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LECTURES

1) Likelihood: Parameter determination and £-ratio
Chi-squared: Param determination & Goodness of Fit

2) Bayes & Frequentist Approaches

2) and 3) Searches for New Physics: Discovery and Limits

Possible 4) Learning to love the Covariance Matrix
Plus: Discussions

Problems
Working on statistical issues



Omitting introductory material

Why spend time on understanding Statistics?
Relation of Statistics to Probability Theory
Random and systematic uncertainties
Binomial distribution
Poisson distribution
Relationships among Binomial, Poisson & Gaussian
Types of Statistical Procedures:

Parameter determination

Goodness of Fit

Hypothesis Testing

Decision Theory



Likelihoods

1) Brief Introduction
2) Do’s & Dont’s
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Topics

What it is

How it works: Resonance
Uncertainty estimates
Detailed example: Lifetime
Several Parameters

Extended maximum £

Do’s and Dont’s with £



DO’S AND DONT'S WITH £

- NORMALISATION FOR LIKELIHOOD
- JUST QUOTE UPPER LIMIT

* A(In £) = 0.5 RULE ***

e £ AND GOODNESS OF FIT *#xk

max

[P dp =090
D,

* BAYESIAN SMEARING OF £

« USE CORRECT £ (PUNZI EFFECT)



Simple example: Angular distribution
Data=0,0,05..... 6,

y=N(1+pBcos?0) {RULE 1: Writedown pdf}
y. =N (1 + B cos?0)
= probability density of observing 6,, given 3
L(B) =11y,
= probability density of observing the data sety,, given 3

Best estimate of f§ is that which maximises £
Values of 3 for which £ is very small are ruled out
Uncertainty of estimate for f comes from width of £ distribution

RULE 2: CRUCIAL to normalise y N =1/42(1 + B/3)}

(Information about parameter  comes from shape of exptl distribution of cos6)

B=-1 B large L

cos 0 cos 0 B



Conventional to consider
£=1In(L) =2 In(y))
For large N, £ = Gaussian
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Maximum likelihood uncertainty

Range of likely values of param p from width of .£ or € dists.
If £(u) Is Gaussian, following definitions of o are equivalent:
1) RMS of £()

2) 1N(-d2InL / dy2)  (Mnemonic)

3) In(L(Me=0) = IN(L(Ko)) -1/2
If £(u) IS non-Gaussian, these are no longer the same

“Procedure 3 abovestill gives interval-that contains the
true value of parameter y with 68% probability”

Uncertainties from 3) usually asymmetric, and asym uncertainties are
messy. So choose param sensibly

e.g 1/p rather than p; TOr A



Realistic analyses are more
complicated than this

Lifetime Determination
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Several Parameters
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Lot =L(B,Vpes(B)), where
B = param of interest

v = nuisance param(s)
Uncertainty on 3 from
decrease in In(£,) by 0.5
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DO’S AND DONT'S WITH £

- COMBINING PROFILE £s
‘NORMALISATION FOR LIKELIHOOD
- JUST QUOTE UPPER LIMIT

e A(In £) = 0.5 RULE **#xk

e L . AND GOODNESS OF FIT k=

max

[P dp =090
D,

* BAYESIAN SMEARING OF £

« USE CORRECT £ (PUNZI EFFECT)

18



Danger of combining profile £s

Experiments quote Likelihood, profiled over
nuisance parameters, so that combinations can

be performed.

Very simple ‘tracking’ example:
* No magnetic field

* 2-D fit of straight line y = a + bx
a = parameter of interest, b = nuisance param

* Track hits in 2 subdetectors, each of 3 planes

19



X —>

(a) Hits in 2 sub-detectors, each with 3
planes T
(b) Covariance ellipses for separate fits L, INL,
and L,, and combined L .,
(c) InL,, as function of a, for all 3 lines
(d) b, as a function of a

N.B. b, for L; and L, are the same

bbest L 1 L2




COSMOLOGY EXAMPLE

Plot of dark energy fraction v dark

matter fraction by various methods.

Each determines dark energy
fraction poorly, but combination is
fine, because of different
correlations.

Combining Profile Likelihoods
would give very large uncertainty
on dark energy fraction.

9
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AInL = -1/2 rule

If £(u) Is Gaussian, following definitions of o are
equivalent:

1) RMS of £(1)
2) 1N(-d2L/dp?)

3) In(£(ue*0) = In(£L(Ho)) -1/2
If £(u) Is non-Gaussian, these are no longer the same

“Procedu ve still gives interval ains the
true value of para ' % probability”

Heinrich: CDF note 6438 (see CDF Statistics
Committee Web-page)

Barlow: Phystat05
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Coverage &5

i

* What it is: Hirve

For given statistical method applied to many sets of data to extract
confidence intervals for param p, coverage C is fraction of ranges that
contain true value of param. Can vary with p

* Does not apply to your data:
It is a property of the statistical method used

It is NOT a probability statement about whether p,, . lies in your

confidence range for p
C(W)

. . <— 68%
* Coverage plot for Poisson counting expt
Ideal coverage

Observe n counts plot
Estimate . from maximum of likelihood ’
L(p) = erpun/n!  and range of p from  In{L(Mpe)/L(H)} < 0.5
For each p,, calculate coverage C(M,,,.), and compare with nominal 68%




COVERAGE

How often does quoted range for parameter include param’s true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with J

Study coverage of different methods of Poisson parameter L, from
observation of number of events n

-100%
T < Nominal

value
C(u)

Hope for:
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COVERAGE

If true for all & :  “correct coverage”

P< & forsome # “undercoverage’
(this Is serious !)

P> o for some ««“overcoverage”

Conservative

Loss of rejection
power

29



Coverage : L approach (Not Neyman construction)

P(n,u) =e+*u"/n!  (Joel Heinrich CDF note 6438)
-2 Ink< 1 A =P,w)/P(N1)  UNDERCOVERS
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Neyman central intervals, NEVER undercover

(Conservative at both ends)
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Feldman-Cousins Unified intervals

Neyman construction so NEVER undercovers
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Probability ordering
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x> = (N-p)4/p Ay?=0.1 —— 24.8% coverage?

NOT Neyman : Coverage = 0% - 100%
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Unbinned £

MmaxXx

Find params by maximising £
So larger £ better than smaller £

So £ .. gives Goodness of Fit??

max

Monte Carlo distribution
of unbinned £.,, ©—>

T

Frequency

Bad

Good?

and Goodness of Fit?

Great?

max
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Not necessatrily:
L(data,params)

1

fixed vary
Contrast pdf(data,params)
t t
vary fixed

e.g. p(A) = A exp(-At)

T Max att=0

t —

param

+

v

data —

Max at A=1/t

36



Example 1

Fit exponential to times t;, t, t5 ....... [ Joel Heinrich, CDF 5639 ]

£ = TUA exp(-At)

mL_..=-N(1+ mt,) (Follows from slide 12}

l.e. Depends only on AVERAGE t, but is

INDEPENDENT OF DISTRIBUTION OFt  (except for........ )

(Average t is a ‘sufficient statistic’)

Variation of £, in Monte Carlo is due to variations in samples’ averag?t , but
NOT TO BETTER OR WORSE FIT T

pdf
Same average tT——> same L — \37




Example 2

dN  1+acos” 6

dcos®  1+o/3

B 1+acos 9
1+a/3

cos 6

pdf (and likelihood) depends only on cos?6,

Insensitive to sign of cos6,

So data can be in very bad agreement with expected distribution
e.g. all data with cosb <0

and £_.. does not know about it.

max

Example of general principle 38



L and Goodness of Fit?

max

Conclusion:

L has sensible properties with respect to parameters
NOT with respect to data

L . within Monte Carlo peak is NECESSARY

not SUFFICIENT

max

(‘Necessary’ doesn’t mean that you have to do it!)
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Binned data and Goodness of Fit using £-ratio

In[£-ratio] = In[L/L, ]

largey; -0.5%2  i.e. Goodness of Fit
L. IS iIndependent of parameters of fit,

and so same parameter values from £ or £-ratio

Baker and Cousins, NIM A221 (1984) 437

41



For comparing 2 hypotheses

e.g. Does data favour ‘Just SM’ or ‘'SM + New Physics'.
(Much more later in Lecture 2)

If hypotheses are “simple”, then Neyman-Peason
lemma says that £-ratio is “best” for separating them.

‘simple” = no free parameters
“best” = minimum contamination for fixed efficiency.

Even when hypotheses are not simple, £-ratio may
still be useful.

42



L and pdf

Example 1: Poisson

pdf = Probability density function for observing n, given
P(n;y) =e ¥ u"/n!

From this, construct £ as

L(u;n) =e H u/n! X
l.e. use same functionof pandn,but | . ... .. .. . . pdf
for pdf, p is fixed, but f
for £, nis fixed U L
n—

N.B. P(n;u) exists only at integer non-negative n
L(u;n) exists only as continuous function of non-negative J

43



Example 2  Lifetime distribution

pdf p(tA)= Le M

So  L(\t)= Ae M (single observed t)
Here both t and A are continuous

pdf maximises att =10

L maximises at A =t

N.B. Functional form of p(t) and £()) are different

Fixed t

}\,—>

44



Example 3: Gaussian

pdf(x;p) = exp{-(x-p)%262} /(c\2r)

LX) = exp{-(x-W)25%} /(c\2m)

N.B. In this case, same functional form for pdf and £
So if you consider just Gaussians, can be confused between pdf and £

So examples 1 and 2 are useful

45



Transformation properties of pdf and £

Lifetime example: dn/dt=Ae M

Change observable from t to y = t
2
an adn df _2yne

dy dt ay
So (a) pdf changes, BUT

(b) J‘ _dt _“‘/—dydy

l.e. corresponding integrals of pdf are
INVARIANT

46



Now for Likelihood

When parameter changes from A to t = 1/A
(a’) £ does not change

dn/dt = (1/t) exp{-t/t}

and so £L(t;t) = L(A=1/1;1)

because identical numbers occur in evaluations of the two £’s

BUT ¢y ©
o) LL(M)M . J‘TOL(r,t)dr

So it is NOT meaningful to integrate £

47



pdf(t;A) L(A;1)
Value of Changes when |[INVARIANT wrt
function observable is |transformation

transformed of parameter
Integral of INVARIANT wrt | Changes when
function transformation |param is

of observable |transformed
Conclusion Max prob Integrating £

density not very
sensible

not very
sensible

48




CONCLUSION:

Py
J‘ Ldp =o NOT recognised statistical procedure
P/
[Metric dependent:

T range agrees with 7,

A range inconsistent with 1/Tpred]

BUT
1) Could regard as “black box”
2) Make respectable by £ T—— > Bayes’ posterior

Posterior(L) ~ £(\)* Prior()\) [and Prior(A) can be constant]

49
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Getting £ wrong: Punzi effect

Giovanni Punzi @ PHYSTATZ2003
“Comments on £ fits with variable resolution”

Separate two close signals, when resolution o varies event
by event, and is different for 2 signals

e.g. 1) Signal1  1+cos?6
Signal 2 Isotropic
and different parts of detector give different o

2) M (or 71)
Different numbers of tracks - different o,, (or o)
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Events characterised by x, and c;

A events centredon x =0

B events centredonx =1

L(Dwrong = IL[F* G(X;,0,6) + (1-) * G(x;,1,0)]
L(F)rigne = 11 [[*p(X;,0;,A) + (1-) * p(x;,04;B)]

p(S,T) =p(SI[T) * p(T)
p(Xi,0ilA) = p(Xilo;,A) * p(oi|A)
= G(x,0,0:) * p(oi|A)
So
L5 rigne = [T * G(x;,0,05) * p(i|A) + (1-T) * G(x;,1,05) * p(ci[B)]

If p(c|A) = p(a|B), Bright = Bwrong
but NOT otherwise
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Punzi’s Monte Carlo for

Oa OB
1-0 1-0
1-0 11
1-0 20

122 1.5-2>3
1.0 1->2

A: G(x,0,5,)

B: G(X,1,0p)

f, =1/3
B\Nrong
fa Ot

0336(3) 008
0-374(4) 008
0645(6) 012
0514(7) 014
0.482(9) 0.09

Same
0-333(0) O
0333(0) O
0-335(2) 003
0.333(0) O

1) Lyong OK for p(c,) =p(op) , but otherwise BIASSED

2) Lygn Unbiassed, but £,,,,, biassed (enormously)!

3) Lign gives smaller o;than £,
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Explanation of Punzi bias

g =2
k Aeventswitho =1 /
o

B events withe =2

! s

:

X =2 X 2>
ACTUAL DISTRIBUTION FITTING FUNCTION

[NA/Ng variable, but same for A and B events]
Fit gives upward bias for N,/Ng because (i) that is much better for A events; and 54

(ii) it does not hurt too much for B events



Another scenario for Punzi problem: PID

A B T K
M — TOF .,
Originally:
Positions of peaks = constant K-peak = 1r-peak at large momentum
o; variable, (o)A 7 (0))g c; ~constant, px # Py

COMMON FEATURE: Separation/Error # Constant

Where else??

MORAL.: Beware of event-by-event variables whose pdf's do not

appear in £
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Avoiding Punzi Bias

BASIC RULE:
Write pdf for ALL observables, in terms of parameters

* Include p(c|A) and p(c|B) in fit
(But then, for example, particle identification may be determined more
by momentum distribution than by PID)

OR

» Fit each range of o, separately, and add (N,); =2
(Na)iota, &N S|m|IarIy for B

Incorrect method using £,,,,, uses weighted average
of (fo);, assumed to be independent of |

Talk by Catastini at PHYSTATO05
56



Conclusions

How It works, and how to estimate uncertainties
A(In £) = 0.5 rule and coverage

Several Parameters

Likelihood does not guarantee coverage

Unbinned £.... and Goodness of Fit

max

Use correct £ (Punzi effect)
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