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LECTURES

1) Likelihood: Parameter determination and L-ratio

Chi-squared: Param determination & Goodness of Fit  

2) Bayes & Frequentist  Approaches

2) and 3) Searches for New Physics: Discovery and Limits

Possible 4) Learning to love the Covariance Matrix

Plus: Discussions

Problems

Working on statistical issues
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Omitting introductory material

• Why spend time on understanding Statistics?

• Relation of Statistics to Probability Theory

• Random and systematic uncertainties 

• Binomial distribution

• Poisson distribution

• Relationships among Binomial, Poisson & Gaussian

• Types of Statistical Procedures:

Parameter determination

Goodness of Fit

Hypothesis Testing

Decision Theory
3
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Likelihoods
1) Brief Introduction

2) Do’s & Dont’s

Louis Lyons

Oxford & Imperial College

CMS
CERN School

Sept 2024



5

Topics

What it is

How it works: Resonance

Uncertainty estimates

Detailed example: Lifetime

Several Parameters

Extended maximum L

Do’s and Dont’s with L
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• NORMALISATION FOR LIKELIHOOD

• JUST QUOTE UPPER LIMIT

• (ln L) = 0.5 RULE  ****

• Lmax AND GOODNESS OF FIT  ******

•

• BAYESIAN SMEARING OF L

• USE CORRECT L  (PUNZI EFFECT)

9 0.0 d p =
p

p
U

L

 L

DO’S AND DONT’S WITH L
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Simple example:  Angular distribution 

Data = 1 2 3 ….. n

y = N (1 +  cos2)     {RULE 1: Write down pdf}

yi = N (1 +  cos2i)

= probability density of observing i, given 

L() =  yi

= probability density of observing the data set yi, given 

Best estimate of  is that which maximises L

Values of  for which L is very small are ruled out

Uncertainty of estimate for  comes from width of L distribution

RULE 2: CRUCIAL to normalise y           N = 1/{2(1 + /3)}

(Information about parameter  comes from shape of exptl distribution of cos)

cos  cos  

 = -1                      large                                   L

y
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Conventional to consider
l = ln(L) = Σ ln(yi)

For large N, L → Gaussian
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Maximum likelihood uncertainty

Range of likely values of param μ from width of L or l dists.

If L(μ) is Gaussian, following definitions of σ are equivalent:

1) RMS of L(µ)

2) 1/√(-d2lnL / dµ2) (Mnemonic)

3) ln(L(μ0±σ) = ln(L(μ0)) -1/2

If L(μ) is non-Gaussian, these are no longer the same

“Procedure 3) above still gives interval that contains the 
true value of parameter μ with 68% probability”

Uncertainties from 3) usually asymmetric, and asym uncertainties are 

messy. So choose param sensibly 

e.g 1/p rather than p;       τ or λ
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Realistic analyses are more 

complicated than this

Lifetime Determination
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Several Parameters

PROFILE L
Lprof =L(β,νbest(β)),  where

β = param of interest

ν = nuisance param(s)

Uncertainty on β from 

decrease in ln(Lprof) by 0.5

Contours of lnL
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• COMBINING PROFILE Ls

•NORMALISATION FOR LIKELIHOOD

• JUST QUOTE UPPER LIMIT

• (ln L) = 0.5 RULE  ******

• Lmax AND GOODNESS OF FIT  *******

•

• BAYESIAN SMEARING OF L

• USE CORRECT L  (PUNZI EFFECT)

9 0.0 d p =
p

p
U

L

 L

DO’S AND DONT’S WITH L



Danger of combining profile Ls

Experiments quote Likelihood, profiled over 

nuisance parameters, so that combinations can 

be performed.

Very simple ‘tracking’ example:

* No magnetic field

* 2-D fit of straight line y = a + bx

a = parameter of interest,  b = nuisance param

* Track hits in 2 subdetectors, each of 3 planes
19



y

x

L2

L1

Lcomb

a

b

a

lnLprof

(a) (b)

(c)

L2L1

L1 L2

(a) Hits in 2 sub-detectors, each with 3 

planes 

(b)  Covariance ellipses  for separate fits L1

and L2, and combined Lcomb

(c) lnLprof as function of a, for all 3 lines

(d) bbest as a function of a 

bbest

a

(d)

L1 L2

N.B. bbest for L1 and L2 are the same

*** Combining Lprof for L1 and 

L2 loses a lot of information,  

and abest wrong ***** 20



COSMOLOGY EXAMPLE

Plot of dark energy fraction v  dark 

matter fraction by various methods. 

Each determines  dark energy 

fraction poorly, but combination is 

fine, because of different 

correlations.

Combining Profile Likelihoods 

would give very large uncertainty 

on dark energy fraction. 
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ΔlnL = -1/2 rule
If L(μ) is Gaussian, following definitions of σ are 

equivalent:

1) RMS of L(µ)

2) 1/√(-d2L/dµ2)

3) ln(L(μ0±σ) = ln(L(μ0)) -1/2

If L(μ) is non-Gaussian, these are no longer the same

“Procedure 3) above still gives interval that contains the 

true value of parameter μ with 68% probability”

Heinrich: CDF note 6438 (see CDF Statistics 

Committee Web-page)

Barlow: Phystat05



Coverage

* What it is:

For given statistical method applied to many sets of data to extract  
confidence intervals for param µ, coverage C is fraction of ranges that 
contain true value of param.      Can vary with µ

* Does not apply to your data:

It is a property of the statistical method used

It is NOT a probability statement about whether µtrue lies in your 
confidence range for µ

* Coverage plot for Poisson counting expt

Observe n counts

Estimate µbest from maximum of likelihood                               µ

L(µ) = e-µ µn/n!    and range of µ from   ln{L(µbest)/L(µ)}  0.5

For each µtrue calculate coverage C(µtrue), and compare with nominal 68%26

68%

C(µ)

μtrue μ

Ideal coverage 

plot



28

COVERAGE

How often does quoted range for parameter include param’s true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with μ

Study coverage of different methods of Poisson parameter  μ, from 

observation of number of events n

Hope for:
Nominal

value

100%



)(C
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COVERAGE

If true for all      :      “correct coverage” 

P<     for some        “undercoverage”                                
(this is serious !)

P>     for some        “overcoverage”  

Conservative

Loss of rejection 

power
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Coverage : L approach (Not Neyman construction)

P(n,μ) = e-μμn/n!    (Joel Heinrich CDF note 6438)

-2 lnλ< 1         λ = P(n,μ)/P(n,μbest)       UNDERCOVERS
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Neyman central intervals, NEVER undercover

(Conservative at both ends)
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Feldman-Cousins Unified intervals

Neyman construction so NEVER undercovers
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Probability ordering

Frequentist, so NEVER undercovers
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χ2 = (n-µ)2/µ         Δ χ2 = 0.1              24.8% coverage?

NOT Neyman :  Coverage = 0% → 100%
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Great?Good?Bad

Lmax

Frequency

Unbinned Lmax and Goodness of Fit?

Find params by maximising L

So larger L better than smaller L

So Lmax gives Goodness of Fit??

Monte Carlo distribution

of unbinned Lmax
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Not necessarily:                                                       pdf

L(data,params) 

fixed    vary                                                                L

Contrast    pdf(data,params)                param

vary  fixed

e.g. p(λ) = λ exp(-λt)                                                                                    data

Max at t = 0                                                                                Max at λ=1/t

p L

t λ
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Example 1

Fit exponential to times t1, t2 ,t3 …….            [ Joel Heinrich, CDF 5639 ]

L =  π λ exp(-λti)

lnLmax = -N(1 + ln tav)    (Follows from slide 12}

i.e. Depends only on AVERAGE t, but is

INDEPENDENT OF DISTRIBUTION OF t (except for……..)

(Average t is a ‘sufficient statistic’)

Variation of Lmax in Monte Carlo is due to variations in samples’ average t , but

NOT TO BETTER OR WORSE FIT

pdf

Same average t            same Lmax

t
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Example 2

L =

cos θ

pdf (and likelihood) depends only on cos2θi

Insensitive to sign of cosθi

So data can be in very bad agreement with expected distribution

e.g. all data with cosθ < 0 

and Lmax does not know about it.

Example of general principle

3/1

cos1

cos

2

+

+
=

d

dN

 +

+

i
3/1

cos1 i
2
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Lmax and Goodness of Fit?

Conclusion:

L has sensible properties with respect to parameters

NOT with respect to data

Lmax within Monte Carlo peak is NECESSARY

not SUFFICIENT

(‘Necessary’ doesn’t mean that you have to do it!)



41

Binned data and Goodness of Fit using L-ratio

 

i

iP n i
)(ni L =  

μi                                                         Lbest

x

ln[L-ratio] = ln[L/Lbest]

large μi -0.5c2 i.e. Goodness of Fit    

Lbest  is independent of parameters of fit,

and so same parameter values from L or L-ratio

Baker and Cousins, NIM A221 (1984) 437

)(

)
,

(

i

i

n

i

nP

bestiP n i

i


=

=

pni(µi)

pni(µi,best)

pni(ni)



For comparing 2 hypotheses

e.g. Does data favour ‘Just SM’ or ‘SM + New Physics’. 

(Much more later in Lecture 2)

If hypotheses are “simple”, then Neyman-Peason 

lemma says that L-ratio is “best” for separating them. 

“simple” = no free parameters

“best” = minimum contamination for fixed efficiency.

Even  when hypotheses are not simple, L-ratio may 

still be useful.
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L and pdf

Example 1: Poisson
pdf = Probability density function for observing n, given μ

P(n;μ) = e -μ μn/n!

From this, construct L as

L(μ;n) = e -μ μn/n!

i.e. use same function of μ and n, but            .  .  .  .  .  .  .  .  .  . pdf

for pdf, μ is fixed,   but

for L,    n is fixed                             μ L

n

N.B. P(n;μ) exists only at integer non-negative n

L(μ;n) exists only as continuous function of non-negative μ
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Example 2      Lifetime distribution

pdf     p(t;λ) = λ e - λt

So       L(λ;t) =  λ e –λt (single observed t)

Here both t and λ are continuous

pdf maximises at t = 0

L maximises at λ = t

N.B. Functional form of p(t) and L(λ) are different

Fixed λ Fixed t

p                                                                 L

t                                                                 λ



45

Example 3:     Gaussian

N.B. In this case, same functional form for pdf and L

So if you consider just Gaussians, can be confused between pdf and L

So examples 1 and 2 are useful 

}{
2

2

2
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e x p

2

1
);(
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−
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x
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2

1
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−
−


=

x
xL

pdf(x;µ) = exp{-(x-µ)2/22} /(2)

L(µ;x)     = exp{-(x-µ)2/22} /(2)
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Transformation properties of pdf and L

Lifetime example:  dn/dt = λ e –λt

Change observable from t to y = √t

So (a) pdf changes, BUT

(b) 

i.e. corresponding integrals of pdf are 
INVARIANT

2
2 yey

dy

dt

dt

dn

dy

dn −==

dy
dy

dn
dt

dt

dn

tt 


=

00
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Now for Likelihood

When parameter changes from λ to τ = 1/λ

(a’) L does not change

dn/dt = (1/τ) exp{-t/τ}

and so L(τ;t)  =  L(λ=1/τ;t)

because identical numbers occur in evaluations of the two L’s

BUT

(b’) 

So it is NOT meaningful to integrate L

(However,………)










0

0

);();(
0

dtLdtL
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pdf(t;λ) L(λ;t)

Value of 

function

Changes when 

observable is 

transformed

INVARIANT wrt 

transformation 

of parameter

Integral of 

function

INVARIANT wrt 

transformation 

of observable

Changes when 

param is 

transformed

Conclusion Max prob 

density not very 

sensible

Integrating L

not very 

sensible
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CONCLUSION:

NOT recognised statistical procedure

[Metric dependent:

τ range agrees with τpred

λ range inconsistent with 1/τpred ]

BUT

1) Could regard as “black box”

2) Make respectable by L                Bayes’ posterior 

Posterior(λ) ~ L(λ)* Prior(λ)             [and Prior(λ) can be constant]

 =
u

l

p

p

dpL
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Getting L wrong: Punzi effect

Giovanni Punzi @ PHYSTAT2003

“Comments on L fits with variable resolution”

Separate two close signals, when resolution σ varies event 
by event, and is different for 2 signals

e.g. 1) Signal 1     1+cos2θ

Signal 2      Isotropic

and different parts of detector give different σ

2) M (or τ)

Different numbers of tracks → different σM (or στ)



52

Events characterised by xi and σi

A events centred on x = 0

B events centred on x = 1

L(f)wrong = Π [f * G(xi,0,σi) + (1-f) * G(xi,1,σi)]

L(f)right = Π [f*p(xi,σi;A) + (1-f) * p(xi,σi;B)]

p(S,T) = p(S|T) * p(T)

p(xi,σi|A) = p(xi|σi,A) * p(σi|A)

= G(xi,0,σi) * p(σi|A)

So

L(f)right = Π[f * G(xi,0,σi) * p(σi|A) + (1-f) * G(xi,1,σi) * p(σi|B)]

If p(σ|A) = p(σ|B), Lright = Lwrong

but NOT otherwise
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Punzi’s Monte Carlo for             A :  G(x,0,A)

B :  G(x,1,B)

fA = 1/3 

Lwrong                                         Lright         

A B                                           fA f fA f 

1.0               1.0                    0.336(3)    0.08             Same

1.0 1.1                    0.374(4)    0.08 0. 333(0)    0

1.0 2.0 0.645(6)    0.12 0.333(0) 0

1 → 2        1.5 →3                 0.514(7)    0.14             0.335(2)   0.03

1.0            1 → 2                 0.482(9)    0.09             0.333(0)    0

1)  Lwrong   OK for  p(A) = p(B) , but otherwise BIASSED

2)  Lright unbiassed, but  Lwrong biassed  (enormously)!

3)  Lright gives smaller σf than Lwrong
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Explanation of Punzi bias

σA = 1 σB = 2

A events with σ = 1

B events with σ = 2

x  → x →

ACTUAL DISTRIBUTION                             FITTING FUNCTION

[NA/NB variable, but same for A and B events]

Fit gives upward bias for NA/NB because  (i) that is much better for A events; and 

(ii) it does not hurt too much for B events  
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Another scenario for Punzi problem: PID

A      B                                       π K

M                                            TOF

Originally:

Positions of peaks = constant K-peak → π-peak at large momentum

σi variable,   (σi)A  =  (σi)B σi ~ constant,    pK =  pπ

COMMON FEATURE: Separation/Error = Constant

Where else??

MORAL: Beware of event-by-event variables whose pdf’s do not 

appear in L
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Avoiding Punzi Bias

BASIC RULE:

Write pdf for ALL observables, in terms of parameters

• Include p(σ|A) and p(σ|B) in fit
(But then, for example, particle identification may be determined more 

by momentum distribution than by PID)

OR

• Fit each range of σi separately, and add (NA)i →

(NA)total, and similarly for B

Incorrect method using Lwrong uses weighted average 
of (fA)j, assumed to be independent of j 

Talk by Catastini at PHYSTAT05
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Conclusions

How it works, and how to estimate uncertainties

(ln L) = 0.5 rule and coverage

Several Parameters

Likelihood does not guarantee coverage

Unbinned Lmax and Goodness of Fit

Use correct L (Punzi effect)


