PRACTICAL STATISTICS FOR PARTICLE PHYSICISTS

Louis Lyons Oxford & Imperial College, London I.lyons@physics.ox.ac.uk

CERN school Sept 2024

LECTURES

- Likelihood: Parameter determination and L-ratio
 Chi-squared: Param determination & Goodness of Fit
- 2) Bayes & Frequentist Approaches
- 2) and 3) Searches for New Physics: Discovery and Limits

Possible 4) Learning to love the Covariance Matrix

Plus: Discussions Problems Working on statistical issues

Omitting introductory material

- Why spend time on understanding Statistics?
- Relation of Statistics to Probability Theory
- Random and systematic uncertainties
- Binomial distribution
- Poisson distribution
- Relationships among Binomial, Poisson & Gaussian
- Types of Statistical Procedures:

Parameter determination

- Goodness of Fit
- Hypothesis Testing
- **Decision Theory**

Likelihoods 1) Brief Introduction 2) Do's & Dont's

Louis Lyons Oxford & Imperial College CMS

CERN School Sept 2024

Topics

- What it is
- How it works: Resonance
- **Uncertainty estimates**
- **Detailed example: Lifetime**
- **Several Parameters**
- Extended maximum \mathcal{L}

Do's and Dont's with $\boldsymbol{\mathcal{L}}$

DO'S AND DONT'S WITH *L*

- NORMALISATION FOR LIKELIHOOD
- JUST QUOTE UPPER LIMIT
- $\Delta(\ln \mathcal{L}) = 0.5 \text{ RULE}$ ****
- \mathcal{L}_{max} AND GOODNESS OF FIT ******
- $\bullet \int_{p_L}^{p_u} \mathcal{L} \, \mathrm{d}p = 0.90$
- BAYESIAN SMEARING OF $\mathcal L$
- USE CORRECT \mathcal{L} (PUNZI EFFECT)

Simple example: Angular distribution

Data = $\theta_1 \ \theta_2 \ \theta_3 \ \dots \ \theta_n$

 $y = N (1 + \beta \cos^2 \theta)$ {RULE 1: Write down pdf} $y_i = N (1 + \beta \cos^2 \theta_i)$ = probability density of observing θ_i , given β $\mathcal{L}(\beta) = \prod y_i$ = probability density of observing the data set y_i , given β Best estimate of β is that which maximises \mathcal{L} Values of β for which \mathcal{L} is very small are ruled out Uncertainty of estimate for β comes from width of \mathcal{L} distribution

RULE 2: CRUCIAL to normalise y $N = 1/\{2(1 + \beta/3)\}$

(Information about parameter β comes from **shape** of exptl distribution of $\cos\theta$)

н.

Maximum likelihood uncertainty

Range of likely values of param μ from width of \mathcal{L} or ℓ dists. If $\mathcal{L}(\mu)$ is Gaussian, following definitions of σ are equivalent: 1) RMS of $\mathcal{L}(\mu)$

2) $1/\sqrt{(-d^2 \ln \mathcal{L} / d\mu^2)}$ (Mnemonic)

3) $\ln(\mathcal{L}(\mu_0 \pm \sigma) = \ln(\mathcal{L}(\mu_0)) - 1/2$

If $\mathcal{L}(\mu)$ is non-Gaussian, these are no longer the same

"Procedure 3) above still gives interval that contains the true value of parameter µ with 68% probability"

Uncertainties from 3) usually asymmetric, and asym uncertainties are messy. So choose param sensibly

e.g 1/p rather than p; $\tau \text{ or } \lambda$

Lifetime Determination

Realistic analyses are more complicated than this

$$\frac{d}{dt} = \frac{1}{2} e^{-\frac{t}{2}/t}$$

$$\frac{d}{dt} = \frac{1}{2} (-\frac{t}{2}/t) = \frac{1}{2} e^{-\frac{t}{2}/t}$$

$$\frac{d}{dt} = \frac{1}{2} (-\frac{t}{2}/t) = -\frac{1}{2} e^{-\frac{t}{2}/t}$$

$$\frac{d}{dt} = \frac{1}{2} (+\frac{t}{2}/t) = -\frac{1}{2} e^{-\frac{t}{2}/t}$$

$$\frac{d}{dt} = \frac{1}{2} (+\frac{t}{2}/t) = -\frac{1}{2} e^{-\frac{t}{2}/t}$$

$$\frac{d}{dt} = \frac{1}{2} (+\frac{t}{2}/t) = -\frac{1}{2} e^{-\frac{t}{2}/t}$$

$$\frac{d}{dt} = \frac{1}{2} e^{-\frac{t}{2}/t}$$

$$\frac{d}{dt} = \frac{1}{2$$

12

Several Parameters

PROFILE \mathcal{L}

 $\mathcal{L}_{prof} = \mathcal{L}(\beta, v_{best}(\beta)), \text{ where } \beta = param of interest } v = nuisance param(s) Uncertainty on <math>\beta$ from decrease in $ln(\mathcal{L}_{prof})$ by 0.5

a) May line
Prob for fixed N = Binomial
Prob for fixed N =
$$F = F(1-f)^{n} \frac{N!}{F!B!}$$

Maximise lnP_{n} with $f \Rightarrow f = F/N$
Error $n f : 1/\sigma^{2} = -\frac{\partial^{2} ln P_{n}}{\partial f^{2}}$
 $= \frac{N}{f(1-f)}$ $f = f$
 $\Rightarrow Estimate of $F = NF = F \pm \sqrt{FF/N} = Conflictly$
 $= N(1-f) = B \pm [FB/N] = anti-corr$
b) EML $P_{i} = P_{n} \times \frac{d}{N!}$ Prism for orall rate
Maximize $ln P_{i}(v, f)$
 $\Rightarrow S = N \pm \sqrt{N}$ Prism for orall rate
Maximize $ln P_{i}(v, f)$
 $\Rightarrow F = F_{i} \pm \sqrt{F(1-f)}$ uncorrelated
For $F = R^{2}$, eiter projegate errors for $F = \hat{v}f$
 $f = F_{i} \pm \sqrt{F(1-f)}$
 $f = F \pm \sqrt{F}$
 $B = B \pm \sqrt{F}$$

DO'S AND DONT'S WITH *L*

- COMBINING PROFILE \mathcal{L}_{S}
- NORMALISATION FOR LIKELIHOOD
- JUST QUOTE UPPER LIMIT
- $\Delta(\ln L) = 0.5 \text{ RULE } ******$
- \mathcal{L}_{max} AND GOODNESS OF FIT ******
- $\int_{p_L}^{p_u} \mathcal{L} dp = 0.90$
- BAYESIAN SMEARING OF $\boldsymbol{\mathcal{L}}$
- USE CORRECT \mathcal{L} (PUNZI EFFECT)

Danger of combining profile *L*s

Experiments quote *£*ikelihood, profiled over nuisance parameters, so that combinations can be performed.

Very simple 'tracking' example:

- * No magnetic field
- * 2-D fit of straight line y = a + bx

a = parameter of interest, b = nuisance param

* Track hits in 2 subdetectors, each of 3 planes

(a) Hits in 2 sub-detectors, each with 3 planes

(b) Covariance ellipses for separate fits L_1 In and L_2 , and combined L_{comb}

(c) $\ln \mathcal{L}_{prof}$ as function of a, for all 3 lines (d) b_{best} as a function of a

N.B. b_{best} for L₁ and L₂ are the same

*** Combining \mathcal{L}_{prof} for L₁ and L₂ loses a lot of information, and a_{best} wrong ****

COSMOLOGY EXAMPLE

Plot of dark energy fraction v dark matter fraction by various methods. Each determines dark energy fraction poorly, but combination is fine, because of different correlations.

Combining Profile Likelihoods would give very large uncertainty on dark energy fraction.

$\Delta \ln \mathcal{L} = -1/2$ rule

If $\mathcal{L}(\mu)$ is Gaussian, following definitions of σ are equivalent:

1) RMS of $\mathcal{L}(\mu)$

2) $1/\sqrt{(-d^2 \mathcal{L}/d\mu^2)}$

3) $ln(\mathcal{L}(\mu_0 \pm \sigma) = ln(\mathcal{L}(\mu_0)) - 1/2$

If $\mathcal{L}(\mu)$ is non-Gaussian, these are no longer the same "Procedure 3) above still gives interval that contains the true value of parameter μ with 68% probability"

Heinrich: CDF note 6438 (see CDF Statistics Committee Web-page) Barlow: Phystat05

← 68%

μ

Ideal coverage

plot

IC(µ)

* What it is:

For given statistical method applied to many sets of data to extract confidence intervals for param μ , coverage C is fraction of ranges that contain true value of param. Can vary with μ

* Does not apply to **your** data:

It is a property of the **statistical method** used It is **NOT** a probability statement about whether μ_{true} lies in your confidence range for μ

* Coverage plot for Poisson counting expt Observe n counts

Estimate μ_{best} from maximum of likelihood

 $\begin{aligned} \mathcal{L}(\mu) &= e^{-\mu} \, \mu^n / n! \quad \text{and range of } \mu \text{ from } \ln\{\mathcal{L}(\mu_{\text{best}}) / \mathcal{L}(\mu)\} < 0.5 \\ \text{For each } \mu_{\text{true}} \text{ calculate coverage } C(\mu_{\text{true}}), \text{ and compare with nominal } 6\% \end{aligned}$

COVERAGE

How often does quoted range for parameter include param's true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with μ

Study coverage of different methods of Poisson parameter μ , from observation of number of events n

COVERAGE

If true for all μ : "correct coverage"

- $P < \alpha$ for some μ "undercoverage" (this is serious !)
 - $P > \alpha$ for some \mathcal{L} "overcoverage" Conservative
 - Loss of rejection power

Coverage : *L* approach (Not Neyman construction)

 $P(n,\mu) = e^{-\mu}\mu^{n}/n!$ (Joel Heinrich CDF note 6438)

-2 $\ln\lambda < 1$ $\lambda = P(n,\mu)/P(n,\mu_{best})$ UNDERCOVERS

Neyman central intervals, NEVER undercover

(Conservative at both ends)

Feldman-Cousins Unified intervals

Probability ordering

NOT Neyman : Coverage = $0\% \rightarrow 100\%$

Unbinned \mathcal{L}_{max} and Goodness of Fit?

Find params by maximising $\mathcal L$

So larger $\mathcal L$ better than smaller $\mathcal L$

So \mathcal{L}_{max} gives Goodness of Fit??

Example 1

Fit exponential to times t_1, t_2, t_3 [Joel Heinrich, CDF 5639]

 $\mathcal{L} = \mathbf{\pi} \lambda \exp(-\lambda t_i)$

 $ln \mathcal{L}_{max} = -N(1 + ln t_{av})$ (Follows from slide 12)

i.e. Depends only on AVERAGE t, but is

INDEPENDENT OF DISTRIBUTION OF t (except for.....)

(Average t is a 'sufficient statistic')

Variation of \mathcal{L}_{max} in Monte Carlo is due to variations in samples' average t , but NOT TO BETTER OR WORSE FIT

Example 2

$$\frac{dN}{d\cos\theta} = \frac{1 + \alpha\cos^2\theta}{1 + \alpha/3}$$
$$\mathcal{L} = \prod_{j} \frac{1 + \alpha\cos^2\theta_j}{1 + \alpha/3}$$

pdf (and likelihood) depends only on $\cos^2\theta_i$

Insensitive to sign of $\cos\theta_i$

So data can be in very bad agreement with expected distribution

```
e.g. all data with \cos\theta < 0
```

```
and \mathcal{L}_{max} does not know about it.
```

Example of general principle

$\boldsymbol{\ell}_{\text{max}}$ and Goodness of Fit?

Conclusion:

 \mathcal{L} has sensible properties with respect to parameters NOT with respect to data

\mathcal{L}_{max} within Monte Carlo peak is NECESSARY not SUFFICIENT

('Necessary' doesn't mean that you have to do it!)

Binned data and Goodness of Fit using *L*-ratio

 $ln[\mathcal{L}-ratio] = ln[\mathcal{L}/\mathcal{L}_{best}]$

 $\overrightarrow{large \mu_i}$ -0.5 χ^2 i.e. Goodness of Fit \mathcal{L}_{best} is independent of parameters of fit, and so same parameter values from \mathcal{L} or \mathcal{L} -ratio

Baker and Cousins, NIM A221 (1984) 437

For comparing 2 hypotheses

e.g. Does data favour 'Just SM' or 'SM + New Physics'. (Much more later in Lecture 2) If hypotheses are "simple", then Neyman-Peason

lemma says that \mathcal{L} -ratio is "best" for separating them.

"simple" = no free parameters

"best" = minimum contamination for fixed efficiency.

Even when hypotheses are not simple, \mathcal{L} -ratio may still be useful.

L and pdf

Example 1: Poisson

pdf = Probability density function for observing n, given μ $P(n;\mu) = e^{-\mu} \mu^n/n!$ From this, construct \mathcal{L} as $\mathcal{L}(\mu;n) = e^{-\mu} \mu^n/n!$ i.e. use same function of μ and n, but for pdf, μ is fixed, but for \mathcal{L} , n is fixed μ \mathcal{L}

N.B. $P(n;\mu)$ exists only at integer non-negative n $\mathcal{L}(\mu;n)$ exists only as continuous function of non-negative μ Example 2 Lifetime distribution

pdf $p(t;\lambda) = \lambda e^{-\lambda t}$

So $\mathcal{L}(\lambda;t) = \lambda e^{-\lambda t}$ (single observed t)

Here both t and λ are continuous

pdf maximises at t = 0

 \mathcal{L} maximises at $\lambda = t$

N.B. Functional form of p(t) and $\mathcal{L}(\lambda)$ are different

Example 3: Gaussian

$$pdf(x;\mu) = exp\{-(x-\mu)^2/2\sigma^2\} / (\sigma\sqrt{2\pi})$$

$\mathcal{L}(\mu; \mathbf{x}) = \exp\{-(\mathbf{x} - \mu)^2 / 2\sigma^2\} / (\sigma \sqrt{2\pi})$

N.B. In this case, same functional form for pdf and $\boldsymbol{\pounds}$

So if you consider just Gaussians, can be confused between pdf and \mathcal{L}

So examples 1 and 2 are useful

Transformation properties of pdf and \mathcal{L}

Lifetime example: $dn/dt = \lambda e^{-\lambda t}$

Change observable from t to y = \sqrt{t} $\frac{dn}{dy} = \frac{dn}{dt}\frac{dt}{dy} = 2y\lambda e^{-\lambda y^2}$

So (a) pdf changes, BUT

(b)
$$\int_{t_0}^{\infty} \frac{dn}{dt} dt = \int_{\sqrt{t_0}}^{\infty} \frac{dn}{dy} dy$$

i.e. corresponding integrals of pdf are INVARIANT

Now for \mathcal{L} ikelihood

When parameter changes from λ to $\tau=1/\lambda$

(a') $\boldsymbol{\mathcal{L}}$ does not change

 $dn/dt = (1/\tau) \exp\{-t/\tau\}$

and so $\mathcal{L}(\tau;t) = \mathcal{L}(\lambda=1/\tau;t)$

because identical numbers occur in evaluations of the two \mathcal{L} 's

BUT
$$\int_{0}^{\lambda_{0}} L(\lambda;t) d\lambda \neq \int_{\tau_{0}}^{\infty} L(\tau;t) d\tau$$

So it is NOT meaningful to integrate $\boldsymbol{\mathcal{L}}$

(However,.....)

	pdf(t;λ)	£ (λ;t)
Value of function	Changes when observable is transformed	INVARIANT wrt transformation of parameter
Integral of function	INVARIANT wrt transformation of observable	Changes when param is transformed
Conclusion	Max prob density not very sensible	Integrating £ not very sensible 48

CONCLUSION:

$$\int_{p_l}^{p_u} L dp = \alpha \quad \text{NOT recognised statistical procedure}$$

[Metric dependent:

 τ range agrees with τ_{pred} λ range inconsistent with $1/\tau_{pred}$]

BUT

- Could regard as "black box" 1)
- Make respectable by \mathcal{L} \square Bayes' posterior 2)

Posterior(λ) ~ $\mathcal{L}(\lambda)$ * Prior(λ) [and Prior(λ) can be constant]

6) BAYESIAN SHEARING OF X
"USE la I FOR
$$\beta + \delta_{\beta}$$

SHEAR IT TO INCORORATE
SYSTEMATIC UNCERTAINTIES
SLEAARIO:
M = POISSON ($\mu = se + b$)
PARAM OF INTEREST I BACKGROUND
GFPIC/ACCEPTANCE//X
UNCERTAINTIES
MERSURED IN SUBSIDIARY EXPT
P(s, e | n) = $n(n|s, e) T(s, e)$
N : SUBSIDIARY EXPT
P(s | n) = $\int P(s, e| n) de$
= $\int X T(s) T(e) Ae$
 $I = \int P(s, e| n) de$
I : SHEAR X (not but) by prior for e

Getting *L* wrong: Punzi effect

Giovanni Punzi @ PHYSTAT2003 "Comments on \mathcal{L} fits with variable resolution"

Separate two close signals, when resolution σ varies event by event, and is different for 2 signals e.g. 1) Signal 1 1+cos² θ Signal 2 Isotropic and different parts of detector give different σ

2) M (or τ) Different numbers of tracks \rightarrow different σ_{M} (or σ_{τ}) Events characterised by x_i and σ_i

A events centred on x = 0

B events centred on x = 1

$$\mathcal{L}(f)_{wrong} = \Pi [f * G(x_i, 0, \sigma_i) + (1-f) * G(x_i, 1, \sigma_i)]$$

$$\mathcal{L}(f)_{right} = \Pi [f^* p(x_i, \sigma_i; A) + (1-f) * p(x_i, \sigma_i; B)]$$

$$p(S,T) = p(S|T) * p(T)$$
$$p(x_i,\sigma_i|A) = p(x_i|\sigma_i,A) * p(\sigma_i|A)$$
$$= G(x_i,0,\sigma_i) * p(\sigma_i|A)$$

So

 $\boldsymbol{\mathcal{L}}(f)_{right} = \Pi[f \ast G(x_i, 0, \sigma_i) \ast p(\sigma_i | A) + (1 - f) \ast G(x_i, 1, \sigma_i) \ast p(\sigma_i | B)]$

If $p(\sigma|A) = p(\sigma|B)$, $\mathcal{L}_{right} = \mathcal{L}_{wrong}$

but NOT otherwise

Punzi's Monte Carlo for		A: G(x,0,σ	<u>д</u>)			
		B: G(x,1,σ ₁	₃)			
		$f_{A} = 1/3$				
		\mathcal{L}_{wror}	\mathcal{L}_{wrong}		\mathcal{L}_{right}	
$\sigma_{\rm A}$	$\sigma_{\rm B}$	f _A	$\sigma_{\rm f}$	f _A	σ_{f}	
1.0	1.0	0.336(3)	0.08	Same		
1.0	1.1	0.374(4)	0.08	0.333(0)	0	
1.0	2.0	0.645(6)	0.12	0.333(0)	0	
1 → 2	1.5 →3	0.514(7)	0 [.] 14	0.335(2)	0.03	
1.0	1 → 2	0.482(9)	0.09	0.333(0)	0	
				0055		

1) \mathcal{L}_{wrong} OK for $p(\sigma_A) = p(\sigma_B)$, but otherwise BIASSED

- 2) \mathcal{L}_{right} unbiassed, but \mathcal{L}_{wrong} biassed (enormously)!
- 3) \mathcal{L}_{right} gives smaller σ_{f} than \mathcal{L}_{wrong}

Fit gives upward bias for N_A/N_B because (i) that is much better for A events; and (ii) it does not hurt too much for B events

Originally:

Positions of peaks = constant

K-peak $\rightarrow \pi$ -peak at large momentum

 $\sigma_i \text{ variable, } (\sigma_i)_A \neq (\sigma_i)_B \qquad \sigma_i \sim \text{ constant, } p_K \neq p_{\pi}$

COMMON FEATURE: Separation/Error \neq Constant

Where else??

MORAL: Beware of event-by-event variables whose pdf's do not appear in \mathcal{L}

Avoiding Punzi Bias

BASIC RULE:

Write pdf for ALL observables, in terms of parameters

 Include p(σ|A) and p(σ|B) in fit (But then, for example, particle identification may be determined more by momentum distribution than by PID)

OR

• Fit each range of σ_i separately, and add $(N_A)_i \rightarrow (N_A)_{total}$, and similarly for B

Incorrect method using \mathcal{L}_{wrong} uses weighted average of $(f_A)_j$, assumed to be independent of j

Talk by Catastini at PHYSTAT05

Conclusions

- How it works, and how to estimate uncertainties
- $\Delta(\ln \mathcal{L}) = 0.5$ rule and coverage
- **Several Parameters**
- Likelihood does not guarantee coverage
- Unbinned \mathcal{L}_{max} and Goodness of Fit
- Use correct \mathcal{L} (Punzi effect)