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Least Squares Best Fit

Resume of straight line

Correlated uncertainties

Uncertainties in x and in y

Goodness of Fit with χ2

Errors of first and second kind

Kinematic fitting

Toy example

THE paradox
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(Goodness of Fit)

Least Squares Straight Line Fitting

Data = {xi, yi ±δyi}

1) Does it fit straight line?

(Goodness of Fit)

2) What are gradient and intercept?

(Parameter Determination)
Do 2) first

N.B.1    Can be used for non “a+bx”

e.g. a + b/x + c/x2     or   Ae-mt

N.B.2    Least squares is not the only method

y

x
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σi is supposed to be ‘uncertainty on data if it agreed with 

theory’ *  Pearson c2

Usually taken as ‘uncertainty on expt’     Neyman c2

i) Makes algebra simpler

ii) If theory ~ expt, not too different

If theory and data OK:

yth ~  yobs
→ S small

Minimise S → best line

Value of Smin → how good fit is

S=S{(yi
th – yi

obs)/si}
2

(S rather than c2)

N.B Mathematical c2 = sum of squares of standard Gaussians G(x|0,1) 

*     Th       Obs   sth sobs Cont to S

0.01      1      0.1                 98

1             1
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Straight Line Fit

N.B. L.S.B.F. passes through (<x>, <y>)

y

.
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Uncertainties on intercept and gradient

That is why track parameters specified at track ‘centre’

Better to use x’ because

uncertainties on a’ and b are UNCORRELATED 

Contrast uncertainties on a and b are  CORRELATED
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a

b

x

y

See lecture 

on Cov Matrix

Covariance(a,b) ~ -<x>

<x> positive                          <x> negative
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Comments on Least Squares method
1) Need to bin

Beware of too few events/bin   (Want Poisson ~ Gaussian)

2) Extends to n dimensions                                                              →

but needs lots of events for n larger than 2 or 3

3) No problem with correlated uncertainties 

4) Can calculate Smin “on line”    i.e. single pass through data

Σ (yi – a –bxi)
2 /σ2 = [yi

2] – b [xiyi] –a [yi]

5) For theory linear in params, analytic solution             

y

6) Goodness of Fit

x  

Individual events 

(e.g. in cos θ )

yi±σi v xi

(e.g. stars)

1) Need to bin? Yes No need

4) χ2 on line First histogram Yes
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Moments Max Like Least squares

Easy? Yes, if… Normalisation, 

maximisation messy

Minimisation

Efficient? Not very Usually best Sometimes = Max Like

Input Separate events Separate events Histogram

Goodness of fit Messy No (unbinned) Easy

Constraints No Yes Yes

N dimensions Easy if …. Norm, max messier Easy

Weighted events Easy Errors difficult Easy

Bgd subtraction Easy Troublesome Easy

Uncertainty

estimates

Observed spread,

or analytic

- ∂2l -1/2

∂pi∂pj

∂2S      -1/2

2∂pi∂pj

Main feature Easy Best Goodness of Fit
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Goodness of Fit: χ2 test

1) Construct S and minimise wrt free parameters

2) Determine ν = no. of degrees of freedom

ν = n – p

n = no. of data points

p = no. of FREE parameters

3)    Look up probability that, for ν degrees of freedom, 

χ2 ≥ Smin

Works ASYMPTOTICALLY, otherwise use MC

[Assumes yi are GAUSSIAN distributed with mean yi
th

and variance σi
2]
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So Smin > ν + 3√2ν is LARGE

e.g. Smin = 2200 for ν = 2000?

Properties of mathematical χ2 distribution:

χ2 = ν

σ2(χ2) = 2ν
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Cf: Area in tails of Gaussian
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χ2 with ν degrees of freedom?

ν = data – free parameters ?

Why asymptotic (apart from Poisson → Gaussian) ?

a) Fit flatish histogram with

y = N {1 + 10-6 cos(x-x0)}   x0 = free param

b) Neutrino oscillations: almost degenerate parameters 

y ~ 1 – A sin2(1.27 Δm2 L/E)        2 parameters

1 – A (1.27 Δm2 L/E)2 1 parameter   
Small  Δm2
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Goodness of Fit

.                 χ2      Very general

Needs binning

Not sensitive to sign of deviation

Run Test

Kolmogorov-Smirnov

Aslan and Zech

PHYSTAT at Durham IPPP  (2003)

etc
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Goodness of Fit: 

Kolmogorov-Smirnov

Compares data and model cumulative plots

(or 2 sets of data)

Uses largest discrepancy between dists.

Model can be analytic or MC sample

Uses individual data points

Not so sensitive to deviations in tails   

(so variants of K-S exist)

Not readily extendible to more dimensions

Distribution-free conversion to p; depends on n 

(but not when free parameters involved – needs MC)
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Wrong Decisions

Error of First Kind
Reject H0 when true (Loss of efficiency)

Should happen x% of tests

Errors of Second Kind
Accept H0 when something else is true (Contamination)

Frequency depends on ………

i) How similar other hypotheses are

e.g. H0 = μ

Alternatives are:     e           π K     p

ii) Relative frequencies:     10-4 10-4 1  0.1  0.1

Aim for maximum efficiency          Low error of 1st kind

maximum purity                 Low error of 2nd kind

As χ2 cut tightens, efficiency    and purity 

Choose compromise
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How serious are errors of 1st and 2nd kind?

1) Result of experiment
e.g Is spin of resonance = 2?

Get answer WRONG

Where to set cut?

Small cut         Reject when correct

Large cut         Never reject anything

Depends on nature of H0  e.g.

Does answer agree with previous expt?

Is expt consistent with special relativity?

2) Class selector e.g. b-quark / galaxy type / γ-induced cosmic shower

Error of 1st kind:      Loss of efficiency

Error of 2nd kind:      More background

Usually easier to allow for 1st than for 2nd

3) Track finding
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KINEMATIC FITTING
Tests whether observed event is consistent

with specified reaction
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Kinematic Fitting: Why do it?

1) Check whether event consistent with hypothesis    [Goodness of Fit]

2) Can calculate missing quantities        [Param detn.]

3) Good to have tracks conserving E-P   [Param detn.]

4) Reduces uncertainties                         [Param detn.]
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Kinematic Fitting: Why do it?

1) Check whether event consistent with hypothesis      [Goodness of Fit]
Use Smin and ndf

2) Can calculate missing quantities        [Param detn.]
e.g. Can obtain |P| for short/straight track, neutral beam; px,py,pz of outgoing ν, n, K0

3) Good to have tracks conserving E-P   [Param detn.]
e.g. identical values for resonance mass from prodn or decay 

4) Reduces uncertainties                        [Param detn.]
Example of “Including theoretical input reduces uncertainties”
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How we perform Kinematic Fitting ?

Observed event:    4 outgoing charged tracks

Assumed reaction: pp→ppπ+π-

Measured variables: 4-momenta of each track, vi
meas

(i.e. 3-momenta & assumed mass)

Then test hypothesis:          

Observed event = example of assumed reaction

i.e. Can tracks be wiggled “a bit” to do so?

Tested by: 

Smin = Σ(vi
fitted - vi

meas)2 / σ2

where vi
fitted conserve 4-momenta

(Σ over 4 components of each track) 

N.B. Really need to take correlations into account

i.e. Minimisation subject to constraints (involves Lagrange Multipliers)
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Toy example of Kinematic Fit

Fixed target 

experiment
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i.e. KINEMATIC FIT →

REDUCED UNCERTAINTIES
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THE PARADOX

Histogram with 100 bins

Fit with 1 parameter

Smin: χ
2 with NDF = 99  (Expected χ2 = 99 ± 14)

For our data, Smin(p0) = 90

Is p2 acceptable if S(p2) = 115?

1) YES.    Very acceptable χ2 probability

2) NO.      σp from S(p0 +σp) = Smin +1 = 91

But S(p2) – S(p0) = 25

So p2 is 5σ away from best value
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