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THE PARADOX

Histogram with 100 bins

Fit with 1 parameter

Smin: χ
2 with NDF = 99  (Expected χ2 = 99 ± 14)

For our data, Smin(p0) = 90

Is p2 acceptable if S(p2) = 115?

1) YES.    Very acceptable χ2 probability

2) NO.      σp from S(p0 +σp) = Smin +1 = 91

But S(p2) – S(p0) = 25

So p2 is 5σ away from best value
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Correlations

Basic issue:

For 1 parameter, quote value and uncertainty

For 2 (or more) parameters, 

(e.g. gradient and intercept of straight line fit) 

quote values + uncertainties  + correlations

Just as the concept of variance for single variable is more 
general than Gaussian distribution, so correlation in 
more variables does not require multi-dim Gaussian

But more simple to introduce concept this way
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Learning to love the Covariance 

Matrix

• Introduction via 2-D Gaussian

• Understanding covariance

• Using the covariance matrix

Combining correlated measurements

• Estimating the covariance matrix
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Reminder of 

1-D Gaussian 

or Normal

y  =    1    exp{-(x-µ)2/(22)}

2 

Significance of σ

i) RMS of Gaussian = σ
(hence factor of 2 in definition of Gaussian)

ii) At x = μ±σ, y = ymax/√e  ~0.606 ymax

(i.e. σ = half-width at ‘half’-height)

iii) Fractional area within μ±σ = 68%  

iv) Height at max = 1/(σ√2π)
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0.002

Area in tail(s)

of Gaussian
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Element Eij - <(xi – xi) (xj – xj)>

Diagonal Eij = variances

Off-diagonal Eij = covariances
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Towards the 

Covariance Matrix

x and y uncorrelated Gaussians

P(x,y) = G1(x) G2(y)
G1(x) = 1/(√2πσx) exp{-x2/2σx

2}
G1(x) = 1/(√2πσy) exp{-y2/2σy

2}

P(x,y) = 1/(2πσxσy) exp{-0.5(x2/σx
2 + y2/σy

2)}
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Inverse Covariance

Matrix

Covariance Matrix
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Inverse                     Covariance

covariance                matrix           . .     

.    matrix

8x2 + 2y2 =1

0.5(13x’2 + 6√3x’y’ + 7y’2) =1 13/2 3√3/2         (1/32)*    7     -3√3/2

3√3/2      7/2                       -3√3/2     13( () ) 

7/32 = (0.468)2 = σ(x`)2

1/6.5 = (0.392)2

1/8 = eigenvalue of covariance matrix = σ(x)2

Correlation coefficient ρ

= covariance/σ(x’)σ(y’)  

=  (-3√3/2)/sqrt(7*13)

= -0.27

Inverse                        Covariance

covariance                       matrix                

.    matrix
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Covariance matrix,

ρ in range -1→+1
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Using the Covariance  Matrix 

σy
2 = DED ͂

(i) Function of variables

y = y(xa, xb)

Given covariance matrix for xa, xb, what is σy ?

Differentiate, square, average



15

(ii) Change of variables xa = xa(pi,pj)

xb = xb(pi,pj)

e.g Cartesian to polars;   or

Points in x,y → intercept and gradient of line

Given cov matrix for pi,pj, what is cov matrix for xa,xb ? 

Differentiate, calculate δxaδxb, and average
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Ex = TEpT

BEWARE!

 ͂
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Example from 

Particle Physics
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Examples of correlated variables
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Using the Covariance Matrix



Combine several possibly correlated estimates of same quantity

e.g. v1, v2, v3

Covariance matrix σ1
2 cov12 cov13

cov12 σ2
2 cov23

cov13 cov23 σ3
2

Uncorrelated              Positive correlation           Negative correlation

covij = ρij σi σj with   -1 ≤ ρ ≤ 1
Lyons, Gibault + Clifford

NIM A270 (1988) 42



Combine several possibly correlated estimates of same quantity

e.g. v1, v2, v3

Covariance matrix σ1
2 cov12 cov13

cov12 σ2
2 cov23

cov13 cov23 σ3
2

Uncorrelated              Positive correlation           Negative correlation

covij = ρij σi σj with   -1 ≤ ρ ≤ 1
Lyons, Gibault + Clifford

NIM A270 (1988) 42



vbest = w1v1 +  w2v2 +  w3v3 Linear

with    w1 +  w2 +  w3 =1           Unbiassed

to give σbest = min (wrt w1, w2, w3)      Best
For uncorrelated case, wi ~ 1/σi

2

For correlated pair of measurements with σ1 < σ2

vbest =  α v1 + β v2                β = 1 - α

β = 0 for ρ = σ1/σ2          (Smaller → weights both >0)

β < 0 for ρ > σ1/σ2     i.e. extrapolation!     e.g. vbest = 2v1 – v2

V →

Vtrue v1 v2

Extrapolation is sensible:
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Beware extrapolations because

[b] σbest tends to zero, for ρ = +1 or -1

[a] vbest sensitive to ρ and σ1/σ2

N.B. For different analyses of ~ same data, 

ρ ~ 1, so choose ‘better’ analysis, rather than 

combining 



N.B. σbest depends on σ1, σ2 and ρ, but not on v1 – v2

e.g. Combining  0±3 and x±3  gives x/2 ± 2

BLUE = χ2

S(vbest) = Σ (vi – vbest) E
-1

ij (vj – vbest) , and minimise S wrt vbest

Smin distributed like χ2, so measures Goodness of Fit

But BLUE gives weights for each vi

Can be used to see contributions to σbest from each source 
of uncertainties e.g. statistical and systematics

different systematics 

Extended by Valassi to combining more than one measured 
quantity e.g. intercepts and gradients of a straight  line
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Small uncertainty

Example: Straight line fitting

xbest outside x1 → x2

ybest outside y1 → y2

MORE COMBINING:

Several pairs of correlated params
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Uncertainty on Ωdark energy
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When combining pairs of 

variables, the uncertainties on the 

combined parameters can be 

much smaller than any of the

individual uncertainties  

e.g. Ωdark energy
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Estimating the Covariance Matrix:  e+ e-
→ W+ W-
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Conclusion

Covariance matrix formalism 

makes life easy when 

correlations are relevant


