 2022



The need for precision

d� = d�LO + ↵S d�NLO + ↵EW d�NLOEW

+↵2

S d�NNLO + ↵2

EW
d�NNLOEW + ↵S↵EW d�NNLOQCDxEW

NLO QCD

NNLO QCD

+ …+↵3

S d�NNLO

N3LO QCD

➡Higher-order predictions mandatory for reliable predictions 
25

↵S⇠ 0.1

NLO EW

↵EW⇠ 0.01 O(↵) ⇠ O(↵2
s) ) NLO EW ~ NNLO QCD



I. Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons: 
                           
 
 
 
 
 
 

[Ciafaloni, Comelli,’98; 
Lipatov, Fadin, Martin, Melles, '99; 
Kuehen, Penin, Smirnov, ’99; 
Denner, Pozzorini, '00]

EW Sudakov logarithms at Q ⇠ TeV � MW

Soft/collinear logarithms from virtual EW bosons [Bauer, Becher, Ciafaloni,

Comelli, Denner, Fadin, Kühn, Lipatov, Manohar Martin, Melles, Penin, S.P., Smirnov, . . . ]

Z, W
± bosons ⇠ light particles at ŝ � M

2

W,Z

) large logarithms of IR type

�,Z, W±

Universality and factorisation [Denner,S.P. ’01]
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<
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9
=

; M0

large negative terms / ↵w ln2(Q2
/M

2

W ) ⇠ 25% � ↵S in any TeV scale observable

size depends on external EW charges: not very large for gg ! tt̄

) EW corrections important for SM tests and BSM searches at TeV scale
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➜ overall large (negative) effect in the tails of distributions:  
     pT, minv, HT, … (relevant for BSM searches!) 

Relevance of EW higher-order corrections: virtual Sudakov logs in the tails

Universality and factorisation: [Denner, Pozzorini; ’01] 
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General remarks on EW corrections for VV production Dominant e↵ects from EW corrections

Dominant e↵ects from EW corrections/

Shape corrections in invariant-mass
distributions (EW resonances)

Negative corrections in high-energy
observables (EW Sudakov logarithms)
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Pure QED e↵ect: photon
bremsstrahlung o↵ decay leptons

,! Migration from peak to lower mass;
depends on recombination procedure.

Genuine EW e↵ect: enhancement due
to large universal Sudakov logarithms

,! Higher orders in ↵ and uncertainty
estimates might be required.

Stefan Kallweit (UNIMIB) Combination of NNLO QCD and NLO EW in VV April 19, 2019, LHCEWWG-MB 10 / 20

[Kallweit, JML, Pozzorini, Schönherr, ’17]

WW



↵ log
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Q2

!
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➜ important for radiative tails, Higgs backgrounds etc.

Relevance of EW higher-order corrections: collinear QED radiation 

II.   Possible large enhancement due to soft/collinear logs from photon radiation ~                             in sufficiently 
exclusive observables.

General remarks on EW corrections for VV production Dominant e↵ects from EW corrections
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FIG. 2: Four-lepton invariant-mass distribution in pp →

µ+µ−e+e−+X including NLO EW corrections (upper panel),
and relative EW and purely weak corrections at NLO (lower
panel).

ing from pp(gg) → H → µ+µ−e+e− + X (not shown
here), whose Mµ+µ− distribution shows a shoulder for

Mµ+µ−

<∼ MH −MZ ≈ 34GeV sensitive to the quantum
numbers of the Higgs boson [35].

In Fig. 2 we show the invariant-mass distribution of
the full four-lepton system, which features the Higgs res-
onance from gg fusion at M4ℓ ∼ MH ≈ 125GeV (not
included here). The steep shoulder at the Z-pair thresh-
old at M4ℓ = 2MZ ≈ 182GeV creates a radiative tail
at smaller invariant masses, similar to the case of the
Mµ+µ− distribution, since M4ℓ can be strongly decreased
by FSR effects. A similar effect, though reduced, is ob-
served below the second shoulder near M4ℓ = 110GeV,
which is a result of the pT and invariant-mass cuts (7)
and (10). In the region of the Higgs-boson resonance the
EW corrections are at the level of a few percent. While
photonic corrections might again be well approximated
by parton showers, this does not apply to the weak cor-
rections. Interestingly, the weak corrections change their
size from −3% to about +6% when M4ℓ drops below the
Z-pair threshold. The sign change can be understood
from the fact that below the ZZ threshold one of the two
Z bosons is forced to be far off shell. For the correspond-
ing ℓ+ℓ− pair, this means that Mℓ+ℓ− drops below MZ,
so that the weak corrections turn positive, as can be seen
from Fig. 1. The sign change of the weak corrections near
the ZZ threshold is quite interesting phenomenologically,
since it renders their inclusion via a global rescaling factor
impossible. Globally reducing differential cross sections
by 3.6%, as deduced from the integrated cross section,
would have the opposite effect on the M4ℓ distribution
near the Higgs signal as the true weak correction.

Finally, in Fig. 3 we show the distribution in the angle
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FIG. 3: Distribution in the angle φ between the two Z-boson
decay planes in pp → µ+µ−e+e− + X including NLO EW
corrections (upper panel), and relative EW and purely weak
corrections at NLO (lower panel).

φ between the two Z-boson decay planes, which are each
spanned by the two lepton momenta of the respective
ℓ+ℓ− pair [36]. The distribution is sensitive to possible
deviations of the Higgs-boson coupling structure from the
Standard Model prediction, so that any distortion of the
distribution induced by higher-order corrections, if not
properly taken into account, could mimick non-standard
effects. Figure 3 reveals a distortion by about 2% due
to weak loop effects. The contribution of photonic cor-
rections is negligible in our setup, similar to their con-
tribution to the integrated cross section. This is due to
the fact that photonic corrections mainly influence the
absolute size of the lepton momenta via collinear FSR,
but not the directions of the leptons.
In summary, the NLO EW corrections to four-lepton

production consist of photonic and purely weak contribu-
tions displaying rather different features. Photonic cor-
rections can grow very large, to several tens of percent,
in particular in distributions where resonances and kine-
matic shoulders lead to radiative tails. While those cor-
rections might be well approximated with parton show-
ers, this is not the case for the remaining weak correc-
tions, which are typically of the size of 5% and, thus,
non-negligible. The weak corrections, in particular, dis-
tort distributions that are important in Higgs-boson anal-
yses. In the four-lepton invariant mass, even the signs of
the weak corrections in the Higgs signal region and the
region of resonant Z-boson pairs are different.
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The first complete calculation of the next-to-leading-order electroweak corrections to four-lepton
production at the LHC is presented, where all off-shell effects of intermediate Z bosons and photons
are taken into account. Focusing on the mixed final state µ+µ−e+e−, we study differential cross
sections that are particularly interesting for Higgs-boson analyses. The electroweak corrections are
divided into photonic and purely weak corrections. The former exhibit patterns familiar from similar
W/Z-boson production processes with very large radiative tails near resonances and kinematical
shoulders. The weak corrections are of the generic size of 5% and show interesting variations, in
particular a sign change between the regions of resonant Z-pair production and the Higgs signal.

PACS numbers: 12.15.Ji, 12.15.Lk

Introduction

The investigation of pair production processes of elec-
troweak (EW) gauge bosons W, Z, and γ is of great im-
portance at the CERN Large Hadron Collider (LHC).
These processes have sizeable cross sections and provide
experimentally clean signatures via the leptonic decay
modes of the W or Z bosons. On the one hand, they
offer an indirect window to potential new-physics effects
through their sensitivity to the self-interactions among
the EW gauge bosons; on the other hand, these reac-
tions represent sources of irreducible background to many
direct searches for new particles (e.g. additional heavy
gauge bosons W′,Z′) and to precision studies of the Higgs
boson discovered in 2012 in particular.

In order to optimally exploit and interpret LHC data,
theoretical predictions to weak-gauge-boson pair produc-
tion have to be pushed to an accuracy at the level of per-
cent, a task that requires the inclusion of higher-order
corrections of the strong and EW interactions and of de-
cay and off-shell effects of the W/Z bosons. In this paper
we focus on the reaction pp → µ+µ−e+e− + X , which
does not only include doubly-resonant ZZ production,
but also interesting regions in phase space where at least
one of the Z bosons is far off shell, as for example observed
in the important Higgs decay channels H → 4 leptons.

Precision calculations for Z-boson pair production with
leptonic decays have been available for a long time in-
cluding next-to-leading order (NLO) QCD corrections [1–
3]. They have even been pushed to next-to-next-to-
leading order (NNLO) accuracy recently [4, 5], with a
significant contribution from gluon–gluon fusion calcu-
lated already before [6–8]. Beyond fixed perturbative
orders, NLO QCD corrections were matched to a par-

ton shower in Refs. [9–13]; in Ref. [14] even different jet
multiplicities were merged at NLO QCD. Electroweak
corrections at NLO are only completely known for stable
Z bosons [15, 16], and in some approximation includ-
ing leptonic decays of on-shell Z bosons [17]. The EW
corrections to Z-pair production with off-shell Z bosons,
on the other hand, are not yet known. In this paper,
we fill this gap and present results of the first full NLO
EW calculation for the process pp → µ+µ−e+e− + X
in the Standard Model, including all off-shell contribu-
tions. This allows us, in particular, to investigate EW
corrections in the yet unexplored kinematic region below
the ZZ threshold, where direct Z-pair production is an
important background to Higgs-boson analyses.

General setup of the calculation

At leading order (LO), the production of µ+µ−e+e−

final states almost exclusively proceeds via quark–
antiquark annihilation. Contributions from γγ collisions
are extremely small (they contribute only at the level of a
few per mille to the total cross section) owing to the sup-
pression of the photon density in the proton; we therefore
do not consider γγ contributions in this letter.
The LO amplitude for qq̄ annihilation involves contri-

butions containing two, one, or no Z-boson propagators
that may become resonant. At NLO, the same is true for
qq̄ amplitudes with EW loop insertions and the corre-
sponding amplitudes with real photonic bremsstrahlung.
Since no couplings to W bosons are involved at LO, we
can divide the EW corrections into separately gauge-
independent photonic and purely weak contributions. By
definition, the former comprise all contributions with real
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Figure 1: Sample tree-level diagrams contributing at O(α4). The dominant q̄q channel (a,b)
defines the LO contribution, while the photon-induced γγ channel (c) is counted as a correction.

WW, WZ, and ZZ production [42]. Most recently, NLO EW calculations based on full 2 → 4
particle amplitudes, including all off-shell effects, have been presented for W-pair [43] and Z-pair
production [44] for four-lepton final states of different fermion generations (i.e. without identical
particle effects or WW/ZZ interferences). For Z-pair production, the off-shell effects include also
the contributions of virtual photons that cannot be separated from the Z-pair signal, but only
suppressed by using appropriate invariant-mass cuts. Note that these full off-shell calculations
are essential to safely assess the EW corrections below the WW and ZZ thresholds, i.e. in the
kinematical region where WW∗/ZZ∗ production appears as background to Higgs-boson analy-
ses. Moreover, a detailed comparison of the full four-lepton calculation [43] to the double-pole
approximation for W-boson pairs [41] revealed limitations of the latter approach for transverse-
momentum distributions of the leptons in the high-energy domain where new-physics signals
are searched for.

In Ref. [44] we have presented some selected results for the NLO EW corrections to off-shell
ZZ production in a scenario relevant for Higgs-boson studies. In this paper we provide more
detailed phenomenological studies in various phase-space regions relevant for LHC analyses
for pp → µ+µ−e+e− + X and completely new results on pp → µ+µ−µ+µ− + X, including
interference effects from identical final-state leptons. We follow the same concepts and strategies
as in Refs. [43, 44], i.e. finite-width effects of the Z bosons are consistently included using the
complex-mass scheme [45–47], so that we obtain NLO EW precision everywhere in phase space.
We also include photon-induced partonic processes originating from γγ or qγ/q̄γ initial states.

The paper is organized as follows: Some details on the calculational methods are presented
in Sec. 2. Phenomenological results for two different experimental setups are discussed in Sec. 3.
Our conclusions are given in Sec. 4.

2 Details of the calculation

2.1 Partonic channels

The leading-order (LO) cross sections of the two processes pp → µ+µ−e+e− + X and pp →
µ+µ−µ+µ− +X receive contributions from the quark–antiquark annihilation channels

q̄q/qq̄ → µ+µ−e+e−, µ+µ−µ+µ−, (2.1)

with q ∈ {u,d, c, s,b}. Sample diagrams for these channels, which are generically called q̄q
channels in the following, are shown in Figs. 1(a) and 1(b). Note that all LO diagrams involve
Z-boson and photon exchange only. There are LO channels with two photons in the initial state
as well,

γγ → µ+µ−e+e−, µ+µ−µ+µ−, (2.2)
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Relevance of EW higher-order corrections: photon-induced channels

�

�

`
+

⌫l

`
0�

⌫̄`0

W
+

W

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

W
+

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

`
�

`

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

`

`
0

W

(a) (b) (c) (d)
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Figure 4. Sample of photon-induced Born diagrams contributing to 2`2⌫ final states only in the same
lepton-flavour case, both for `0 = ` or `0 6= `. Only single-resonant diagrams contribute.

quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production
in t-channel topologies with subsequent emission of a Z boson with Z ! ⌫⌫̄ is the only photon-
induced production mechanism at LO, as shown in the sample diagrams of Fig. 4. Consequently,
the invariant mass of the charged-lepton pair does not show a Breit–Wigner peak around MZ .

Similarly as for quark–antiquark annihilation, the �� ! e
+
e
�
⌫e⌫̄e channel is build from the

coherent sum of all diagrams entering �� ! e
+
µ
�
⌫e⌫̄µ and �� ! e

+
e
�
⌫µ/⌧ ⌫̄µ/⌧ .
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   ➜ Possible large enhancement due to photon-induced channels in the tails of kinematic distributions, 

 in particular in WW:                        (t-channel enhancement)

➜ up to O(10%) contributions from photon-induced channels

are dominated by soft EW boson radiation on top of hard V j production. Actually, the leading
source of O(↵S↵) corrections is given by the NLO EW corrections to the enhanced pp ! V V j

channel, which cannot be captured through a naive factorised combination of the NLO QCD and
NLO EW corrections to pp ! V V .

When presenting our results in section 3, the problem of giant K-factors in the inclusive phase
space will be illustrated. We will show that giant K-factors can be avoided by means of selection cuts
that require a similar hardness of the two vector bosons, e.g. by direct requirements on the hardness
of the softer vector boson or by imposing a veto against hard QCD radiation. This will restrict
the phase space to hard-V V topologies and suppress hard-V j production. Besides reducing the
size of mixed QCD–EW higher-order effects and their respective theoretical uncertainties, selecting
hard-V V topologies enhances the sensitivity of experimental measurements that aim at extracting
new-physics effects in vector-boson pair processes, such as anomalous triple gauge couplings, from
the tails of kinematic distributions. On the other hand, a reliable inclusive description of diboson
production is indispensable for background simulations in direct searches at the TeV scale. This can
be achieved by merging pp ! V V and pp ! V V j production including NLO QCD and NLO EW
corrections as demonstrated in ref. [77]. The extension of this approach to NNLO QCD+EW is
beyond the scope of the present paper.

2.6 Combination of QCD and EW corrections

When QCD and EW corrections are both large, also NNLO mixed QCD–EW effects of relative
O(↵S↵) and beyond can become important. In order to gain insights into such higher-order effects,
we consider a standard additive combination of NNLO QCD and NLO EW corrections and compare
it against factorised combination prescriptions. To this end, we express higher-order effects in terms
of relative correction factors with respect to the LO differential cross section,

d�
LO

= d�
qq̄

LO
+ d�

��

LO
, (2.3)

which involves O(↵
4
) contributions from the qq̄ and �� channels.6 Higher-order QCD contributions

can be cast into the form

d�
NNLO QCD

= d�
LO

�
1 + �

QCD

�
+ d�

gg

LO
, (2.4)

where d�
gg

LO
is the O(↵

2

S
↵
4
) contribution of the loop-induced gg channel, and all other QCD correc-

tions are embodied in the correction factor �
QCD

, which includes the O(↵S) and O(↵
2

S
) corrections

of the qq̄, qg/q̄g, gg and qq/q̄q̄ channels.7 Similarly, the NLO EW cross section can be written as

d�
NLO EW

= d�
LO

(1 + �
EW

) , (2.5)

where all O(↵) corrections in the qq̄, �� and q� (including q̄� is implicitly understood) channels are
incorporated into the factor �

EW
. For the combination of QCD and EW corrections we consider

three different prescriptions.

NNLO QCD+EW The first prescription amounts to a purely additive combination,

d�
NNLO QCD+EW

= d�
LO

�
1 + �

QCD
+ �

EW

�
+ d�

gg

LO
, (2.6)

where all terms of O(↵
4
), O(↵S↵

4
), O(↵

5
) and O(↵

2

S
↵
4
) are simply summed.

6Note that the �� channel contributes only to ZZ and WW production. The same holds for the gg channel
contributing at NNLO QCD.

7Here and in the following, higher-order contributions (or terms) of O(↵n
S↵

4+m) are also referred to as corrections
(or effects) of O(↵n

S↵
m).
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The EW SM at quantum level in a nutshell

At quantum level:

(unitary gauge unfeasible at higher-orders in EW)

LSM = Lclassical
SM + Lgauge-fix + Lghost

Lgauge-fix = �1

2
(F 2

A + F 2
Z + 2F+F� + F 2

Ga) , Lghost = ū↵(x)
�F↵

�✓�(x)
u�(x)

FA =
1

⇠A
@µAµ , FGa =

1

⇠G
@µGa

µ ,

FZ =
1

⇠Z
(@µZ0

µ �mZ⇠
Z�0) , F± =

1

⇠W
(@µW±

µ ⌥ imW ⇠W�±)

Gauge fixing parameter

ℒclassical
SM = ℒYM + ℒDirac + ℒHiggs + ℒYukawa
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NLO Ingredients

• NLO partonic cross section for a 2→n process can be written as Perturbation theory

We need the amplitude squared:

At leading order (LO) only Born amplitudes contribute:
⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ ∼ g4

At next-to-leading order (NLO): One-loop amplitudes and Born amplitudes with an
additional parton.

2 Re

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ +

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠

︸ ︷︷ ︸

∼g6, virtual part
︸ ︷︷ ︸

∼g6, real part

Real part contributes whenever the additional parton is not resolved.

Z
d�n(+1) n or n+1 particle phase space 

virtual one-loop matrix element

real tree-level matrix element

Perturbation theory

We need the amplitude squared:

At leading order (LO) only Born amplitudes contribute:
⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ ∼ g4

At next-to-leading order (NLO): One-loop amplitudes and Born amplitudes with an
additional parton.

2 Re

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ +

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠

︸ ︷︷ ︸

∼g6, virtual part
︸ ︷︷ ︸

∼g6, real part

Real part contributes whenever the additional parton is not resolved.

|MNLO,R|2

Re{MLO
M⇤

NLO,V}

d�̂NLO =
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}
⇤
+

1

2s

Z
d�n+1|MNLO,R|2

MNLO,V

MNLO,R

/ ↵

NLO = B + V +R

Note: real radiation might open up new partonic channels!

33



• Add local subtraction terms S, and corresponding integrated subtraction term I

34

=
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}+I
⇤
+

1

2s

Z
d�n+1|MNLO,R|2�Sd�̂NLO =

1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}
⇤
+

1

2s

Z
d�n+1|MNLO,R|2

• NLO Monte-Carlo integrators (+subtraction): 

‣ MadGraph_aMC@NLO (FKS)
‣ Sherpa (CS)
‣ POWHEG-BOX (FKS)

• NLO fixed-order integrators: 

• MUNICH/Matrix (CS)

• …

• one-loop (& tree) amplitude provider : 
• MadLoop (OpenLoops)

• GoSam (Unitarity & OPP)

• OpenLoops (OpenLoops)

• Recola (NLO Recursion)

• … • integral reduction libraries: 
• CutTools
• Golem95
• COLLIER
• Ninja
• …

• scaler one-loop libraries
• QCDLoop
• OneLoop
• COLLIER
• …

NLO Tools: automation of NLO EW 



Nontrivial features in NLO QCD → NLO EW

Decays of Z/W bosons

Leptonic Z and W decays are notrivial at NLO EW (in contrast to NLO QCD)

NLO EW corrections to production⇥resonance⇥decay + non-fact corrections

W
+p

p

⌫

`
+

W
+p

p

⌫

`
+

W
±p

p

⌫

`
+

Option A: complex mass scheme [Denner, Dittmaier]

exact NLO description (always desirable)

high complexity corresponding to total number of particles after decays

Option B: narrow-width approximation (production⇥decay)

simpler but applicability to V+multijets limited to certain O
�
↵
n
S↵

m+1
�
(see later)

captures all large ln(ŝ/M2

W ) e↵ects (present only in production sub-process)

typical uncertainty <
⇠ 1–3% (apart form �

⇤
/Z

⇤
! `

+
`
� at small m``)

S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 8 / 28

1. photon contributions in jets and proton  
   → photon-jet separation, γPDF

3. QCD-EW interplay     

γ/Z

q

gq̄ t

q

g q̄

q

gq̄ t

q

γ/Z q̄

Figure 3: Representative one-loop Feynman diagrams squared. The diagram on the left-

hand side represents an EW correction to the QCD process. It can also be interpreted as a

QCD correction to the EW amplitude interfered with the QCD amplitude. The right-hand

side shows a QCD correction to the QCD amplitude interfered with the EW amplitude.

Only the top quarks are represented as the inclusion of their decay products does not alter

the discussion.

g

g

t

t

b

b

W

W

e+

µ−

νe

νµ

Z/γ

q

q g

b

b

t

W

µ−

νµ

W

b

νe

e+

Z/γ

Figure 4: Representative octagon and heptagon one-loop Feynman diagrams.

all contributions with resonant top quarks, but in addition also all contributions with one

resonant top quark.

Calculating the NLO corrections to a process with intermediate on-shell particles im-

plies to include the corrections to their production and decay. The on-shell approximation

does not include off-shell effects as well as virtual corrections that link the production

part and the decay parts or different decay parts. Such corrections should be of the order

O(Γi/Mi) [93–95] if the decay products are treated inclusively and the resonant contribu-

tions dominate. Here Γi and Mi are the width and the mass of the resonant particles,

respectively. Off-shell effects of the resonant particles can be taken into account by using

the pole approximation. In this case, the resonant propagators are fully included, while

– 6 –

2.  At NLO EW corrections in production, decay and  
   non-factorizable contributions for  V decays  
   → complex-mass-scheme

 

4. virtual EW corrections more involved than QCD 
   (many internal masses)   
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• Naively processes with a massive s-channel propagator diverge when  
• Experimentally we know resonances follow Breit-Wigner (BW) shape

36
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• Naively processes with a massive s-channel propagator diverge when  
• Experimentally we know resonances follow Breit-Wigner (BW) shape
• origin: all-order summation of 1PI corrections to propagator of  

massive particles 
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χ̃i

χ̃j

j

j

p

p

Figure 4.1: Illustration of the process under consideration. The circle illustrates all lowest
order hadronic contributions to the given final state.

of an unstable particle via Dyson summation of self-energy contributions

1

k2 −M2
0

∞∑

n=0

(
−Σ(k2)

k2 −M2
0

)n

=
1

k2 −M2
0 + Σ(k2)

, (4.1)

where M0 is the bare mass of the intermediate particle and Σ its self-energy contribution,
which is related to its width Γ via the optical theorem: Γ ∼ 1

M ImΣ(M2). However, via
a simple replacement of propagators with their regularized version, only parts of higher-
order contributions are included, and results might become gauge dependent. I.e. , Ward
identities can be violated. A consistent calculation, e.g., within the complex mass scheme,
manifestly preserves gauge invariance at any order of perturbation theory (see for example
ref. [237] for a definition of the complex mass scheme at leading order), however such a
calculation is technically involved, often computationally prohibitive and will not be pursued
here. Approximations used in this work at LO and NLO are discussed in the following.

4.2.1 Born approximations

To be specific, we want to consider the process illustrated in figure 4.1, i.e. the hadroproduc-
tion of two jets j = {q, q̄, g} and two electroweak gauginos χ̃l = {χ̃0

l , χ̃
±
l } at LO,

pp → jjχ̃iχ̃j(+X) . (4.2)

The two gauginos are assumed to be stable for the moment. If unstable they decay via an
electroweak decay chain which is unaffected by NLO QCD corrections1. For χi,j = χ̃0

1 this
processes directly contributes to the experimental signature pp → 2j+ ̸ET (+X), which chap-
ter 5 is dedicated to.

Within the MSSM the dominant contribution to process (4.2) comes from on-shell or
nearly on-shell intermediate squarks, if kinematically available. Thus, the complete leading-
order matrix element for the corresponding partonic process can be expanded in poles of
different orders and is given by

M =
R12(k21 , k

2
2 , {θi})

(k21 −M2
q̃1
)(k22 −M2

q̃2
)
+

R1(k21, k
2
2 , {θi})

k21 −M2
q̃1

+
R2(k21 , k

2
2 , {θi})

k22 −M2
q̃2

+N(k21 , k
2
2 , {θi}) , (4.3)

1From three-body decays or from the decay of SM gauge bosons or Higgs bosons in the electroweak decay
chain, colored objects can still be emitted. However, corresponding QCD corrections are sub-leading.
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of an unstable particle via Dyson summation of self-energy contributions
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where M0 is the bare mass of the intermediate particle and Σ its self-energy contribution,
which is related to its width Γ via the optical theorem: Γ ∼ 1

M ImΣ(M2). However, via
a simple replacement of propagators with their regularized version, only parts of higher-
order contributions are included, and results might become gauge dependent. I.e. , Ward
identities can be violated. A consistent calculation, e.g., within the complex mass scheme,
manifestly preserves gauge invariance at any order of perturbation theory (see for example
ref. [237] for a definition of the complex mass scheme at leading order), however such a
calculation is technically involved, often computationally prohibitive and will not be pursued
here. Approximations used in this work at LO and NLO are discussed in the following.

4.2.1 Born approximations

To be specific, we want to consider the process illustrated in figure 4.1, i.e. the hadroproduc-
tion of two jets j = {q, q̄, g} and two electroweak gauginos χ̃l = {χ̃0

l , χ̃
±
l } at LO,

pp → jjχ̃iχ̃j(+X) . (4.2)

The two gauginos are assumed to be stable for the moment. If unstable they decay via an
electroweak decay chain which is unaffected by NLO QCD corrections1. For χi,j = χ̃0

1 this
processes directly contributes to the experimental signature pp → 2j+ ̸ET (+X), which chap-
ter 5 is dedicated to.

Within the MSSM the dominant contribution to process (4.2) comes from on-shell or
nearly on-shell intermediate squarks, if kinematically available. Thus, the complete leading-
order matrix element for the corresponding partonic process can be expanded in poles of
different orders and is given by
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1From three-body decays or from the decay of SM gauge bosons or Higgs bosons in the electroweak decay
chain, colored objects can still be emitted. However, corresponding QCD corrections are sub-leading.
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• Naively processes with a massive s-channel propagator diverge when  
• Experimentally we know resonances follow Breit-Wigner (BW) shape
• origin: all-order summation of 1PI corrections to propagator of  

massive particles 
 
 
 
 
 
 
 

• However: this summation mixes different orders of perturbation theory.  
Thus, in general it might (and will) break gauge invariance when applied naively.

• (Usually) not a problem at LO, also not at NLO QCD e.g. for vector boson decays into leptons
• However: possibly severe problems at NLO EW
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where M0 is the bare mass of the intermediate particle and Σ its self-energy contribution,
which is related to its width Γ via the optical theorem: Γ ∼ 1

M ImΣ(M2). However, via
a simple replacement of propagators with their regularized version, only parts of higher-
order contributions are included, and results might become gauge dependent. I.e. , Ward
identities can be violated. A consistent calculation, e.g., within the complex mass scheme,
manifestly preserves gauge invariance at any order of perturbation theory (see for example
ref. [237] for a definition of the complex mass scheme at leading order), however such a
calculation is technically involved, often computationally prohibitive and will not be pursued
here. Approximations used in this work at LO and NLO are discussed in the following.

4.2.1 Born approximations

To be specific, we want to consider the process illustrated in figure 4.1, i.e. the hadroproduc-
tion of two jets j = {q, q̄, g} and two electroweak gauginos χ̃l = {χ̃0

l , χ̃
±
l } at LO,

pp → jjχ̃iχ̃j(+X) . (4.2)

The two gauginos are assumed to be stable for the moment. If unstable they decay via an
electroweak decay chain which is unaffected by NLO QCD corrections1. For χi,j = χ̃0

1 this
processes directly contributes to the experimental signature pp → 2j+ ̸ET (+X), which chap-
ter 5 is dedicated to.

Within the MSSM the dominant contribution to process (4.2) comes from on-shell or
nearly on-shell intermediate squarks, if kinematically available. Thus, the complete leading-
order matrix element for the corresponding partonic process can be expanded in poles of
different orders and is given by
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1From three-body decays or from the decay of SM gauge bosons or Higgs bosons in the electroweak decay
chain, colored objects can still be emitted. However, corresponding QCD corrections are sub-leading.
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where M0 is the bare mass of the intermediate particle and Σ its self-energy contribution,
which is related to its width Γ via the optical theorem: Γ ∼ 1

M ImΣ(M2). However, via
a simple replacement of propagators with their regularized version, only parts of higher-
order contributions are included, and results might become gauge dependent. I.e. , Ward
identities can be violated. A consistent calculation, e.g., within the complex mass scheme,
manifestly preserves gauge invariance at any order of perturbation theory (see for example
ref. [237] for a definition of the complex mass scheme at leading order), however such a
calculation is technically involved, often computationally prohibitive and will not be pursued
here. Approximations used in this work at LO and NLO are discussed in the following.

4.2.1 Born approximations

To be specific, we want to consider the process illustrated in figure 4.1, i.e. the hadroproduc-
tion of two jets j = {q, q̄, g} and two electroweak gauginos χ̃l = {χ̃0
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l } at LO,

pp → jjχ̃iχ̃j(+X) . (4.2)

The two gauginos are assumed to be stable for the moment. If unstable they decay via an
electroweak decay chain which is unaffected by NLO QCD corrections1. For χi,j = χ̃0

1 this
processes directly contributes to the experimental signature pp → 2j+ ̸ET (+X), which chap-
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Within the MSSM the dominant contribution to process (4.2) comes from on-shell or
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• Narrow-width approximation (NWA):
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�/M ! 0

1Z

�1

dk2

(k2 �m2)2 +m2�
=

⇡

m�
�(k2 �m2)

➡ Advantage: reduces complexity in NLO computation
➡ However: unable to capture off-shell effects

:

d� = d�prod
d�dec

�

• Complex Mass Scheme (CMS):     analytical continuation at Lagrangian level
➡ regularises propagators (effects also propagator numerators)
➡ effects all derived couplings, incl. weak mixing angle:
➡ position of the pole in the renormalisation

M → μ = M − iΓM

sin ✓2W = 1� µ2
W

µ2
Z

Counterterms for complex masses The propagators of unstable particles with �i 6= 0 are renor-
malised in the complex-mass scheme [38], where the renormalised self-energy is defined as

⌃̂i(p2) = ⌃i(p2) � �µ2

i with �µ2

i = ⌃i
�
p2
� ���

p2=µ
2
i

. (3.53)

The counterterm �µ2

i
associated with the complex mass (3.23) corresponds to a subtraction of the

full complex-valued self-energy at p2 = µ2

i
. In particular, the counterterm �µ2

i
includes also the

imaginary part of the self-energy, which is related to the width through

Im ⌃i(M2

i ) = �iMi , (3.54)

and is already included in the imaginary part of µ2

i
. Thus the subtraction of Im ⌃ in the complex-

mass scheme is mandatory in order to avoid double counting. Since the renormalised self-energy
(3.53) vanishes at p2

! µ2

i
, the tree-level and one-loop propagators have the same resonant form

1/(p2
� M2

i
+ i�iMi), where width effects are controlled by the user-defined width parameter �i.

For convenience, the relevant 2-point integrals with complex-valued momenta p2 = µ2
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[38]. In this context,

self-energy graphs involving massless photons require a special treatment due to the presence of a
threshold at p2 = µ2. In this case, the correct expansion of the scalar two-point function reads
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where the additional �i�/M term accounts for the non-analytic behaviour at p2 = µ2. The related
expansion formula for generic self-energies reads
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where the non-analytic expansion coefficient is given by
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and depends only on the electromagnetic charge Qi of the particle at hand. This is due to the
fact that (3.57) originates only from photon-exchange diagrams and is related to the presence of an
infrared singularity in B0

0
at p2

! µ2

i
.

The expanded mass counterterms for Higgs (i = H) and vector bosons (i = V = W, Z) read
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where ⌃T denotes the transverse part of the gauge-boson propagator. The renormalisation of fermion
masses depends on the following combination of left-handed (L), right-handed (R) and scalar (S)
self-energy contributions,
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Renormalised self-energy:
Counterterms for complex masses The propagators of unstable particles with �i 6= 0 are renor-
malised in the complex-mass scheme [38], where the renormalised self-energy is defined as
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The need for off-shell computations: VV
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Figure 13: Transverse-momentum distributions of the electron (left) and of the charged-lepton
system (right) in pp → νµµ+e−ν̄e + X in the ATLAS WW setup. The lower panels show the
relative size of the EW corrections to the q̄q channels in our default setup compared to the result
based on the DPA.
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Figure 14: Illustration of diagrammatic structures dominating the pT,e− (left) and pT,e−µ+ (right)
distributions shown in Fig. 13 for high transverse momenta.
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➡ sizeable differences in fully off-shell vs. double-pole approximation in tails
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Figure 1: Sample tree-level diagrams contributing at O(α4). The dominant q̄q channel (a,b)
defines the LO contribution, while the photon-induced γγ channel (c) is counted as a correction.

WW, WZ, and ZZ production [42]. Most recently, NLO EW calculations based on full 2 → 4
particle amplitudes, including all off-shell effects, have been presented for W-pair [43] and Z-pair
production [44] for four-lepton final states of different fermion generations (i.e. without identical
particle effects or WW/ZZ interferences). For Z-pair production, the off-shell effects include also
the contributions of virtual photons that cannot be separated from the Z-pair signal, but only
suppressed by using appropriate invariant-mass cuts. Note that these full off-shell calculations
are essential to safely assess the EW corrections below the WW and ZZ thresholds, i.e. in the
kinematical region where WW∗/ZZ∗ production appears as background to Higgs-boson analy-
ses. Moreover, a detailed comparison of the full four-lepton calculation [43] to the double-pole
approximation for W-boson pairs [41] revealed limitations of the latter approach for transverse-
momentum distributions of the leptons in the high-energy domain where new-physics signals
are searched for.

In Ref. [44] we have presented some selected results for the NLO EW corrections to off-shell
ZZ production in a scenario relevant for Higgs-boson studies. In this paper we provide more
detailed phenomenological studies in various phase-space regions relevant for LHC analyses
for pp → µ+µ−e+e− + X and completely new results on pp → µ+µ−µ+µ− + X, including
interference effects from identical final-state leptons. We follow the same concepts and strategies
as in Refs. [43, 44], i.e. finite-width effects of the Z bosons are consistently included using the
complex-mass scheme [45–47], so that we obtain NLO EW precision everywhere in phase space.
We also include photon-induced partonic processes originating from γγ or qγ/q̄γ initial states.

The paper is organized as follows: Some details on the calculational methods are presented
in Sec. 2. Phenomenological results for two different experimental setups are discussed in Sec. 3.
Our conclusions are given in Sec. 4.

2 Details of the calculation

2.1 Partonic channels

The leading-order (LO) cross sections of the two processes pp → µ+µ−e+e− + X and pp →
µ+µ−µ+µ− +X receive contributions from the quark–antiquark annihilation channels

q̄q/qq̄ → µ+µ−e+e−, µ+µ−µ+µ−, (2.1)

with q ∈ {u,d, c, s,b}. Sample diagrams for these channels, which are generically called q̄q
channels in the following, are shown in Figs. 1(a) and 1(b). Note that all LO diagrams involve
Z-boson and photon exchange only. There are LO channels with two photons in the initial state
as well,

γγ → µ+µ−e+e−, µ+µ−µ+µ−, (2.2)
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relative size of the EW corrections to the q̄q channels in our default setup compared to the result
based on the DPA.
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vs.

pp → W(ℓ+ν)W(ℓ′ −ν̄′ ) pp → ℓ+νℓ′ −ν̄′ 
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EW uncertainties: Sudakov

EW corrections become sizeable  
at large pT,V: -30% @ 1 TeV

Origin: virtual EW Sudakov logarithms

How to estimate corresponding pure EW uncertainties  
of relative           ?  

[7] TODO (): We should test the degree of correlation of QCD cor-
rections/uncertainties (and resulting cancellation in ratios) by means of
NLO studies. Afterwards, if possible, also through NNLO K-factors.

223

4.2 Pure EW uncertainties of relative O(↵2)224

First of all, note that for each process the corresponding QCD predictions and225

EW corrections should be computed in the same EW input scheme, otherwise226

NLO EW accuracy could be spoiled (here one should be especially careful if227

(N)NLO QCD and NLO EW corrections are computed with different tools).228

As a conservative estimate of missing higher-order EW effects we propose to229

take 10% of the NLO EW correction plus 50% of the 2-loop NLL Sudakov logs,230

i.e.231

d

dx
�
(V )
EW(~"EW, ~"QCD) = (1� 0.1 "EW,1)

d

dx
�
(V )
NLOEW(~"QCD)232

+ (1 + 0.5 "EW,2)
d

dx
�
(V )
NNLOEW(~"QCD), (15)233

with nuisance parameters "EW,i 2 [�1, 1]. The first term (0.1 "EW,1) is supposed234

to describe uncertainties of order ↵ times the NLO EW correction, which are235

not included in the NLL Sudakov approximation. The second term (0.5 "EW,2)236

mimics further uncertainties of the NLL two-loop approximation as well as the237

lack of Sudakov resummation. For instance, in the extreme scenario of an NLO238

EW correction �NLO = �50%, the expected NNLO EW Sudakov correction239

(based on exponentiation) amounts (assuming "EW,1 = "EW,2) to �NNLO =240

��
2
NLO

/2 = 12.5%, and our uncertainty estimate to �0.1�NLO + 0.5�NNLO =241

5% + 6.25% ' 11%, while the unknown N3NLO EW terms are expected to be242

as small as �NNNLO = �
3
NLO

/6 = �NLO�NNLO/3 ' 2%.243

[8] The above prescription is still under discussion: see Sect.8.1

244

Given the universal nature of Sudakov EW corrections and the fact that245

pp ! V j involves only very few independent EW coupling structures, it is nat-246

ural to assume that the known NLO+NNLO EW corrections and the unknown247

higher-order effects depend on the process (V = W
±
, Z, �) in a very similar248

way. Thus we recommend to vary the nuisance parameters ~"EW in eq. (15) in a249

correlated way across processes.250

8

κEW ± δ(1)κEW

LO
NLO EW

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

10 1

pp →Z(→ ℓ+ℓ−)+ jet @ 13 TeV
d

σ
/

d
p

T
,V

[p
b

/
G

eV
]

10 2 10 3

0.4

0.6

0.8

1

1.2

pT,V [GeV]

d
σ

/
d

σ
L

O

Z+jet

44



κEW ± δ(1)κEW

LO
NLO EW
SudakovNLO

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

10 1

pp →Z(→ ℓ+ℓ−)+ jet @ 13 TeV

d
σ

/
d

p
T

,V
[p

b
/

G
eV

]

10 2 10 3

0.4

0.6

0.8

1

1.2

pT,V [GeV]

d
σ

/
d

σ
L

O

Z+jet
Large EW corrections dominated by Sudakov logs 

↵(L2 + L1)

45

[JML et. al.: 1705.04664]

[Ciafaloni, Comelli,’98; 
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EW Sudakov logarithms at Q ⇠ TeV � MW

Soft/collinear logarithms from virtual EW bosons [Bauer, Becher, Ciafaloni,

Comelli, Denner, Fadin, Kühn, Lipatov, Manohar Martin, Melles, Penin, S.P., Smirnov, . . . ]

Z, W
± bosons ⇠ light particles at ŝ � M

2

W,Z

) large logarithms of IR type

�,Z, W±

Universality and factorisation [Denner,S.P. ’01]

�M
1�loop

LL+NLL
=

↵

4⇡

nX

k=1

8
<

:
1
2

X

l 6=k

X

a=�,Z,W±

I
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W ) ⇠ 25% � ↵S in any TeV scale observable

size depends on external EW charges: not very large for gg ! tt̄

) EW corrections important for SM tests and BSM searches at TeV scale
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EW Sudakov logarithms at Q ⇠ TeV � MW

Soft/collinear logarithms from virtual EW bosons [Bauer, Becher, Ciafaloni,

Comelli, Denner, Fadin, Kühn, Lipatov, Manohar Martin, Melles, Penin, S.P., Smirnov, . . . ]
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EW uncertainties: Sudakov
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EW uncertainties: Sudakov
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12 = ŝ.409
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where �, � and ⇠ are anomalous dimensions depending on the EW quantum394

numbers of the scattering particles. The hard cross section has the form395

d�hard =


1 +

↵

⇡
�
(1)
hard +

⇣
↵

⇡

⌘2
�
(2)
hard + . . .

�
d�Born, (28)396

and the correction factors �
(k)
hard are finite in the limit Q

2
/M

2
W ! 1, while397

EW Sudakov logarithms of type ↵
m
ln

n �
Q

2
/M

2
W

�
are factorised in the expo-398

nential. Expanding in ↵ = ↵(M
2
) with �i(↵) =

↵
⇡ �

(1)
i + . . . , and ↵(t) =399

↵
⇥
1 +

↵
⇡ b

(1)
ln
�

t
M2

�
+ . . .

⇤
yields400

exp

⇢
. . .

�
= 1 +

↵

⇡
�
(1)
Sud +

⇣
↵

⇡

⌘2
�
(2)
Sud + . . . . (29)401

At NLL level, which is the logarithmic accuracy at which NNLO Sudakov effects402

are known for V+ jet production [12–16], the following types of logarithms are403

available,9404

�
(1)
Sud =

X

i,j

C
(1)
2,ij ln

2

 
Q

2
ij

M2

!
+ C

(1)
1 ln

1

✓
Q

2

M2

◆
,405

�
(2)
Sud =

X

i,j

C
(2)
4,ij ln

4

 
Q

2
ij

M2

!
+ C

(2)
3 ln

3

✓
Q

2

M2

◆
+O


ln

2

✓
Q

2

M2

◆�
, (30)406

where M = MW ⇠ MZ , Q2
ij = |(p̂i±p̂j)

2
| are the various Mandelstam invariants407

built from the hard momenta p̂i of the V+ jet production process and Q
2
=408

Q
2
12 = ŝ.409
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Fig. 1: Top quark transverse momentum (left) and top-antitop invariant mass (right) in inclusive tt̄ production (blue) and
tt̄ + jet production (red) at NLO EW at 13 TeV at the LHC. In tt̄ + jet we require pT > 30GeV. The top panel shows the
differential cross section, while the three lower panels show, from top to bottom, the subleading Born and higher-order
corrections to inclusive tt̄ production and tt̄ + jet production, respectively. Subleading Born and one-loop contributions are
shown with lighter shades of the colour of the respective processes, dashed lines containing only the subleading Born con-
tributions and solid lines containing all subleading Born and one-loop contributions. The lowest panel shows the ratio of the
NLO EW corrections to the two processes. Corrections based on the NLO EWvirt approximation are shown as the dashed
line of the same colour as the exact NLO EW result.

tions are dominated by the DNLO22 contributions and can
in some sense be understood as the NLO QCD corrections
to the sub-subleading Born of LO12. However, we want to
note that the O(a2

s a2) bremsstrahlung also comprises ttV

production with V ! qq̄ decays, where V = {W
±,Z}. Thus,

in principle care has to be taken when such processes are
considered as separate backgrounds in BSM searches. How-
ever, these subleading one-loop corrections contribute only

at the percent level, with an increasing effect at very large
mtt̄ .

In Figure 1 we also investigate the quality of the so-
called EWvirt approximation [64] defined as

dsNLO EWvirt = dFB


B(n+2)0(FB)+V(n+2)1(FB)

+
Z

1
dF1 Rapprox

(n+2)1(FB ·F1)

�
,

(2.6)

Z+jets

tt

ttj

pTj > 30 GeV

X + jet X

tt+jet
[JML et. al.: 1705.04664]

NNLO QCD⇥EW As a possible approximation of the mixed QCD–EW higher-order corrections
we consider the factorised combination

d�
NNLO QCD⇥EW

= d�
LO

�
1 + �

QCD

�
(1 + �

EW
) + d�

gg

LO
, (2.7)

where the EW correction factor is applied to the entire NNLO QCD cross section except for the
loop-induced gg channel, for which the EW corrections �

EW
of the qq̄ and �� channels are not

applicable. The prescription (2.7) can also be written in the form

d�
NNLO QCD⇥EW

= d�
NNLO QCD+EW

+ d�
LO

�
QCD

�
EW

. (2.8)

Thus, the factorised combination (2.8) generates extra O(↵S↵) and O(↵
2

S
↵) mixed QCD–EW cor-

rections. Provided that the dominant sources of QCD and EW corrections factorise, such terms
can be regarded as a reasonable approximation of mixed QCD–EW effects. For instance, at scat-
tering energies Q � MW this assumption is justified when EW effects are dominated by Sudakov
logarithms, and the dominant QCD effects arise at scales well below Q, factorising with respect to
the underlying hard-V V process. In such cases, the factorised prescription (2.7) should be regarded
as a superior prediction as compared to the additive combination (2.6).

NNLO QCD⇥EWqq As a motivation for an alternative combination, let us highlight the role
of individual partonic channels in the factorised formula (2.7). To this end we rewrite the QCD
corrections as

d�
NNLO QCD

= d�
qq̄

LO

⇣
1 + �

qq̄

QCD

⌘
+ d�

��

LO
+ d�

gg

LO
, (2.9)

where �qq̄
QCD

includes the same QCD corrections as �
QCD

, but is normalised to the LO cross section in
the qq̄ channel. Moreover we split the EW corrections into contributions from the qq̄ and �-induced
channels,

d�
NLO EW

= d�
qq̄

LO

�
1 + �

qq̄

EW

�
+ d�

��

LO

⇣
1 + �

��/q�

EW

⌘
. (2.10)

Here in the factor �
qq̄

EW
we include only O(↵) corrections from the qq̄ channel, whereas all other

O(↵) effects stemming from the �� and q� channels8 are included in the factor �
��/q�

EW
. Using the

notation of eqs. (2.9)–(2.10) we can rewrite the factorised formula (2.7) as

d�
NNLO QCD⇥EW

=

h
d�

qq̄

LO

⇣
1 + �

qq̄

QCD

⌘
+ d�

��

LO

i
(1 + �

EW
) + d�

gg

LO
, (2.11)

where the EW K-factor corresponds to

�
EW

=
�
qq̄

EW
d�

qq̄

LO
+ �

��/�q

EW
d�

��

LO

d�
qq̄

LO
+ d�

��

LO

, (2.12)

and can be regarded as the weighted average of the corrections in the qq̄ and �� channels. The
representation (2.11) demonstrates that the factorised combination does not induce any O(↵S) effect
in the �� and gg channels. The only nontrivial factorised correction arises from the term �

qq̄

QCD
�
EW

,

8This ad-hoc splitting of EW corrections deserves some comments. As pointed out in ref. [43], (anti)quark-photon
channels have the twofold role of EW corrections to the qq̄ and �� channels and are connected to both channels
via collinear singularities. Thus, they cannot be entirely associated with one or the other channel. For this reason,
eq. (2.10) should be understood as a purely technical separation of qq̄ and �-induced corrections, which can be adopted
upon subtraction of collinear singularities (based on dipole subtraction in our implementation). As discussed below,
the choice of handling the q� channels as corrections to the �� channel (rather than to the dominant qq̄ channel) is
motivated by the fact that the q� channels can lead to giant EW K-factors that cannot be combined with the QCD
corrections with a factorised prescription.
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NNLO QCD⇥EW As a possible approximation of the mixed QCD–EW higher-order corrections
we consider the factorised combination

d�
NNLO QCD⇥EW

= d�
LO

�
1 + �

QCD

�
(1 + �

EW
) + d�

gg

LO
, (2.7)

where the EW correction factor is applied to the entire NNLO QCD cross section except for the
loop-induced gg channel, for which the EW corrections �

EW
of the qq̄ and �� channels are not

applicable. The prescription (2.7) can also be written in the form

d�
NNLO QCD⇥EW

= d�
NNLO QCD+EW

+ d�
LO

�
QCD

�
EW

. (2.8)

Thus, the factorised combination (2.8) generates extra O(↵S↵) and O(↵
2

S
↵) mixed QCD–EW cor-

rections. Provided that the dominant sources of QCD and EW corrections factorise, such terms
can be regarded as a reasonable approximation of mixed QCD–EW effects. For instance, at scat-
tering energies Q � MW this assumption is justified when EW effects are dominated by Sudakov
logarithms, and the dominant QCD effects arise at scales well below Q, factorising with respect to
the underlying hard-V V process. In such cases, the factorised prescription (2.7) should be regarded
as a superior prediction as compared to the additive combination (2.6).

NNLO QCD⇥EWqq As a motivation for an alternative combination, let us highlight the role
of individual partonic channels in the factorised formula (2.7). To this end we rewrite the QCD
corrections as

d�
NNLO QCD

= d�
qq̄

LO

⇣
1 + �

qq̄

QCD

⌘
+ d�

��

LO
+ d�

gg

LO
, (2.9)

where �qq̄
QCD

includes the same QCD corrections as �
QCD

, but is normalised to the LO cross section in
the qq̄ channel. Moreover we split the EW corrections into contributions from the qq̄ and �-induced
channels,

d�
NLO EW

= d�
qq̄

LO

�
1 + �

qq̄

EW

�
+ d�

��

LO

⇣
1 + �

��/q�

EW

⌘
. (2.10)

Here in the factor �
qq̄

EW
we include only O(↵) corrections from the qq̄ channel, whereas all other

O(↵) effects stemming from the �� and q� channels8 are included in the factor �
��/q�

EW
. Using the

notation of eqs. (2.9)–(2.10) we can rewrite the factorised formula (2.7) as

d�
NNLO QCD⇥EW

=

h
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qq̄

LO

⇣
1 + �

qq̄

QCD

⌘
+ d�
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(1 + �

EW
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gg
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, (2.11)

where the EW K-factor corresponds to
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EW

=
�
qq̄

EW
d�

qq̄

LO
+ �

��/�q

EW
d�

��

LO

d�
qq̄

LO
+ d�

��

LO

, (2.12)

and can be regarded as the weighted average of the corrections in the qq̄ and �� channels. The
representation (2.11) demonstrates that the factorised combination does not induce any O(↵S) effect
in the �� and gg channels. The only nontrivial factorised correction arises from the term �

qq̄

QCD
�
EW

,

8This ad-hoc splitting of EW corrections deserves some comments. As pointed out in ref. [43], (anti)quark-photon
channels have the twofold role of EW corrections to the qq̄ and �� channels and are connected to both channels
via collinear singularities. Thus, they cannot be entirely associated with one or the other channel. For this reason,
eq. (2.10) should be understood as a purely technical separation of qq̄ and �-induced corrections, which can be adopted
upon subtraction of collinear singularities (based on dipole subtraction in our implementation). As discussed below,
the choice of handling the q� channels as corrections to the �� channel (rather than to the dominant qq̄ channel) is
motivated by the fact that the q� channels can lead to giant EW K-factors that cannot be combined with the QCD
corrections with a factorised prescription.
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are dominated by soft EW boson radiation on top of hard V j production. Actually, the leading
source of O(↵S↵) corrections is given by the NLO EW corrections to the enhanced pp ! V V j

channel, which cannot be captured through a naive factorised combination of the NLO QCD and
NLO EW corrections to pp ! V V .

When presenting our results in section 3, the problem of giant K-factors in the inclusive phase
space will be illustrated. We will show that giant K-factors can be avoided by means of selection cuts
that require a similar hardness of the two vector bosons, e.g. by direct requirements on the hardness
of the softer vector boson or by imposing a veto against hard QCD radiation. This will restrict
the phase space to hard-V V topologies and suppress hard-V j production. Besides reducing the
size of mixed QCD–EW higher-order effects and their respective theoretical uncertainties, selecting
hard-V V topologies enhances the sensitivity of experimental measurements that aim at extracting
new-physics effects in vector-boson pair processes, such as anomalous triple gauge couplings, from
the tails of kinematic distributions. On the other hand, a reliable inclusive description of diboson
production is indispensable for background simulations in direct searches at the TeV scale. This can
be achieved by merging pp ! V V and pp ! V V j production including NLO QCD and NLO EW
corrections as demonstrated in ref. [77]. The extension of this approach to NNLO QCD+EW is
beyond the scope of the present paper.

2.6 Combination of QCD and EW corrections

When QCD and EW corrections are both large, also NNLO mixed QCD–EW effects of relative
O(↵S↵) and beyond can become important. In order to gain insights into such higher-order effects,
we consider a standard additive combination of NNLO QCD and NLO EW corrections and compare
it against factorised combination prescriptions. To this end, we express higher-order effects in terms
of relative correction factors with respect to the LO differential cross section,

d�
LO

= d�
qq̄

LO
+ d�

��

LO
, (2.3)

which involves O(↵
4
) contributions from the qq̄ and �� channels.6 Higher-order QCD contributions

can be cast into the form

d�
NNLO QCD

= d�
LO

�
1 + �

QCD

�
+ d�

gg

LO
, (2.4)

where d�
gg

LO
is the O(↵

2

S
↵
4
) contribution of the loop-induced gg channel, and all other QCD correc-

tions are embodied in the correction factor �
QCD

, which includes the O(↵S) and O(↵
2

S
) corrections

of the qq̄, qg/q̄g, gg and qq/q̄q̄ channels.7 Similarly, the NLO EW cross section can be written as

d�
NLO EW

= d�
LO

(1 + �
EW

) , (2.5)

where all O(↵) corrections in the qq̄, �� and q� (including q̄� is implicitly understood) channels are
incorporated into the factor �

EW
. For the combination of QCD and EW corrections we consider

three different prescriptions.

NNLO QCD+EW The first prescription amounts to a purely additive combination,

d�
NNLO QCD+EW

= d�
LO

�
1 + �

QCD
+ �

EW

�
+ d�

gg

LO
, (2.6)

where all terms of O(↵
4
), O(↵S↵

4
), O(↵

5
) and O(↵

2

S
↵
4
) are simply summed.

6Note that the �� channel contributes only to ZZ and WW production. The same holds for the gg channel
contributing at NNLO QCD.

7Here and in the following, higher-order contributions (or terms) of O(↵n
S↵

4+m) are also referred to as corrections
(or effects) of O(↵n

S↵
m).
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•multiplicative/factorised combination superior (EW Sudakov logs x soft QCD)

pTV2

[M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; 1912.00068]

EW uncertainties: QCD-EW interplay
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Figure 5. Generic pp ! V V j topologies and kinematic regions that give rise to giant K-factors in the
quark–gluon channel at NLO QCD. The blob denotes the hard scattering subprocess gq ! V q at the scale
Q � MW , while the subleading vector boson (red) is radiated by one of the SU(2)⇥U(1) charged external
states giving rise to EW logarithms of soft and collinear kind.

proportional to

d�
V (V )j

d�
LO

V V

/ ↵S log
2

✓
Q

2

M
2

W

◆
' 3 at Q = 1TeV . (2.2)

General real-emission topologies that lead to giant K-factors are depicted in figure 5. They cor-
respond to a hard pp ! V j subprocess at the scale Q � MW supplemented by soft vector-boson
radiation. The corresponding kinematic regions will be referred to as hard-V j regions, and they are
characterised by a hard jet with pT,j ⇠ Q and a large gap between the leading and subleading vector
boson, pT,V2

⌧ pT,V1
. Conversely, standard QCD radiation effects correspond to a hard subprocess

pp ! V V at the scale Q and QCD radiation at scales well below Q. In this case the two vector
bosons are comparably hard, and such phase space regions will be classified as hard-V V regions.

Noteworthy, giant K-factors can also arise at NLO EW, where they appear in �q ! V V q real-
emission processes with a hard �q ! V q subprocess and soft vector-boson radiation, as well as in
crossing-related qq̄ ! V V � processes with a hard qq̄ ! V � subprocess. At NLO EW, in addition
to the topologies of figure 5 with gluons replaced by photons, also extra topologies where the soft
vector boson is radiated off external photons arise. Here, the giant K-factor mechanism leads to
NLO EW effects of order ↵w log

2
(Q

2
/M

2

W
), and these are dominated by the �q ! V V q channel.

The appearance of giant K-factors at NLO raises important questions concerning the conver-
gence of the perturbative expansion and the combination of QCD and EW corrections. In this
respect, it is important to note that, contrary to QCD logarithmic effects of soft and collinear ori-
gin, the large logarithms in eq. (2.1) do not contribute to all orders in ↵S. In fact, such logarithms
do not arise from soft QCD radiation, but from soft vector-boson radiation in combination with
the opening of the hard pp ! V (V )j channel at NLO QCD. Since this happens only when moving
from LO to NLO QCD, higher-order QCD corrections beyond NLO are free from further giant
K-factors.5 Note also that the availability of NNLO QCD corrections makes it possible to verify
the stability of the perturbative expansion beyond NLO and to arrive at reliable QCD predictions
for observables that feature giant K-factors.

For what concerns the combination of QCD and EW corrections, the presence of giant K-factors
raises more serious issues. In particular, the fact that in the relevant high-pT regions the NLO QCD
and NLO EW corrections are both strongly enhanced implies sizeable theoretical uncertainties from
large unknown mixed QCD–EW NNLO effects. In principle, depending on the observable and the
kinematic region, mixed QCD–EW effects can be approximated through a factorised description of
QCD and EW corrections (see section 2.6). However, such a factorisation can be justified only in
cases where QCD and EW corrections are both dominated by soft corrections with respect to the
same hard subprocess. In the case at hand, this condition is not fulfilled since NLO EW effects are
driven by logarithmic Sudakov corrections to hard V V production, whereas giant QCD K-factors

5Here, we assume that in diboson production at the scale Q � MW at least one vector boson with pT,V1
= O(Q)

is required. Otherwise, allowing both vector bosons to become soft would result into giant NNLO QCD K-factors of
the form ↵2

S log4(Q2/M2
W ) stemming from hard dijet topologies.
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Figure 5. Generic pp ! V V j topologies and kinematic regions that give rise to giant K-factors in the
quark–gluon channel at NLO QCD. The blob denotes the hard scattering subprocess gq ! V q at the scale
Q � MW , while the subleading vector boson (red) is radiated by one of the SU(2)⇥U(1) charged external
states giving rise to EW logarithms of soft and collinear kind.

proportional to

d�
V (V )j

d�
LO

V V

/ ↵S log
2

✓
Q

2

M
2

W

◆
' 3 at Q = 1TeV . (2.2)

General real-emission topologies that lead to giant K-factors are depicted in figure 5. They cor-
respond to a hard pp ! V j subprocess at the scale Q � MW supplemented by soft vector-boson
radiation. The corresponding kinematic regions will be referred to as hard-V j regions, and they are
characterised by a hard jet with pT,j ⇠ Q and a large gap between the leading and subleading vector
boson, pT,V2

⌧ pT,V1
. Conversely, standard QCD radiation effects correspond to a hard subprocess

pp ! V V at the scale Q and QCD radiation at scales well below Q. In this case the two vector
bosons are comparably hard, and such phase space regions will be classified as hard-V V regions.
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The appearance of giant K-factors at NLO raises important questions concerning the conver-
gence of the perturbative expansion and the combination of QCD and EW corrections. In this
respect, it is important to note that, contrary to QCD logarithmic effects of soft and collinear ori-
gin, the large logarithms in eq. (2.1) do not contribute to all orders in ↵S. In fact, such logarithms
do not arise from soft QCD radiation, but from soft vector-boson radiation in combination with
the opening of the hard pp ! V (V )j channel at NLO QCD. Since this happens only when moving
from LO to NLO QCD, higher-order QCD corrections beyond NLO are free from further giant
K-factors.5 Note also that the availability of NNLO QCD corrections makes it possible to verify
the stability of the perturbative expansion beyond NLO and to arrive at reliable QCD predictions
for observables that feature giant K-factors.

For what concerns the combination of QCD and EW corrections, the presence of giant K-factors
raises more serious issues. In particular, the fact that in the relevant high-pT regions the NLO QCD
and NLO EW corrections are both strongly enhanced implies sizeable theoretical uncertainties from
large unknown mixed QCD–EW NNLO effects. In principle, depending on the observable and the
kinematic region, mixed QCD–EW effects can be approximated through a factorised description of
QCD and EW corrections (see section 2.6). However, such a factorisation can be justified only in
cases where QCD and EW corrections are both dominated by soft corrections with respect to the
same hard subprocess. In the case at hand, this condition is not fulfilled since NLO EW effects are
driven by logarithmic Sudakov corrections to hard V V production, whereas giant QCD K-factors

5Here, we assume that in diboson production at the scale Q � MW at least one vector boson with pT,V1
= O(Q)

is required. Otherwise, allowing both vector bosons to become soft would result into giant NNLO QCD K-factors of
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are dominated by soft EW boson radiation on top of hard V j production. Actually, the leading
source of O(↵S↵) corrections is given by the NLO EW corrections to the enhanced pp ! V V j

channel, which cannot be captured through a naive factorised combination of the NLO QCD and
NLO EW corrections to pp ! V V .

When presenting our results in section 3, the problem of giant K-factors in the inclusive phase
space will be illustrated. We will show that giant K-factors can be avoided by means of selection cuts
that require a similar hardness of the two vector bosons, e.g. by direct requirements on the hardness
of the softer vector boson or by imposing a veto against hard QCD radiation. This will restrict
the phase space to hard-V V topologies and suppress hard-V j production. Besides reducing the
size of mixed QCD–EW higher-order effects and their respective theoretical uncertainties, selecting
hard-V V topologies enhances the sensitivity of experimental measurements that aim at extracting
new-physics effects in vector-boson pair processes, such as anomalous triple gauge couplings, from
the tails of kinematic distributions. On the other hand, a reliable inclusive description of diboson
production is indispensable for background simulations in direct searches at the TeV scale. This can
be achieved by merging pp ! V V and pp ! V V j production including NLO QCD and NLO EW
corrections as demonstrated in ref. [77]. The extension of this approach to NNLO QCD+EW is
beyond the scope of the present paper.

2.6 Combination of QCD and EW corrections

When QCD and EW corrections are both large, also NNLO mixed QCD–EW effects of relative
O(↵S↵) and beyond can become important. In order to gain insights into such higher-order effects,
we consider a standard additive combination of NNLO QCD and NLO EW corrections and compare
it against factorised combination prescriptions. To this end, we express higher-order effects in terms
of relative correction factors with respect to the LO differential cross section,

d�
LO

= d�
qq̄

LO
+ d�

��

LO
, (2.3)

which involves O(↵
4
) contributions from the qq̄ and �� channels.6 Higher-order QCD contributions

can be cast into the form

d�
NNLO QCD

= d�
LO

�
1 + �

QCD

�
+ d�

gg

LO
, (2.4)

where d�
gg

LO
is the O(↵

2

S
↵
4
) contribution of the loop-induced gg channel, and all other QCD correc-

tions are embodied in the correction factor �
QCD

, which includes the O(↵S) and O(↵
2

S
) corrections

of the qq̄, qg/q̄g, gg and qq/q̄q̄ channels.7 Similarly, the NLO EW cross section can be written as

d�
NLO EW

= d�
LO

(1 + �
EW

) , (2.5)

where all O(↵) corrections in the qq̄, �� and q� (including q̄� is implicitly understood) channels are
incorporated into the factor �

EW
. For the combination of QCD and EW corrections we consider

three different prescriptions.

NNLO QCD+EW The first prescription amounts to a purely additive combination,

d�
NNLO QCD+EW

= d�
LO

�
1 + �

QCD
+ �

EW

�
+ d�

gg

LO
, (2.6)

where all terms of O(↵
4
), O(↵S↵

4
), O(↵

5
) and O(↵

2

S
↵
4
) are simply summed.

6Note that the �� channel contributes only to ZZ and WW production. The same holds for the gg channel
contributing at NNLO QCD.

7Here and in the following, higher-order contributions (or terms) of O(↵n
S↵

4+m) are also referred to as corrections
(or effects) of O(↵n

S↵
m).
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NNLO QCD⇥EW As a possible approximation of the mixed QCD–EW higher-order corrections
we consider the factorised combination

d�
NNLO QCD⇥EW

= d�
LO

�
1 + �

QCD

�
(1 + �

EW
) + d�

gg

LO
, (2.7)

where the EW correction factor is applied to the entire NNLO QCD cross section except for the
loop-induced gg channel, for which the EW corrections �

EW
of the qq̄ and �� channels are not

applicable. The prescription (2.7) can also be written in the form

d�
NNLO QCD⇥EW

= d�
NNLO QCD+EW

+ d�
LO

�
QCD

�
EW

. (2.8)

Thus, the factorised combination (2.8) generates extra O(↵S↵) and O(↵
2

S
↵) mixed QCD–EW cor-

rections. Provided that the dominant sources of QCD and EW corrections factorise, such terms
can be regarded as a reasonable approximation of mixed QCD–EW effects. For instance, at scat-
tering energies Q � MW this assumption is justified when EW effects are dominated by Sudakov
logarithms, and the dominant QCD effects arise at scales well below Q, factorising with respect to
the underlying hard-V V process. In such cases, the factorised prescription (2.7) should be regarded
as a superior prediction as compared to the additive combination (2.6).

NNLO QCD⇥EWqq As a motivation for an alternative combination, let us highlight the role
of individual partonic channels in the factorised formula (2.7). To this end we rewrite the QCD
corrections as

d�
NNLO QCD

= d�
qq̄

LO

⇣
1 + �

qq̄

QCD

⌘
+ d�

��

LO
+ d�

gg

LO
, (2.9)

where �qq̄
QCD

includes the same QCD corrections as �
QCD

, but is normalised to the LO cross section in
the qq̄ channel. Moreover we split the EW corrections into contributions from the qq̄ and �-induced
channels,

d�
NLO EW

= d�
qq̄

LO

�
1 + �

qq̄

EW

�
+ d�

��

LO

⇣
1 + �

��/q�

EW

⌘
. (2.10)

Here in the factor �
qq̄

EW
we include only O(↵) corrections from the qq̄ channel, whereas all other

O(↵) effects stemming from the �� and q� channels8 are included in the factor �
��/q�

EW
. Using the

notation of eqs. (2.9)–(2.10) we can rewrite the factorised formula (2.7) as

d�
NNLO QCD⇥EW

=

h
d�

qq̄

LO

⇣
1 + �

qq̄

QCD

⌘
+ d�

��

LO

i
(1 + �

EW
) + d�

gg

LO
, (2.11)

where the EW K-factor corresponds to

�
EW

=
�
qq̄

EW
d�

qq̄

LO
+ �

��/�q

EW
d�

��

LO

d�
qq̄

LO
+ d�

��

LO

, (2.12)

and can be regarded as the weighted average of the corrections in the qq̄ and �� channels. The
representation (2.11) demonstrates that the factorised combination does not induce any O(↵S) effect
in the �� and gg channels. The only nontrivial factorised correction arises from the term �

qq̄

QCD
�
EW

,

8This ad-hoc splitting of EW corrections deserves some comments. As pointed out in ref. [43], (anti)quark-photon
channels have the twofold role of EW corrections to the qq̄ and �� channels and are connected to both channels
via collinear singularities. Thus, they cannot be entirely associated with one or the other channel. For this reason,
eq. (2.10) should be understood as a purely technical separation of qq̄ and �-induced corrections, which can be adopted
upon subtraction of collinear singularities (based on dipole subtraction in our implementation). As discussed below,
the choice of handling the q� channels as corrections to the �� channel (rather than to the dominant qq̄ channel) is
motivated by the fact that the q� channels can lead to giant EW K-factors that cannot be combined with the QCD
corrections with a factorised prescription.
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•Problems:
1. In additive combination dominant Vj topology does not receive any EW corrections
2. In multiplicative combination EW correction for VV is applied to Vj hard process
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Combination of QCD and EW corrections



Perturbative expansion: revised II

      γ, Z      γ, Z      

d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

γ, Z
Example: qq̅ → qq̅

• In general combined expansion in αS and α necessary:

52

LO “subleading Born contributions”: LO2, LO3



d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

• In general combined expansion in αS and α necessary:

• also at NLO:

· · ·+ �(↵n+1
s ↵m) + d�(↵n

s↵
m+1) + �(↵n�1

s ↵m+2) + �(↵n�2
s ↵m+3) + . . .

“NLO QCD” “NLO EW” “subleading one-loop contributions”: NLO3, NLO4

O(↵s) O(↵)
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Perturbative expansion: revised II

LO “subleading Born contributions”: LO2, LO3



      γ, Z      γ, Z      

d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

γ, Z

• In general combined expansion in αS and α necessary:

Example: qq̅ → qq̅

· · ·+ �(↵n+1
s ↵m) + d�(↵n

s↵
m+1) + �(↵n�1

s ↵m+2) + �(↵n�2
s ↵m+3) + . . .

• also at NLO:

“NLO QCD” “NLO EW” “subleading one-loop contributions”: NLO3, NLO4
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Perturbative expansion: revised II

LO “subleading Born contributions”: LO2, LO3



      γ, Z      γ, Z      

d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

γ, Z

• In general combined expansion in αS and α necessary:

Example: qq̅ → qq̅

· · ·+ �(↵n+1
s ↵m) + d�(↵n

s↵
m+1) + �(↵n�1

s ↵m+2) + �(↵n�2
s ↵m+3) + . . .

• also at NLO:

γ, Z

γ γ

γ, Z

γ, Z

“NLO QCD” “NLO EW” “subleading one-loop contributions”: NLO3, NLO4

55

Perturbative expansion: revised II

LO “subleading Born contributions”: LO2, LO3



      γ, Z      γ, Z      

d� = d�(↵n
s↵

m) + d�(↵n�1
s ↵m+1) + �(↵n�2

s ↵m+2) + . . .

γ, Z

• In general combined expansion in αS and α necessary:

Example: qq̅ → qq̅

· · ·+ �(↵n+1
s ↵m) + d�(↵n

s↵
m+1) + �(↵n�1

s ↵m+2) + �(↵n�2
s ↵m+3) + . . .

• also at NLO:

γ, Z

γ γ

γ, Z

γ, Z

Note:          
• No diagrammatic separation in NLO QCD and EW
• An IR finite & gauge invariant result is only obtained 

including all virtual and real contributions of a given 
perturbative order. 

LO “subleading Born contributions”: LO2, LO3

“NLO QCD” “NLO EW” “subleading one-loop contributions”: NLO3, NLO4

56

Perturbative expansion: revised II
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Physics goals in VBS and VVV production

• direct access to quartic EW gauge couplings

W

W

W

W

• longitudinal gauge bosons at high energies

↪→ probe SM unitarization mechanism

• window to electroweak symmetry breaking

via off-shell Higgs exchange

H

W

W

W

W

Note: severe QCD background to VBS signatures

W

W

g

g

g

W

W
g

Wγ/Z

W

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 33
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d� = d�(↵2
S↵

4) + d�(↵S↵
5) + d�(↵6) + . . .

QCD-background VBS-signalinterference
LO

NLO · · ·+ d�(↵3
S↵

4) + d�(↵2
S↵

5) + d�(↵S↵
6) + �(↵7)

“NLO QCD” “NLO EW”

O(↵s)
O(↵)

“NLO QCD” “NLO EW”

O(↵s)
O(↵)

Example: VV+2jets production
•direct access to quartic EW 
gauge couplings 

•VBS: longitudinal gauge 
bosons at high energies 

•window to electroweak 
symmetry breaking  
via off-shell Higgs exchange 
(ensures unitarity)

➡ separation formally meaningless at NLO 
➡ always also consider measurements: fiducial cross sections without QCD subtraction
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VBS-W+W+ @ full NLO 

Set-up of Ref. [9] Present work DHK [9]

σLO [fb] 1.2230(4) 1.2218(2)

σNLO [fb] 1.2975(15) 1.2917(8)

Table 6: Comparison of fiducial cross sections at LO [order O
(

α6
)

] and NLO [order O
(

αsα4
)

]

for the process pp → µ+νµe+νejj against the literature in the set-up of Ref. [9]. DHK denotes

the results of Ref. [9]. The cross sections are expressed in femtobarn and the statistical

uncertainty from the Monte Carlo integration on the last digit is given in parenthesis.
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Figure 5: Transverse-momentum distributions at a centre-of-mass energy
√
s = 13TeV at

the LHC for pp → µ+νµe+νejj: (a) for the anti-muon (left) and (b) the hardest jet (right).

The upper panels show the three LO contributions as well as the sum of all NLO predictions.

The two lower panels show the relative NLO corrections with respect to the full LO, defined

as δi = δσi/
∑

σLO, where i = O
(

α7
)

,O
(

αsα6
)

,O
(

α2
sα

5
)

,O
(

α3
sα

4
)

. In addition, the NLO

photon-induced contributions of order O
(

α7
)

computed with LUXqed is provided separately.

butions are presented along with the NLO photon-induced contributions of order O
(

α7
)

. The

latter are computed for the LUXqed PDF and are thus normalised to the Born contributions

obtained with the corresponding PDF. Remember that these photon-induced contributions

are not included in our definition of the NLO corrections of order O
(

α7
)

.

In Fig. 5, two transverse-momentum distributions are displayed. Starting with the distri-

bution in the transverse momentum of the anti-muon, the upper panel in Fig. 5a shows that

the EW-induced contribution is dominant over the whole phase space. Concerning the relative

NLO corrections in the lower panel, the largest contribution is the one of order O
(

α7
)

. It

ranges from −10% at 20GeV (the cut on the transverse momentum of the charged lepton) to

−40% at 800GeV. The large corrections for high transverse momenta are due to logarithms of
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SM predictions for VBS

NLO QCD
+ parton shower:

VBS Jäger et al. ’06–’09; Denner et al. ’12

QCD VBS bkg Melia et al. ’10,’11; Greiner et al. ’12; Campanario et al ’13

(Pure) NLO EW for W+W+ + 2jets: Biedermann, Denner, Pellen ’16
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W

2 → 6 particles at NLO EW !
(8-point functions)

1-loop automation with

RECOLA + COLLIER

Actis et al. ’16 Denner et al. ’16

• VBS cuts: Mjj > 500GeV, pT,j > 30GeV, pT,ℓ > 20GeV, etc.

• NLO EW corr. to σ: −16% → relevant for upcoming measurements !

Stefan Dittmaier, Standard Model Theory EPS Conference on HEP, Venice, July 5–12, 2017 – 35

[Biedermann, Denner, Pellen ’16+’17] 

•2 → 6 particles at NLO EW!
•highly challenging computation! 

•NLO corrections dominated by α7 : 

SM predictions for VBS

NLO QCD
+ parton shower:

VBS Jäger et al. ’06–’09; Denner et al. ’12

QCD VBS bkg Melia et al. ’10,’11; Greiner et al. ’12; Campanario et al ’13

(Pure) NLO EW for W+W+ + 2jets: Biedermann, Denner, Pellen ’16
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Order O
(

α7
)

O
(

αsα6
)

O
(

α2
sα

5
)

O
(

α3
sα

4
)

Sum

δσNLO [fb] −0.2169(3) −0.0568(5) −0.00032(13) −0.0063(4) −0.2804(7)

δσNLO/σLO [%] −13.2 −3.5 0.0 −0.4 −17.1

Table 3: NLO corrections for the process pp → µ+νµe+νejj at the orders O
(

α7
)

, O
(

αsα6
)

,

O
(

α2
sα

5
)

, and O
(

α3
sα

4
)

and for the sum of all NLO corrections. The contribution δσNLO

corresponds to the absolute correction for the central scale choice while δσNLO/σLO gives the

relative correction normalised to the sum of all LO contributions at the central scale. The

absolute contributions are expressed in femtobarn while the relative ones are expressed in per

cent. The statistical uncertainty from the Monte Carlo integration on the last digit is given

in parenthesis.

at the fiducial cross-section level. The hierarchy of the NLO corrections follows roughly the

pattern observed at LO: at the integrated cross-section level, each NLO correction is roughly

one order of magnitude smaller than the corresponding LO contribution. Thus, one expects

that the bulk of the O
(

αsα6
)

corrections stems from the QCD corrections to the EW-induced

process, while only a small contribution results from the EW corrections to the interference.

We emphasise, however, again that QCD corrections to the EW-induced process and EW

corrections to the LO interference cannot be defined independently. Indeed, using the full

matrix element, they both contribute at the order O
(

αsα6
)

as discussed in Sect. 2.2. The

contributions at the order O
(

α2
sα

5
)

are small because the corresponding LO contributions are

already suppressed and moreover the EW corrections to the QCD-induced LO contribution

and the QCD corrections to the LO interference cancel to a large extent. Upon calculating

the NLO cross section with the different scales of Eq. (3.11), we find

σNLO = 1.3577(7)+1.2(1)%
−2.7(1)% fb, (3.13)

i.e. a reduction of the LO scale dependence by a factor five.

We have also calculated the photon-induced NLO contributions as shown in Table 4. Since

the photon PDF from the NNPDF-3.0 QED set is known to give rather sizeable contributions

with a large error, we have also calculated these contributions using the PDF of the recent

LUXqed_plus_PDF4LHC15_nnlo_100 set [51]. For LUXqed we use the MS factorisation

scheme throughout, while we have verified that the effect of the factorisation scheme is irrel-

evant at the level of accuracy of the results given. The photon-induced NLO contributions

are dominated by those of order O
(

α7
)

and amount to 2.7% based on NNPDF-3.0 QED and

1.5% based on LUXqed. The photon-induced contributions of orders O
(

αsα6
)

and O
(

α2
sα

5
)

are negligible. Hence in the following, only the photon-induced contributions of order O
(

α7
)

are displayed in the distributions. Note that in our definition of the NLO corrections at order

O
(

α7
)

, the photon-induced contributions are not included but are shown separately. This

means that for the combined distributions (Fig. 7), the NLO predictions do not include the

photon-induced contributions.
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with

•VERY large inclusive EW corrections  
(dominated by Sudakov logs)

NLO EW corrections - W±W±

LO: O
�
↵6

�

NLO: O
�
↵7

� �LO [fb] �NLO
EW [fb] �EW [%]

1.5348(2) 1.2895(6) �16.0
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[Biedermann, Denner, MP; 1611.02951]

! Huge NLO electroweak correction (!)
Mathieu PELLEN Theory predictions for vector-boson scattering at the LHC 29 / 48

“NLO QCD” 
to EW mode 

“NLO EW”
to EW mode

“NLO QCD” 
to QCD mode “NLO EW”

to QCD mode



‣ LHC is turning into a precision EW machine

‣ ..and precision is key for SM probes, global EFT fits, 
 as well as for searches.

‣ EW corrections become large at the TeV scale

‣ Fixed-order NLO EW largely automated

‣ Higher-order EW and mixed QCD-EW uncertainties 
 are becoming relevant.

Conclusions

calculatemeasure
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LO Ingredients

• LO partonic cross section for a 2→n process can be written as

ΦTP2LO partonic cross section

LO partonic cross section for a 2 → n process can be written as

dσ̂LO =
1

2s

∫

dΦn|MLO|2

∫

dΦn = (2π)4δ(4)
(

P −
n∑

i=1

qi

)
n∏

i=1

d3qi
(2π)32Ei

n-particle phase space

MLO: LO matrix element (contains model for hard interaction)

s = P 2 = (p̂1 + p̂2)2 square of centre-of-mass energy of hard process (p̂i = xipi)

Integration over phase space by Monte Carlo methods ⇒

any distribution can be determined simultaneously

Monte Carlo events can be unweighted

Many generic codes exist at LO:

MADGRAPH Alwall, Herquet, Maltoni, Mattelaer, Stelzer

WHIZARD Kilian, Ohl, Reuter

SHERPA Höche, Krauss, Schuhmann, Siegert, Winter

HELAC Papadopoulos, Worek

. . . many more

Terascale Monte Carlo School, Hamburg, March 10–14, 2014 Ansgar Denner (Würzburg) Matrix element/NLO calculations – p.10

ΦTP2LO partonic cross section
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LO matrix element: tree-level
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squared centre-of-mass energy of 
hard process 

• Integration over phase space by Monte Carlo methods 
➡ any distribution/histogram can be determined simultaneously
➡ Monte Carlo events can be unweighted 

• Integration over phase space analytically
➡ very fast evaluation
➡ analytical structure of the result can be investigated

Perturbation theory

We need the amplitude squared:

At leading order (LO) only Born amplitudes contribute:
⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ ∼ g4

At next-to-leading order (NLO): One-loop amplitudes and Born amplitudes with an
additional parton.

2 Re

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ +

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠

︸ ︷︷ ︸

∼g6, virtual part
︸ ︷︷ ︸

∼g6, real part

Real part contributes whenever the additional parton is not resolved.

|MLO|2
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Perturbative expansion

• Expansion in a small coupling α:

LO NLO NNLO N3LO
d� = d�(↵n) + d�(↵n+1) + d�(↵n+2) + d�(↵n+3) + ...

• at the LHC consider in particular α = αs (QCD coupling),  
but also α = αEW (EW coupling) relevant → later! 

• In QCD running strong coupling: ↵S = ↵S(µ) =
1

b0 ln
µ2

⇤2

+ ...

Active flavours & running coupling

In other words: the (active) field content of a theory modifies the 
running of the couplings  

More on the beta-function

Perturbative expansion of the beta-function: 

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2
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β = −α2
s(µ)
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i

biα
i
s(µ)

b0 =
11Nc − 4nfTR

12π
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c − 5Ncnf − 3CFnf

24π2
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β(αren
s ) ≡ µ2αren
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dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
= b0 ln
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1
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1

b0 ln µ2
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s ) ≡ µ2αren
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dµ2

β = −b0 α2
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1
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= b0 ln
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+
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b0 ln µ2

Λ2

β = −α2
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i
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24π2

2

• nf is the number of active flavours (depends on the scale)
• today, the beta-function known up to four loops, but only first two 

coefficients are independent of the renormalization scheme

Beta function
Running of the QCD coupling αS is determined by the β function, which has the
expansion

β(αS) = −bα2
S(1 + b′αS) + O(α4

S)

b =
(11CA − 2Nf )

12π
, b′ =

(17C2
A − 5CANf − 3CF Nf )

2π(11CA − 2Nf )
,

where Nf is number of “active” light flavours. Terms up to O(α5
S) are known.

1-loop and 2-loop
terms are scheme
independent

Quantum Chromodynamics at the LHCLecture I: Proton structure and Parton Showers – p.6/58d�LO(µ) = ↵S(µ)
nALO

! d�LO(µ0) = ↵S(µ
0)nALO = ↵S(µ)

n

✓
1 + nb0↵S(µ) ln

µ2

µ02 + ...

◆
ALO

• So the change of scale is an NLO effect (∝αs).

• At LO the normalisation is not under control: d�LO(µ)

d�LO(µ0)
=

✓
↵S(µ)

↵S(µ0)

◆n
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QED radiation: IR safety

Photons

Cancellation of IS Photon singularities

requires QED factorisation and PDF evolution [MRST2004, NNPDF2.3]

�-induced processes ) possible TeV-scale enhancements but large PDF uncertainty

�

�

Cancellation of FS photon singularities

requires IR subtraction method [Catani,Dittmaier,Seymour,

Trocsanyi; Frixione, Kunszt, Signer]

photon emission o↵ quarks renders IR safe jet definition
nontrivial at NLO EW

�

S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 3 / 28

‣collinear f → fγ singularities
•cancelled clustering f and γ,  
within cone of  , 
typically 

•or regularised via fermion masses  
(at LHC only relevant for )

�Rf�

�Rf� = 0.1

f = µ

Treatment of photons inside jets at NLO EW

Option A: Democratic jet-algorithm approach (jets ⌘ photons)

�q
collinear q ! q� singularities
cancelled clustering q, g, � on
same footing

�

g

soft gluon singularities $ hard
photons inside jets: cancelled in
jet-production (NLO EW) +
�-production (NLO QCD)

Option B: Separation of jets from photons through E�/Ejet < zthr inside jets

rigorous approach: absorb q ! q� singularity into
fragmentation function [1411.0916]

approximation: cancel singularity via q� recombination
in small cone �Rq� < 0.1 [1412.5156]

) di↵erence ⌧ 1% for typical zthr choices
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S. Pozzorini (Zurich University) V +multijets EW SM@LHC2015 4 / 28

f

‣ However: for processes with jets at LO this spoils universality between quarks and gluons! 
→ problematic for QCD IR safety 
 

‣ Solution: democratic jet-algorithm approach, partonic jets ≡ {q, g, , l)  
 
 
 
 

�



Figure 6: Same as Fig. 5, but for ZZZ hadroproduction at 100 TeV.

7.2 ZZZ

In Fig. 6 we show plots, with the same layout of those in Fig. 5, for the process pp ! ZZZ.

This process has a neutral final state, so we do not expect large di↵erences between the

SDK0 and SDKweak approaches. On the other hand, being a 2 ! 3 process, the e↵ect of

the SSCs!rkl terms is supposed to be more relevant. The upper plots of Fig. 6 correspond

to the transverse-momentum distributions of respectively the hardest Z-boson (pT (Z1)),

the second-hardest Z-boson (pT (Z2)) and the softest one (pT (Z3)). The lower plots instead

correspond to the invariant masses m(Zi, Zj) of the three di↵erent Z-boson pairs.

All the results have been obtained by applying the following cuts:

pT (Zi) > 1 TeV , |⌘(Zi)| < 2.5 , m(Zi, Zj) > 1 TeV , �R(Zi, Zj) > 0.5 .

(7.3)

Similarly to (7.2), these cuts resemble realistic experimental cuts for high-energy objects,

– 42 –

Tools for EW Sudakov corrections 

the sum of EW charges of the external lines are equal in this case. As has recently been noted in [53], this
can be deduced from the general expressions for one-loop corrections in [1] and from soft-collinear e↵ective
theory [28, 30]. Although the overall e↵ect for Zj and Z+4j is found to be very similar here, the individual
contributions partly exhibit a di↵erent behaviour between the two, with the SSC terms becoming negative
in the four-jet case and thus switching sign, and the C terms becoming a few percent smaller. It is in general
noticeable that the SSC terms exhibit the strongest shape di↵erences among all processes considered in this
study. Finally, similarly to the previous studied cases, the resummed result gives a slightly reduced Sudakov
suppression, reaching approximately �30% for pT . 2TeV, implying that in this case, higher logarithmic
contributions should be small.
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Figure 3: The transverse momentum of the leading jet in EW-induced dijet production in proton-proton
collisions (including photon channels), and for the reconstructed Z boson in e

+
e
� plus four jets

production, For the dijet production, LO and NLO calculations are shown, whereas for the Z

plus jets production only the LO is shown. These baseline calculations are compared with the
results of the LO+NLL calculation, both at fixed-order and resummed. In the dijet case, the
virtual approximation EWvirt is shown in addition. The ratio plots show the ratios to the LO
and the EWvirt calculations, and the relative size of each NLL contribution.

11

Sherpa
[Bothmann, Napoletano, ’20]

MadGraph5_aMC@NLO
[Pagani, Zaro, ’21]

OpenLoops
[JML, Mai, ’23]

• all based on 
[Denner, Pozzorini, ’00, ’01] 
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NNLO Ingredients

• NNLO partonic cross section for a 2→n process can be written as

MNLO,V

Z
d�n(+1) n, n+1, n+2 particle phase space 

virtual one-loop matrix element

real tree-level matrix elementMNLO,R

double-virtual two-loop matrix element

real-virtual one-loop matrix element

double-real tree-level matrix elementMNNLO,RR

+
1

2s

Z
d�n+1

⇥
|MNLO,R|2 + 2Re|MNLO,RM⇤

NNLO,RV|
⇤
+

1

2s

Z
d�n+2|MNNLO,RR|2

/ ↵

/ ↵2

ΔNLO

ΔNNLO
MNNLO,RV

MNNLO,V

NNLO = B + V + V2 +  …

+ R + RV + RR

(
(
(

)
)
)

*

*

*( )

( )
( )

d�̂NNLO =
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}+ 2Re{MLOM⇤
NNLO,V}

⇤
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and

Perturbation theory

We need the amplitude squared:

At leading order (LO) only Born amplitudes contribute:
⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ ∼ g4

At next-to-leading order (NLO): One-loop amplitudes and Born amplitudes with an
additional parton.

2 Re
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⎝

⎞

⎠

︸ ︷︷ ︸

∼g6, virtual part
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∼g6, real part

Real part contributes whenever the additional parton is not resolved.
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dσ/dmee [fb/GeV] pp→e+ e− μ+ νμ@LHC 13 TeV
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Figure 4: Differential distributions of the dilepton rapidity originating from the Z-boson
(left) and of the corresponding dilepton invariant mass (right) in W+Z production in the
inclusive setup at NNLOQCD combined with NLOEW matched to parton showers for
different combination schemes. See text for details.

the lepton-pair associated with the Z boson in the inclusive setup. Looking at the yee

distribution in figure 4 (left) we observe scale-uncertainty bands with upper and lower edges
at the level of +3–5% and �2–3%, respectively, in all shown predictions. EW corrections
are smaller than these QCD scale variations and show hardly any shape effects, as expected
from this observable that is inclusive with respect to QED radiation. Indeed, comparing the
NNLO(QCD)PS

QCD
prediction against the NNLO(QCD,QED)PS

QCD
one indicates that pure QED effects

are at the level of �1–2%, and an additional �2–3% of weak origin is found when comparing
further against the NLO EW-matched NNLO(QCD,QED)PS

QCD+EW
or NNLO(QCD,QED)PS

QCDxEW
predictions,

which in turn agree at the one percent level. We also observe that the NNLO(QCD)PS
QCD

⇥

K-NLO(f.o.)

EW
prediction is practically identical with the NNLO(QCD,QED)PS

QCDxEW
one, which implies

that multiple photon emissions (beyond the first one) do not have a relevant impact here.
Looking at the mee distribution in figure 4 (right), the observations are different: there

are large effects from collinear QED radiation which shift events from above the Breit–Wigner
peak to below the peak. These effects are entirely absent in the NNLO(QCD)PS

QCD
prediction

showing deviations of up to 40% compared to the NNLO(QCD,QED)PS
QCD

prediction including
effects from the QED shower. The observed shape of the corrections due to these collinear
QED effects is qualitatively very similar to the well-known NLO EW corrections to neutral-

– 16 –

[JML, Lombardi, Wiesemann, Zanderighi, Zanoli, ‘22]

EW uncertainties: QED radiation

Conservative estimate of  
higher-order QED radiation: 

NLO EW 

vs. 

multi-photon radiation (YFS)
or
QED-PS
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Figure 8: Differential cross-sections as a function of the invariant mass of the muon pair in e
+
e
�
µ
+
µ
�

production (top) as well as the invariant mass of the leading muon pair in µ
+
µ
�
µ
+
µ
� production

(bottom). The NLO EW prediction (green), including its renormalisation scheme uncertainty, is
compared to predictions in the EWapprox approximation, augmented with PHOTOS (dotted) or
YFS (solid) using either a conservative (red) or relaxed (blue) clustering threshold. The Born-level
prediction is illustrated by the black curve. The absolute cross-sections are shown on the left for
a dressing-cone size of 0.1, while ratios of the PHOTOS and YFS curves are shown with respect to
the NLO EW prediction on the right for different dressing-cone sizes.

17

S
h

er
pa

+
O

pe
n

L
oo

ps
S

h
er

pa
+

O
pe

n
L

oo
ps

LO

NLO EW

Dthr = 1
YFS ⇥ EWapprox

Photos ⇥ EWapprox

Dthr = 10
YFS ⇥ EWapprox

Photos ⇥ EWapprox

10�6

10�5

10�4

10�3

10�2
e+e�µ+µ�

production

d
s

/
d

m
2

µ
[p

b
/

G
e
V

]

0 20 40 60 80 100 120 140
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

m2µ [GeV]

R
a

ti
o

to
B

o
r
n

S
h

er
pa

+
O

pe
n

L
oo

ps

DR = 0.005

0.92
0.94
0.96
0.98

1
1.02
1.041.06
1.08
1.1

e+e�µ+µ�
production

R
a

ti
o

to
N

L
O

E
W

DR = 0.02

0.92
0.94
0.96
0.98

1
1.02
1.041.06
1.08
1.1

R
a

ti
o

to
N

L
O

E
W

DR = 0.1

0.92
0.94
0.96
0.98

1
1.02
1.041.06
1.08
1.1

R
a

ti
o

to
N

L
O

E
W

DR = 0.2

0 20 40 60 80 100 120 140
0.92
0.94
0.96
0.98

1
1.02
1.041.06
1.08
1.1

m2µ [GeV]

R
a

ti
o

to
N

L
O

E
W

S
h

er
pa

+
O

pe
n

L
oo

ps
S

h
er

pa
+

O
pe

n
L

oo
ps

LO

NLO EW

Dthr = 1
YFS ⇥ EWapprox

Photos ⇥ EWapprox

Dthr = 10
YFS ⇥ EWapprox

Photos ⇥ EWapprox

10�6

10�5

10�4

10�3

10�2
µ+µ�µ+µ�

production

d
s

/
d

m
`
`

[p
b

/
G

e
V

]

0 20 40 60 80 100 120 140
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

leading m`` [GeV]

R
a

ti
o

to
B

o
r
n

S
h

er
pa

+
O

pe
n

L
oo

ps

DR = 0.005

0.96
0.98

1
1.02
1.04
1.06
1.08
1.1

µ+µ�µ+µ�
production

R
a

ti
o

to
N

L
O

E
W

DR = 0.02

0.96
0.98

1
1.02
1.04
1.06
1.08
1.1

R
a

ti
o

to
N

L
O

E
W

DR = 0.1

0.96
0.98

1
1.02
1.04
1.06
1.08
1.1

R
a

ti
o

to
N

L
O

E
W

DR = 0.2

0 20 40 60 80 100 120 140
0.96
0.98

1
1.02
1.04
1.06
1.08
1.1

leading m`` [GeV]

R
a

ti
o

to
N

L
O

E
W

Figure 8: Differential cross-sections as a function of the invariant mass of the muon pair in e
+
e
�
µ
+
µ
�

production (top) as well as the invariant mass of the leading muon pair in µ
+
µ
�
µ
+
µ
� production

(bottom). The NLO EW prediction (green), including its renormalisation scheme uncertainty, is
compared to predictions in the EWapprox approximation, augmented with PHOTOS (dotted) or
YFS (solid) using either a conservative (red) or relaxed (blue) clustering threshold. The Born-level
prediction is illustrated by the black curve. The absolute cross-sections are shown on the left for
a dressing-cone size of 0.1, while ratios of the PHOTOS and YFS curves are shown with respect to
the NLO EW prediction on the right for different dressing-cone sizes.
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Figure 8: Differential cross-sections as a function of the invariant mass of the muon pair in e
+
e
�
µ
+
µ
�

production (top) as well as the invariant mass of the leading muon pair in µ
+
µ
�
µ
+
µ
� production

(bottom). The NLO EW prediction (green), including its renormalisation scheme uncertainty, is
compared to predictions in the EWapprox approximation, augmented with PHOTOS (dotted) or
YFS (solid) using either a conservative (red) or relaxed (blue) clustering threshold. The Born-level
prediction is illustrated by the black curve. The absolute cross-sections are shown on the left for
a dressing-cone size of 0.1, while ratios of the PHOTOS and YFS curves are shown with respect to
the NLO EW prediction on the right for different dressing-cone sizes.
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Figure 8: Differential cross-sections as a function of the invariant mass of the muon pair in e
+
e
�
µ
+
µ
�

production (top) as well as the invariant mass of the leading muon pair in µ
+
µ
�
µ
+
µ
� production

(bottom). The NLO EW prediction (green), including its renormalisation scheme uncertainty, is
compared to predictions in the EWapprox approximation, augmented with PHOTOS (dotted) or
YFS (solid) using either a conservative (red) or relaxed (blue) clustering threshold. The Born-level
prediction is illustrated by the black curve. The absolute cross-sections are shown on the left for
a dressing-cone size of 0.1, while ratios of the PHOTOS and YFS curves are shown with respect to
the NLO EW prediction on the right for different dressing-cone sizes.
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[Gütschow, Schönherr, ’20]

�QED
EW = |�EW � �EW+PS/YFS|

ZZ WZ



• full calculations of            out of reach 

•Approximate combination: MEPS@NLO including  
(approximate) EW corrections 

• key: QCD radiation receives EW corrections! 

• strategy: modify MC@NLO B-function to include NLO EW  
 virtual corrections and integrated approx. real corrections = VI

O(↵↵s)

Combination of QCD and EW corrections

NLO EW corrections EW corrections in multijet merging Conclusions

Electroweak corrections in particle-level event generation

• incorporate approximate electroweak corrections in
SHERPA’s NLO QCD multijet merging (MEPS@NLO)

• modify MC@NLO B-function to include NLO EW virtual corrections
and integrated approx. real corrections
!

Bn,QCD+EWvirt(�n) = Bn,QCD(�n) +Vn,EW(�n) + In,EW(�n) + Bn,mix(�n)

��*
exact virtual contribution A

AK

approximate integrated real contribution

?
optionally include subleading Born

• real QED radiation can be recovered through standard tools
(parton shower, YFS resummation)

• simple stand-in for proper QCD+EW matching and merging
! validated at fixed order, found to be reliable,
! di↵. . 5% for observables not driven by real radiation

Marek Schönherr Electroweak and subleading correctionsintt̄ + jets production 14/18
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MEPS @ NLO QCD + EW: ZZ(+jet) 
[Bothmann, Napoletano, Schönherr, Schumann, Villani; ’21]
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Figure 11: Distributions of leptonic observables for pp ! e+e�µ+µ�
+ jets production. The baseline

prediction is given by the MePs@Nlo result in the Gµ scheme, with the grey band indicating its 7-point
scale-variation uncertainty. On top of it, loop-induced corrections and EWvirt/EWsud approximations
are applied. Shown are from top left to bottom right: the four-lepton invariant mass m2e2µ, the Z-boson
distance �R2e,2µ, the di-electron transverse momentum pT,2e, and four-lepton transverse momentum
pT,2e2µ. All predictions are calculated using Sherpa+OPENLOOPS/Recola.

hard tails for the pT,2e2µ, pT,j1 and pT,j2 distributions. Here, the cross section is with increasing hard-
ness increasingly dominated by the MePs@Nlo contributions alone. These contain additional higher-
multiplicity LO QCD matrix elements that are also the adequate sequel for the loop-induced sample, as
long as no two-jet loop-induced contribution is included. The addition of the MePs@Loop2 prediction
has no sizeable effect on the overall QCD scale-uncertainty band of the MePs@Nlo prediction (beyond
the rescaling induced by the increased rate).

As for the exponentiated EWsud approximation we find that it gives nearly identical results com-
pared to the MePs@Nlo+EWsud one, due to the moderate absolute EWsud correction for the studied
observables.
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Figure 11: Distributions of leptonic observables for pp ! e+e�µ+µ�
+ jets production. The baseline

prediction is given by the MePs@Nlo result in the Gµ scheme, with the grey band indicating its 7-point
scale-variation uncertainty. On top of it, loop-induced corrections and EWvirt/EWsud approximations
are applied. Shown are from top left to bottom right: the four-lepton invariant mass m2e2µ, the Z-boson
distance �R2e,2µ, the di-electron transverse momentum pT,2e, and four-lepton transverse momentum
pT,2e2µ. All predictions are calculated using Sherpa+OPENLOOPS/Recola.

hard tails for the pT,2e2µ, pT,j1 and pT,j2 distributions. Here, the cross section is with increasing hard-
ness increasingly dominated by the MePs@Nlo contributions alone. These contain additional higher-
multiplicity LO QCD matrix elements that are also the adequate sequel for the loop-induced sample, as
long as no two-jet loop-induced contribution is included. The addition of the MePs@Loop2 prediction
has no sizeable effect on the overall QCD scale-uncertainty band of the MePs@Nlo prediction (beyond
the rescaling induced by the increased rate).

As for the exponentiated EWsud approximation we find that it gives nearly identical results com-
pared to the MePs@Nlo+EWsud one, due to the moderate absolute EWsud correction for the studied
observables.
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