## QCD (for colliders) Lecture 1: Introduction

Gavin Salam

University of Oxford All Souls College and Department of Physics

2024 European School of High-Energy Physics Peebles, Scotland, September 2024

#### **QUANTUM CHROMODYNAMICS**

The theory of quarks, gluons and their interactions

It's central to all modern colliders. (And QCD is what we're made of)

- ▶ Quarks (and anti-quarks): they come in 3 colours
- ► Gluons: a bit like photons in QED

But there are 8 of them, and they're colour charged

And a coupling,  $\alpha_{\rm s}$ , that's not so small and runs fast At LHC, in the range 0.08(@ 5 TeV) to  $\mathcal{O}$  (1)(@ 0.5 GeV)

### I'll try to give you a feel for:

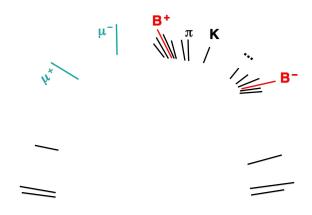
How QCD works

How theorists handle QCD at high-energy colliders

How you can work with QCD at high-energy colliders





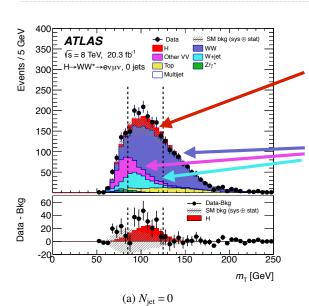


(actual final-state multiplicity ~ several hundred hadrons)

#### 3 Signal and background models

The ggF and VBF production modes for  $H o WW^*$  are modelled at next-to-leading order (NLO) in the strong coupling  $\alpha_S$  with the POWHEG MC generator [22–25], interfaced with PYTHIAS [26] (version 8.165) for the parton shower, hadronisation, and underlying event. The CT10 [27] PDF set is used and the parameters of the PYTHIAS generator controlling the modelling of the parton shower and the underlying event are those corresponding to the AU2 set [28]. The Higgs boson mass set in the generation is 125.0 GeV, which is close to the measured value. The POWHEG ggF model takes into account finite quark masses and a running-width Briet-Wigner distribution that includes electroweak corrections at NLO [29]. To improve the modelling of the Higgs boson  $p_T$  distribution, a reweighting scheme is applied to reproduce the prediction of the next-to-leading-order (NNLO) and next-to-next-to-leading-logarithm (NNLL) dynamic-scale calculation given by the HRES 2.1 program [30]. Events with  $\geq$  2 jets are further reweighted to reproduce the  $p_T^H$  spectrum predicted by the NLO POWHEG simulation of Higgs boson production in association with two jets (H + 2 jets) [31]. Interference with continuum WW production [32, 33] has a negligible impact on this analysis due to the transverse-mass selection criteria described in Section 4 and is not included in the signal model.

Jets are reconstructed from topological clusters of calorimeter cells [50–52] using the anti- $k_t$  algorithm with a radius parameter of R = 0.4 [53]. Jet energies are corrected for the effects of calorimeter non-



That whole paragraph was just for the red part of this distribution (the Higgs signal).

Complexity of modelling each of the backgrounds is comparable

Quarks — 3 colours: 
$$\psi_a = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$$

Quark part of Lagrangian:

#### Let's write down QCD in full detail

(There's a lot to absorb here — but it should become more palatable as we return to individual elements later)

A representation is:  $t^A = \frac{1}{2}\lambda^A$ ,

$$\lambda^1 = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \; \lambda^2 = \left(\begin{array}{ccc} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \; \lambda^3 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right), \; \lambda^4 = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right)$$

$$\lambda^5 = \left(\begin{array}{ccc} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{array}\right), \; \lambda^6 = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right), \; \lambda^7 = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{array}\right), \; \lambda^8 = \left(\begin{array}{ccc} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{-2}{\sqrt{3}} \end{array}\right)$$

## ${\sf Lagrangian} + {\sf colour}$

Quarks — 3 colours: 
$$\psi_a = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$$

Quark part of Lagrangian:

$$\mathcal{L}_{m{q}} = ar{\psi}_{m{a}} (i \gamma^{\mu} \partial_{\mu} \delta_{m{a} m{b}} - m{g}_{m{s}} \gamma^{\mu} m{t}_{m{a} m{b}}^{m{C}} m{\mathcal{A}}_{m{\mu}}^{m{C}} - m{m}) \psi_{m{b}}$$

SU(3) local gauge symmetry  $\leftrightarrow 8 \ (= 3^2 - 1)$  generators  $t_{ab}^1 \dots t_{ab}^2$  corresponding to 8 gluons  $A_1^1 \dots A_n^8$ .

A representation is

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \ \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ \lambda^{8} = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{2}{3} \end{pmatrix},$$

## Lagrangian + colour

Quarks — 3 colours: 
$$\psi_a = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$$

Quark part of Lagrangian:

A representation is:  $t^A = \frac{1}{2}\lambda^A$ ,

$$\mathcal{L}_{m{q}} = ar{\psi}_{m{a}} (i \gamma^{\mu} \partial_{\mu} \delta_{m{a}m{b}} - m{g}_{m{s}} \gamma^{\mu} m{t}_{m{a}m{b}}^{m{C}} \mathcal{A}_{\mu}^{m{C}} - m{m}) \psi_{m{b}}$$

SU(3) local gauge symmetry  $\leftrightarrow 8 \ (= 3^2 - 1)$  generators  $t_{ab}^1 \dots t_{ab}^8$ 

corresponding to 8 gluons  $\mathcal{A}_{\mu}^{1} \dots \mathcal{A}_{\mu}^{8}$ 

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

$$\lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \ \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ \lambda^{8} = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{-2}{3} \end{pmatrix},$$

Field tensor: 
$$F_{\mu\nu}^{A} = \partial_{\mu}A_{\nu}^{A} - \partial_{\nu}A_{\nu}^{A} - g_{s} f_{ABC}A_{\mu}^{B}A_{\nu}^{C}$$
  $[t^{A}, t^{B}] = if_{ABC}t^{C}$ 

 $f_{ABC}$  are structure constants of SU(3) (antisymmetric in all indices — SU(2) equivalent was  $\epsilon^{ABC}$ ). Needed for gauge invariance of gluon part of Lagrangian:

$$\mathcal{L}_{G} = -\frac{1}{4} F_{A}^{\mu\nu} F^{A\mu\nu}$$

Field tensor: 
$$F_{\mu\nu}^{A} = \partial_{\mu}A_{\nu}^{A} - \partial_{\nu}A_{\nu}^{A} - g_{s} f_{ABC}A_{\mu}^{B}A_{\nu}^{C}$$
  $[t^{A}, t^{B}] = if_{ABC}t^{C}$ 

 $f_{ABC}$  are structure constants of SU(3) (antisymmetric in all indices — SU(2) equivalent was  $\epsilon^{ABC}$ ). Needed for gauge invariance of gluon part of Lagrangian:

$$\mathcal{L}_{G} = -\frac{1}{4} F_{A}^{\mu\nu} F^{A\mu\nu}$$

#### Two main approaches to solving it

- ▶ Numerical solution with discretized space time (lattice)
- ▶ Perturbation theory: assumption that coupling is small

Also: effective theories

- Put all the quark and gluon fields of QCD on a 4D-lattice
   NB: with imaginary time
- Figure out which field configurations are most likely (by Monte Carlo sampling).
- You've solved QCD

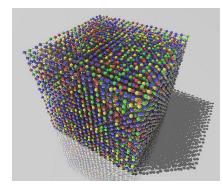
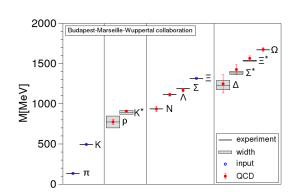


image credits: fdecomite [Flickr]

Lattice QCD is great at calculation static properties of a single hadron.

E.g. the hadron mass spectrum



Durr et al '08

How big a lattice do you need for an LHC collision @ 14 TeV?

Lattice spacing: 
$$\frac{1}{14 \text{ TeV}} \sim 10^{-5} \, \mathrm{fm}$$

#### Lattice extent:

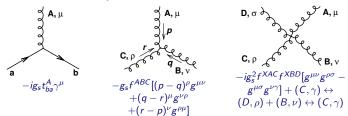
- non-perturbative dynamics for quark/hadron near rest takes place on timescale  $t \sim \frac{1}{0.5 \text{ GeV}} \sim 0.4 \text{ fm/c}$
- ightharpoonup But quarks at LHC have effective boost factor  $\sim 10^4$
- ightharpoonup So lattice extent should be  $\sim$  4000 fm

 $\label{eq:total:need} \frac{\text{Total:}}{\text{need}} \sim 4 \times 10^8 \text{ lattice units in each direction, or } 3 \times 10^{34} \text{ nodes total.}$  Plus clever tricks to deal with high particle multiplicity, imaginary v. real time, etc.

#### Relies on idea of order-by-order expansion small coupling, $\alpha_{\rm s} \ll 1$

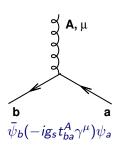
$$\alpha_{\rm s} + \underbrace{\alpha_{\rm s}^2}_{\rm small} + \underbrace{\alpha_{\rm s}^3}_{\rm smaller} + \underbrace{\dots}_{\rm negligible?}$$

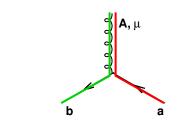
#### Interaction vertices of Feynman rules:

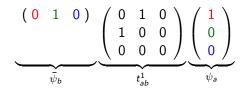


These expressions are fairly complex, so you really don't want to have to deal with too many orders of them! i.e.  $\alpha_s$  had better be small...

## What do Feynman rules mean physically?





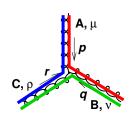


A gluon emission **repaints** the quark colour. A gluon itself carries colour and anti-colour.

## What does "ggg" Feynman rule mean?

$$\begin{array}{c|c}
\mathbf{A}, \mu \\
\downarrow \mathbf{p} \\
\mathbf{C}, \rho & \mathbf{q} \\
\mathbf{B}, \nu
\end{array}$$

$$-g_s f^{ABC} [(p-q)^{\rho} g^{\mu\nu} \\
+(q-r)^{\mu} g^{\nu\rho} \\
+(r-p)^{\nu} g^{\rho\mu}]$$



A gluon emission also repaints the gluon colours.

Because a gluon carries colour + anti-colour, it emits  $\sim$  twice as strongly as a quark (just has colour)

## Quick guide to colour algebra

$$\operatorname{Tr}(t^{A}t^{B}) = T_{R}\delta^{AB}, \quad T_{R} = \frac{1}{2}$$

$$\sum_{A} t_{ab}^{A} t_{bc}^{A} = C_{F}\delta_{ac}, \quad C_{F} = \frac{N_{c}^{2} - 1}{2N_{c}} = \frac{4}{3}$$

$$\sum_{C,D} f^{ACD} f^{BCD} = C_{A}\delta^{AB}, \quad C_{A} = N_{c} = 3$$

$$t_{ab}^{A} t_{cd}^{A} = \frac{1}{2}\delta_{bc}\delta_{ad} - \frac{1}{2N_{c}}\delta_{ab}\delta_{cd} \text{ (Fierz)}$$

$$\frac{b}{2} = \frac{1}{2} \sqrt{\frac{-1}{2N_{c}}}$$

 $N_c \equiv \text{number of colours} = 3 \text{ for QCD}$ 

### Quick guide to colour algebra

$$\operatorname{Tr}(t^{A}t^{B}) = T_{R}\delta^{AB}, \quad T_{R} = \frac{1}{2}$$

$$\sum_{A} t_{ab}^{A} t_{bc}^{A} = C_{F}\delta_{ac}, \quad C_{F} = \frac{N_{c}^{2} - 1}{2N_{c}} = \frac{4}{3}$$

$$\sum_{C,D} f^{ACD} f^{BCD} = C_{A}\delta^{AB}, \quad C_{A} = N_{c} = 3$$

$$t_{ab}^{A} t_{cd}^{A} = \frac{1}{2}\delta_{bc}\delta_{ad} - \frac{1}{2N_{c}}\delta_{ab}\delta_{cd} \text{ (Fierz)}$$

$$\frac{b}{2} = \frac{1}{2} \sqrt{\frac{-1}{2N_{c}}}$$

 $N_c \equiv \text{number of colours} = 3 \text{ for QCD}$ 

$$\operatorname{Tr}(t^A t^B) = T_R \delta^{AB} \,, \quad T_R = \frac{1}{2}$$

$$\operatorname{Tr}(t^A t^B) = T_R \delta^{AB}, \quad T_R = \frac{1}{2}$$

$$\sum_{A} t_{ab}^{A} t_{bc}^{A} = C_{F} \delta_{ac} \,, \quad C_{F} = \frac{N_{c}^{2} - 1}{2N_{c}} = \frac{4}{3}$$

$$\sum_{C,D} f^{ACD} f^{BCD} = C_A \delta^{AB}$$
,  $C_A = N_c = 3$ 

$$t_{ab}^A t_{cd}^A = \frac{1}{2} \delta_{bc} \delta_{ad} - \frac{1}{2N_c} \delta_{ab} \delta_{cd} \ \ (\text{Fierz})$$



 $N_c \equiv \text{number of colours} = 3 \text{ for QCD}$ 

## Quick guide to colour algebra

```
OCD-colour-matrices.pv
      #!/usr/bin/env pvthon3
      """Small program to explore colour matrices and structure constants in OCD.
      Written by Gavin Salam as an illustration for lecture 1 of the QCD
      course at the 2024 European School of High-Energy Physics.
       import numpy as np
      def main():
  10
  11
          print("Warning: the A.B.C indices here run from 0 to 7, not 1 to 8 as in the lecture notes.")
          print("Warning: the a,b,c indices here run from 0 to 2, not 1 to 3 as in the lecture notes.")
  13
          nF = 3 # number of degrees of freedom in Fundamental representation (guarks)
  14
  15
          nA = 8 # number of degrees of freedom in Adjoint representation (gluos)
  16
          lambdas = get lambdas()
          ts = [0.5*l for l in lambdas]
  18
  19
  20
          header("check Tr(t^A t^B) = T R delta^{AB}")
  21
          for A in range(nA):
  22
               for B in range(nA):
  23
                  trace = np.trace(np.matmul(ts[A].ts[B]))
  24
                  if abs(trace)>1e-10: print(f"{A=} {B=}: Trace(t^A t^B)={trace}")
```

https://gist.github.com/gavinsalam/ 6010007fd38f560d5424886c5b2f8649 All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale ( $Q^2$ ) of your process.

The QCD coupling,  $\alpha_s(Q^2)$ , runs fast:

$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = \beta(\alpha_s), \qquad \beta(\alpha_s) = -\alpha_s^2 (b_0 + b_1 \alpha_s + b_2 \alpha_s^2 + \ldots),$$

$$b_0 = \frac{11C_A - 2n_f}{12\pi}$$
,  $b_1 = \frac{17C_A^2 - 5C_An_f - 3C_Fn_f}{24\pi^2} = \frac{153 - 19n_f}{24\pi^2}$ 

Note sign: Asymptotic Freedom, due to gluon to self-interaction 2004 Nobel prize: Gross, Politzer & Wilczek

- ightharpoonup At high scales Q, coupling becomes small
  - ⇒quarks and gluons are almost free, interactions are weak
- At low scales, coupling becomes strong

⇒quarks and gluons interact strongly — confined into hadrons

erturbation theory fails.

All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale ( $Q^2$ ) of your process.

The QCD coupling,  $\alpha_s(Q^2)$ , runs fast:

$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = \beta(\alpha_s), \qquad \beta(\alpha_s) = -\alpha_s^2 (b_0 + b_1 \alpha_s + b_2 \alpha_s^2 + \ldots),$$

$$b_0 = \frac{11C_A - 2n_f}{12\pi}$$
,  $b_1 = \frac{17C_A^2 - 5C_An_f - 3C_Fn_f}{24\pi^2} = \frac{153 - 19n_f}{24\pi^2}$ 

Note sign: Asymptotic Freedom, due to gluon to self-interaction 2004 Nobel prize: Gross, Politzer & Wilczek

- ightharpoonup At high scales Q, coupling becomes small
  - ⇒quarks and gluons are almost free, interactions are weak
- At low scales, coupling becomes strong
  - ⇒quarks and gluons interact strongly confined into hadrons

    Perturbation theory fails.

## Running coupling (cont.)

Solve 
$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = -b_0 \alpha_s^2 \quad \Rightarrow \quad \alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + b_0 \alpha_s(Q_0^2) \ln \frac{Q^2}{Q_0^2}} = \frac{1}{b_0 \ln \frac{Q^2}{\Lambda^2}}$$

 $\Lambda \simeq 0.2$  GeV (aka  $\Lambda_{QCD}$ ) is the fundamental scale of QCD, at which coupling blows up.

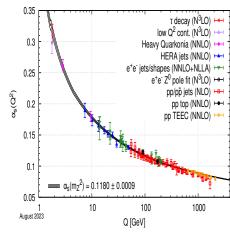
- Λ sets the scale for hadron masses (NB: Λ not unambiguously defined wrt higher orders)
- Perturbative calculations valid for scales  $Q \gg \Lambda$ .

## Running coupling (cont.)

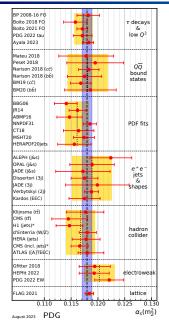
Solve 
$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = -b_0 \alpha_s^2 \ \Rightarrow \ \alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + b_0 \alpha_s(Q_0^2) \ln \frac{Q^2}{Q_0^2}} = \frac{1}{b_0 \ln \frac{Q^2}{\Lambda^2}}$$

 $\Lambda \simeq 0.2$  GeV (aka  $\Lambda_{QCD}$ ) is the fundamental scale of QCD, at which coupling blows up.

- Λ sets the scale for hadron masses (NB: Λ not unambiguously defined wrt higher orders)
- Perturbative calculations valid for scales  $Q \gg \Lambda$ .



2023 PDG, QCD chapter

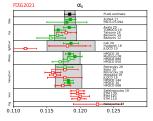


Current world average is

$$\alpha_{\rm s}(m_Z) = 0.1180 \pm 0.0009$$

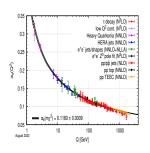
The world average has been stable over many years, but be aware of what goes into it:

- most determinations with small uncertainties  $(\lesssim 0.001)$  are systematics dominated
- **>** some determinations (not shown on left) are in tension ( $\sim 4\sigma$ ) with world average



Question of how best to determine  $\alpha_s$  is an active research topic spanning many subfields of QCD!

### QCD perturbation theory (PT) & LHC?



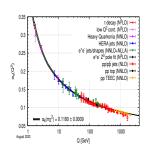
- ► Higgs, SM and searches at colliders probe scales  $Q \sim p_t \sim 50 \text{ GeV} 5 \text{ TeV}$ The coupling certainly is small there!
- ightharpoonup But we're colliding protons,  $m_p \simeq 0.94~{
  m GeV}$  The coupling is large!

When we look at QCD events (this one is interpreted as  $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ ), we see:

- ▶ hadrons (PT doesn't hold for them)
- ▶ lots of them so we can't say 1 quark/gluon ~ 1 hadron, and we limit ourselves to 1 or 2 orders of PT.

#### QCD perturbation theory (PT) & LHC?

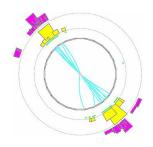




- Higgs, SM and searches at colliders probe scales  $Q \sim p_t \sim 50 \text{ GeV} 5 \text{ TeV}$ The coupling certainly is small there!
- ightharpoonup But we're colliding protons,  $m_p \simeq 0.94~{
  m GeV}$  The coupling is large!

When we look at QCD events (this one is interpreted as  $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ ), we see:

- ► hadrons (PT doesn't hold for them)
- ▶ lots of them so we can't say 1 quark/gluon ~ 1 hadron, and we limit ourselves to 1 or 2 orders of PT.



# Neither lattice QCD nor perturbative QCD can offer a full solution to using QCD at colliders

What the community has settled on is perturbative QCD inputs + non-perturbative *modelling/factorisation* 

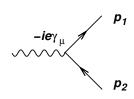
Rest of this lecture: take a simple environment ( $e^+e^- \to \text{hadrons}$ ) and see how PT allows us to understand why QCD events look the way they do.

Next lectures: dealing with incoming protons, jets, modern predictive tools

## Soft gluon amplitude

#### Start with $\gamma^* o qar q$ :

$$\mathcal{M}_{qar{q}} = -ar{u}(p_1)ie_q\gamma_\mu v(p_2)$$



#### Emit a gluon:

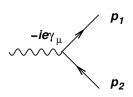
$$\mathcal{M}_{qar{q}g} = ar{u}(p_1)ig_s \not\in t^A rac{i}{
ot\!\!/_1 + 
ot\!\!/_i}ie_q \gamma_\mu v(p_2) 
ot\!\!/_i - ar{u}(p_1)ie_q \gamma_\mu rac{i}{
ot\!\!/_2 + 
ot\!\!/_i}ig_s \not\in t^A v(p_2)$$

Make gluon  $soft \equiv k \ll p_{1,2}$ ; ignore terms suppressed by powers of k:

$$\mathcal{M}_{qar{q}g}\simeqar{u}(p_1)ie_q\gamma_\mu t^Av(p_2)\,g_s\left(rac{p_1.\epsilon}{p_1.k}-rac{p_2.\epsilon}{p_2.k}
ight)$$

#### Start with $\gamma^* o qar q$ :

$$\mathcal{M}_{qar{q}}=-ar{u}(p_1)ie_q\gamma_\mu v(p_2)$$



#### Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1)ig_s \not\in t^A \frac{i}{\not p_1' + \not k} ie_q \gamma_\mu v(p_2) \qquad \underbrace{\stackrel{-ie_{\gamma_\mu}}{}}_{k,\epsilon} \underbrace{\stackrel{-ie_{\gamma_\mu}}{}}_{p_2} \underbrace{\stackrel{-ie_{\gamma_\mu}}{}}_{p_2}$$

$$- \bar{u}(p_1)ie_q \gamma_\mu \frac{i}{\not p_2' + \not k} ig_s \not\in t^A v(p_2)$$

Make gluon  $soft \equiv k \ll p_{1,2}$ ; ignore terms suppressed by powers of k:

$$\mathcal{M}_{qar{q}g}\simeqar{u}(p_1)ie_q\gamma_\mu t^Av(p_2)\,g_s\left(rac{p_1.\epsilon}{p_1.k}-rac{p_2.\epsilon}{p_2.k}
ight)$$

$$\bar{u}(p_1)ig_s \not/ t^A \frac{i}{\not p_1' + \not k}ie_q \gamma_\mu v(p_2) = -ig_s \bar{u}(p_1) \not/ \frac{\not p_1' + \not k}{(p_1 + k)^2} e_q \gamma_\mu t^A v(p_2)$$

$$\text{Use } \not/ B = 2A.B - \not/ B \not/ k:$$

$$= -ig_s \bar{u}(p_1)[2\epsilon.(p_1 + k) - (\not p_1' + \not k) \not/ ] \frac{1}{(p_1 + k)^2} e_q \gamma_\mu t^A v(p_2)$$

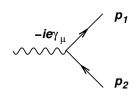
$$\text{Use } \bar{u}(p_1) \not/ p_1' = 0 \text{ and } k \ll p_1 \ (p_1, k \text{ massless})$$

$$\simeq -ig_s \bar{u}(p_1)[2\epsilon.p_1] \frac{1}{(p_1 + k)^2} e_q \gamma_\mu t^A v(p_2)$$

$$= -ig_s \frac{p_1.\epsilon}{p_1.k} \quad \underline{u}(p_1)e_q \gamma_\mu t^A v(p_2)$$
pure QED spinor structure

#### Start with $\gamma^* o qar q$ :

$$\mathcal{M}_{qar{q}} = -ar{u}(p_1)ie_q\gamma_\mu v(p_2)$$



#### Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1)ig_s \not\in t^A \frac{i}{\not p_1' + \not k} ie_q \gamma_\mu v(p_2)$$

$$-\bar{u}(p_1)ie_q \gamma_\mu \frac{i}{\not p_2' + \not k} ig_s \not\in t^A v(p_2)$$

$$-ie_{q} \gamma_\mu \frac{i}{\not p_2' + \not k} ig_s \not\in t^A v(p_2)$$

Make gluon soft  $\equiv k \ll p_{1,2}$ ; ignore terms suppressed by powers of k:

$$\mathcal{M}_{qar{q}g}\simeq ar{u}(p_1)ie_q\gamma_\mu t^Av(p_2)\,g_s\left(rac{p_1.\epsilon}{p_1.k}-rac{p_2.\epsilon}{p_2.k}
ight) \qquad egin{aligned} 
olimits 
olimi$$

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,pol} \left| \bar{u}(p_{1}) i e_{q} \gamma_{\mu} t^{A} v(p_{2}) g_{s} \left( \frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k} \right) \right|^{2}$$

$$= -|M_{q\bar{q}}^{2}| C_{F} g_{s}^{2} \left( \frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k} \right)^{2} = |M_{q\bar{q}}^{2}| C_{F} g_{s}^{2} \frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^2|) \frac{d^3k}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)}$$

Note property of factorisation into hard  $q\bar{q}$  piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_s C_F}{\pi} \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)}$$

 $\phi = \sigma_{\rho_1 k}$   $\phi = \operatorname{azimuth}$ 

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{\mathbf{A},pol} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{\mathbf{A}}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$

$$= -|M_{q\bar{q}}^{2}| C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}| C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^2|) \frac{d^3k}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

Note property of factorisation into hard  $q\bar{q}$  piece and soft-gluon emission piece,  $d\mathcal{S}$ .

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_s C_F}{\pi} \frac{2p_1 \cdot p_2}{(2p_1 \cdot k)(2p_2 \cdot k)}$$

 $heta \equiv heta_{
ho_1 k} \ \phi = \operatorname{azimuth}$ 

$$\begin{aligned} |M_{q\bar{q}g}^{2}| &\simeq \sum_{A, \text{pol}} \left| \bar{u}(p_{1}) i e_{q} \gamma_{\mu} t^{A} v(p_{2}) g_{s} \left( \frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k} \right) \right|^{2} \\ &= -|M_{q\bar{q}}^{2}| C_{F} g_{s}^{2} \left( \frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k} \right)^{2} = |M_{q\bar{q}}^{2}| C_{F} g_{s}^{2} \frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)} \end{aligned}$$

Include phase space

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2|\simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^2|)\frac{d^3k}{2E(2\pi)^3}C_Fg_s^2\frac{2p_1.p_2}{(p_1.k)(p_2.k)}$$

Note property of factorisation into hard  $q\bar{q}$  piece and soft-gluon emission piece,  $d\mathcal{S}$ .

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{s}C_{F}}{\pi} \frac{2p_{1}.p_{2}}{(2p_{1}.k)(2p_{2}.k)}$$

 $\theta \equiv \theta_{p_1 k}$   $\phi = \text{azimuth}$ 

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,pol} \left| \bar{u}(p_{1}) i e_{q} \gamma_{\mu} t^{A} v(p_{2}) g_{s} \left( \frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k} \right) \right|^{2}$$

$$= -|M_{q\bar{q}}^{2}| C_{F} g_{s}^{2} \left( \frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k} \right)^{2} = |M_{q\bar{q}}^{2}| C_{F} g_{s}^{2} \frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^2|) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)}$$

Note property of factorisation into hard  $q\bar{q}$  piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{s}C_{F}}{\pi} \frac{2p_{1}.p_{2}}{(2p_{1}.k)(2p_{2}.k)}$$

 $\theta \equiv \theta_{p_1 k}$   $\phi = \operatorname{azimuth}$ 

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,pol} \left| \bar{u}(p_{1}) i e_{q} \gamma_{\mu} t^{A} v(p_{2}) g_{s} \left( \frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k} \right) \right|^{2}$$

$$= -|M_{q\bar{q}}^{2}| C_{F} g_{s}^{2} \left( \frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k} \right)^{2} = |M_{q\bar{q}}^{2}| C_{F} g_{s}^{2} \frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^{2}| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^{2}|) \frac{d^{3}\vec{k}}{2E(2\pi)^{3}} C_{F}g_{s}^{2} \frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Note property of factorisation into hard  $q\bar{q}$  piece and soft-gluon emission piece, dS.

$$d\mathcal{S} = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_F}{\pi} \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)}$$

 $\theta \equiv \theta_{p_1 k}$  $\phi = \operatorname{azimuth}$ 

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,pol} \left| \bar{u}(p_{1}) i e_{q} \gamma_{\mu} t^{A} v(p_{2}) g_{s} \left( \frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k} \right) \right|^{2}$$

$$= -|M_{q\bar{q}}^{2}| C_{F} g_{s}^{2} \left( \frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k} \right)^{2} = |M_{q\bar{q}}^{2}| C_{F} g_{s}^{2} \frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^2|) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)}$$

Note property of factorisation into hard  $q\bar{q}$  piece and soft-gluon emission piece, dS.

$$d\mathcal{S} = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_F}{\pi} \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} \qquad \qquad \theta \equiv \theta_{p_1k} \\ \phi = {\sf azimuth}$$

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$dS = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

#### MR:

- ▶ It diverges for  $E \rightarrow 0$  infrared (or soft) divergence
- ▶ It diverges for  $\theta \to 0$  and  $\theta \to \pi$  collinear divergence

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$d\mathcal{S} = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

#### MR:

- ▶ It diverges for  $E \rightarrow 0$  infrared (or soft) divergence
- ▶ It diverges for  $\theta \to 0$  and  $\theta \to \pi$  collinear divergence

Soft, collinear divergences derived here in specific context of  $e^+e^- o q\bar q$ But they are a very general property of QCD

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$d\mathcal{S} = \frac{2\alpha_{s}C_{F}}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

### <u>NB:</u>

- ▶ It diverges for  $E \rightarrow 0$  infrared (or soft) divergence
- ▶ It diverges for  $\theta \to 0$  and  $\theta \to \pi$  collinear divergence

Soft, collinear divergences derived here in specific context of  $e^+e^- o q\bar q$ But they are a very general property of QCD

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

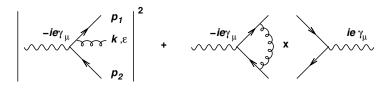
$$d\mathcal{S} = \frac{2\alpha_{s}C_{F}}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

# <u>NB:</u>

- ▶ It diverges for  $E \rightarrow 0$  infrared (or soft) divergence
- ▶ It diverges for  $\theta \to 0$  and  $\theta \to \pi$  collinear divergence

Soft, collinear divergences derived here in specific context of  $e^+e^- o qar q$ But they are a very general property of QCD

### Total cross section: sum of all real and virtual diagrams



Total cross section must be *finite*. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

$$\sigma_{tot} = \sigma_{q\bar{q}} \left( 1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} R(E/Q, \theta) - \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} V(E/Q, \theta) \right)$$

- ightharpoonup R(E/Q, heta) parametrises real matrix element for hard emissions,  $E\sim Q$ .
- $V(E/Q,\theta)$  parametrises virtual corrections for all momenta.

# Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

$$\begin{vmatrix} -ie\gamma_{\mu} & p_1 \\ p_2 \end{vmatrix}^2 + -ie\gamma_{\mu} & x \qquad ie\gamma_{\mu}$$

Total cross section must be *finite*. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

$$\begin{split} \sigma_{tot} &= \sigma_{q\bar{q}} \left( 1 + \frac{2\alpha_{\rm s} C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} \, R(E/Q, \theta) \right. \\ &\left. - \frac{2\alpha_{\rm s} C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} \, V(E/Q, \theta) \right) \end{split}$$

- $ightharpoonup R(E/Q, \theta)$  parametrises real matrix element for hard emissions,  $E \sim Q$ .
- $\triangleright$   $V(E/Q, \theta)$  parametrises virtual corrections for all momenta.

# Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

$$\begin{vmatrix} -ie\gamma_{\mu} & p_1 \\ p_2 \end{vmatrix}^2 + \frac{-ie\gamma_{\mu}}{p_2} \times \begin{vmatrix} ie\gamma_{\mu} \\ p_2 \end{vmatrix}$$

Total cross section must be *finite*. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

$$\sigma_{tot} = \sigma_{q\bar{q}} \left( 1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \frac{R(E/Q, \theta)}{R(E/Q, \theta)} - \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \frac{V(E/Q, \theta)}{V(E/Q, \theta)} \right)$$

- $ightharpoonup R(E/Q, \theta)$  parametrises real matrix element for hard emissions,  $E \sim Q$ .
- $V(E/Q, \theta)$  parametrises virtual corrections for all momenta.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left( 1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left( R(E/Q, \theta) - V(E/Q, \theta) \right) \right)$$

- From calculation:  $\lim_{E\to 0} R(E/Q, \theta) = 1$ .
- For every divergence  $R(E/Q, \theta)$  and  $V(E/Q, \theta)$  should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

$$\sigma_{tot} = \sigma_{q\bar{q}} \left( 1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left( R(E/Q, \theta) - V(E/Q, \theta) \right) \right)$$

- From calculation:  $\lim_{E\to 0} R(E/Q, \theta) = 1$ .
- For every divergence  $R(E/Q, \theta)$  and  $V(E/Q, \theta)$  should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \quad \lim_{\theta\to 0,\pi}(R-V)=0$$

- $\blacktriangleright$  corrections to  $\sigma_{tot}$  come from hard  $(E \sim Q)$ , large-angle gluons
- Soft gluons don't matter:

$$\sigma_{tot} = \sigma_{q\bar{q}} \left( 1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left( R(E/Q, \theta) - V(E/Q, \theta) \right) \right)$$

- From calculation:  $\lim_{E\to 0} R(E/Q, \theta) = 1$ .
- For every divergence  $R(E/Q, \theta)$  and  $V(E/Q, \theta)$  should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- ightharpoonup corrections to  $\sigma_{tot}$  come from hard  $(E \sim Q)$ , large-angle gluons
- Soft gluons don't matter:
  - ▶ Physics reason: soft gluons emitted on long timescale  $\sim 1/(E\theta^2)$  relative to

$$\sigma_{tot} = \sigma_{q\bar{q}} \left( 1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left( R(E/Q, \theta) - V(E/Q, \theta) \right) \right)$$

- From calculation:  $\lim_{E\to 0} R(E/Q, \theta) = 1$ .
- ▶ For every divergence  $R(E/Q, \theta)$  and  $V(E/Q, \theta)$  should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- lacktriangle corrections to  $\sigma_{tot}$  come from hard  $(E\sim Q)$ , large-angle gluons
- Soft gluons don't matter:
  - Physics reason: soft gluons emitted on long timescale  $\sim 1/(E\theta^2)$  relative to collision (1/Q) cannot influence cross section.
  - ▶ Transition to hadrons also occurs on long time scale ( $\sim 1/\Lambda$ ) and can also be ignored.
- Correct renorm. scale for  $\alpha_s$ :  $\mu \sim Q$  perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left( 1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left( R(E/Q, \theta) - V(E/Q, \theta) \right) \right)$$

- From calculation:  $\lim_{E\to 0} R(E/Q, \theta) = 1$ .
- ▶ For every divergence  $R(E/Q, \theta)$  and  $V(E/Q, \theta)$  should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- lacktriangle corrections to  $\sigma_{tot}$  come from hard  $(E\sim Q)$ , large-angle gluons
- Soft gluons don't matter:
  - Physics reason: soft gluons emitted on long timescale  $\sim 1/(E\theta^2)$  relative to collision (1/Q) cannot influence cross section.
  - ▶ Transition to hadrons also occurs on long time scale ( $\sim 1/\Lambda$ ) and can also be ignored.
- $\triangleright$  Correct renorm. scale for  $\alpha_s$ :  $\mu \sim Q$  perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left( 1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left( R(E/Q, \theta) - V(E/Q, \theta) \right) \right)$$

- From calculation:  $\lim_{E\to 0} R(E/Q, \theta) = 1$ .
- ▶ For every divergence  $R(E/Q, \theta)$  and  $V(E/Q, \theta)$  should cancel:

$$\lim_{E \to 0} (R - V) = 0, \qquad \lim_{\theta \to 0, \pi} (R - V) = 0$$

- lacktriangle corrections to  $\sigma_{tot}$  come from hard  $(E \sim Q)$ , large-angle gluons
- Soft gluons don't matter:
  - Physics reason: soft gluons emitted on long timescale  $\sim 1/(E\theta^2)$  relative to collision (1/Q) cannot influence cross section.
    - Transition to hadrons also occurs on long time scale ( $\sim 1/\Lambda$ ) and can also be ignored.
- ▶ Correct renorm. scale for  $\alpha_s$ :  $\mu \sim Q$  perturbation theory valid.

Dependence of total cross section on only *hard* gluons is reflected in 'good behaviour' of perturbation series:

$$\sigma_{tot} = \sigma_{q\bar{q}} \left( 1 + 1.045 \frac{\alpha_{s}(Q)}{\pi} + 0.94 \left( \frac{\alpha_{s}(Q)}{\pi} \right)^{2} - 15 \left( \frac{\alpha_{s}(Q)}{\pi} \right)^{3} + \cdots \right)$$

(Coefficients given for  $Q=M_Z$ )

Let's look at more "exclusive" quantities — structure of final state

Let's try and integrate emission probability to get the mean number of gluons emitted off a a quark with energy  $\sim Q$ :

$$\langle N_g \rangle \simeq rac{2lpha_{\rm s}C_F}{\pi} \int^Q rac{dE}{E} \int^{\pi/2} rac{d heta}{ heta}$$

This diverges unless we cut the integral off for transverse momenta  $(k_t \simeq E\theta)$  below some non-perturbative threshold,  $Q_0 \sim \Lambda_{QCD}$ .

On the grounds that perturbation no longer applies for  $k_t \sim \Lambda_{QCD}$ Language of quarks and gluons becomes meaningless

With this cutoff, result is:

$$\langle N_g \rangle \simeq \frac{\alpha_s C_F}{\pi} \ln^2 \frac{Q}{Q_0} + \mathcal{O} (\alpha_s \ln Q)$$

Let's try and integrate emission probability to get the mean number of gluons emitted off a a quark with energy  $\sim Q$ :

$$\langle N_{g} \rangle \simeq rac{2lpha_{\mathsf{s}} \mathcal{C}_{\mathsf{F}}}{\pi} \int^{Q} rac{dE}{E} \int^{\pi/2} rac{d heta}{ heta} \, \Theta(E heta > Q_{\mathsf{0}})$$

This diverges unless we cut the integral off for transverse momenta  $(k_t \simeq E\theta)$  below some non-perturbative threshold,  $Q_0 \sim \Lambda_{QCD}$ .

On the grounds that perturbation no longer applies for  $k_t \sim \Lambda_{QCD}$ Language of quarks and gluons becomes meaningless

With this cutoff, result is:

$$\langle N_g \rangle \simeq rac{lpha_{\mathsf{s}} C_F}{\pi} \ln^2 rac{Q}{Q_0} + \mathcal{O}\left(lpha_{\mathsf{s}} \ln Q
ight)$$

# Naive gluon multiplicity (cont.)

Suppose we take  $Q_0 = \Lambda_{QCD}$ , how big is the result?

Let's use 
$$\alpha_s = \alpha_s(Q) = 1/(2b \ln Q/\Lambda)$$

[Actually, over most of integration range this is optimistically small]

$$\langle N_g \rangle \simeq rac{lpha_s C_F}{\pi} \ln^2 rac{Q}{\Lambda_{QCD}} 
ightarrow rac{C_F}{2b\pi} \ln rac{Q}{\Lambda_{QCD}}$$

NB: given form for  $lpha_{
m s}$ , this is actually  $\sim 1/lpha_{
m s}$ 

Put in some numbers: Q=100 GeV,  $\Lambda_{QCD}\simeq 0.2$  GeV,  $C_F=4/3$ ,  $b\simeq 0.6$ ,

$$\longrightarrow \langle N_g \rangle \simeq 2.2$$

Perturbation theory assumes that first-order term,  $\sim \alpha_{\rm S}$  should be  $\ll 1.$ 

But the final result is 
$$\sim 1/lpha_{
m s} > 1\dots$$

# Naive gluon multiplicity (cont.)

Suppose we take  $Q_0 = \Lambda_{QCD}$ , how big is the result?

Let's use 
$$\alpha_{\mathsf{s}} = \alpha_{\mathsf{s}}(Q) = 1/(2b \ln Q/\Lambda)$$

[Actually, over most of integration range this is optimistically small]

$$\langle N_g \rangle \simeq rac{lpha_s C_F}{\pi} \ln^2 rac{Q}{\Lambda_{QCD}} 
ightarrow rac{C_F}{2b\pi} \ln rac{Q}{\Lambda_{QCD}}$$

NB: given form for  $\alpha_{\rm s}$ , this is actually  $\sim 1/\alpha_{\rm s}$ 

Put in some numbers: Q=100 GeV,  $\Lambda_{QCD}\simeq 0.2$  GeV,  $C_F=4/3$ ,  $b\simeq 0.6$ ,

$$\longrightarrow \langle N_g \rangle \simeq 2.2$$

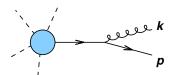
Perturbation theory assumes that first-order term,  $\sim \alpha_{\rm s}$  should be  $\ll 1$ .

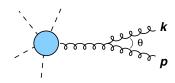
But the final result is  $\sim 1/\alpha_{\rm s} > 1.$  .

Is perturbation theory completely useless?

Given this failure of first-order perturbation theory, two possible avenues.

- 1. Continue calculating the next order(s) and see what happens
- 2. Try to see if there exist other observables for which perturbation theory is better behaved





 $2\alpha_{\rm s}C_{\rm F}$  dE d $\theta$ Gluon emission from quark:

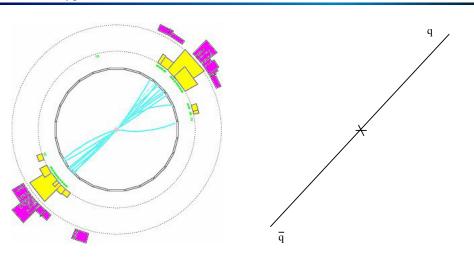
$$= \frac{2\alpha_{s}C_{F}}{\pi} \frac{dE}{E} \frac{d\theta}{\theta}$$

Gluon emission from gluon:

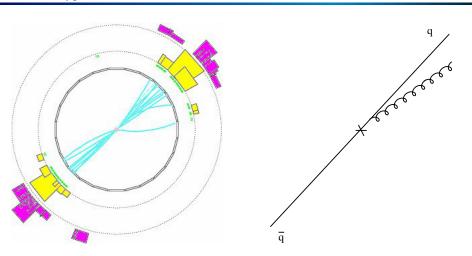
$$\frac{2\alpha_{\rm s} \frac{\rm C_A}{\pi}}{\pi} \frac{dE}{E} \frac{d\theta}{\theta}$$

Both expressions valid only if  $\theta \ll 1$  and energy soft relative to parent

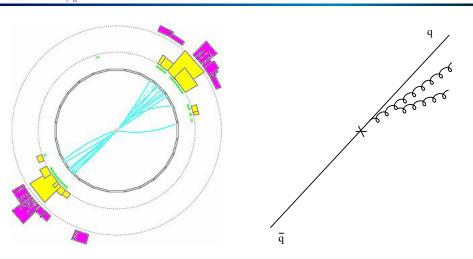
- Same divergence structures, regardless of where gluon is emitted from
- ▶ All that changes is the colour factor ( $C_F = 4/3$  v.  $C_A = 3$ )
- $\triangleright$  Expect low-order structure ( $\alpha_s \ln^2 Q$ ) to be replicated at each new order



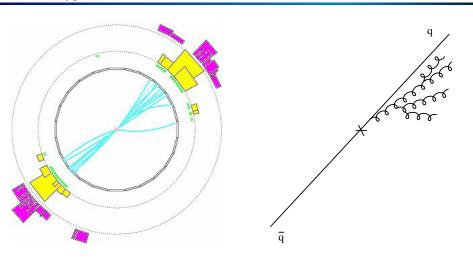
Start of with  $q\bar{q}$ 



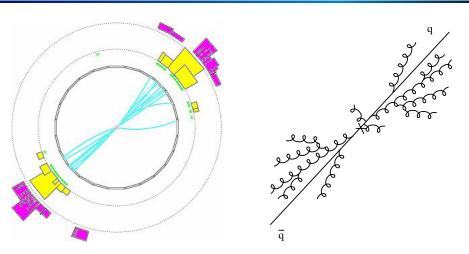
A gluon gets emitted at small angles



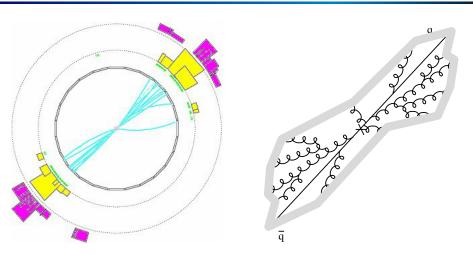
It radiates a further gluon



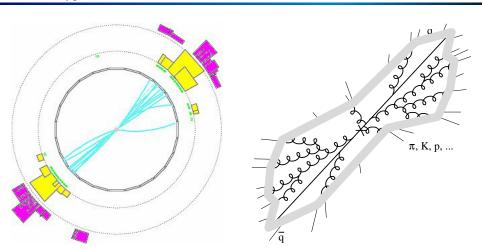
And so forth



Meanwhile the same happened on other side of event



And then a non-perturbative transition occurs



Giving a pattern of hadrons that "remembers" the gluon branching Hadrons mostly produced at small angle wrt  $q\bar{q}$  directions or with low energy

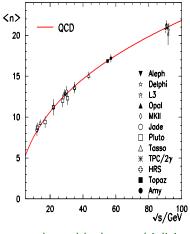
It turns out you can calculate the gluon multiplicity analytically, by summing all orders (n) of perturbation theory:

$$\langle N_g \rangle \sim \sum_n \frac{1}{(n!)^2} \left( \frac{C_A}{\pi b} \ln \frac{Q}{\Lambda} \right)^n$$
  
  $\sim \exp \sqrt{\frac{4C_A}{\pi b} \ln \frac{Q}{\Lambda}}$ 

Compare to data for **hadron** multiplicity  $(Q \equiv \sqrt{s})$ 

Including some other higher-order terms and fitting overall normalisation

Agreement is amazing!



charged hadron multiplicity in  $e^+e^-$  events adapted from ESW

It's great that putting together all orders of gluon emission works so well!

This, together with a "hadronisation model", is part of what's contained in Monte Carlo event generators like Pythia, Herwig & Sherpa.

But are there things that we can calculate about the final state using just one or two orders perturbation theory?

# Infrared and Collinear Safety (definition)

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if  $\vec{p_i}$  is any momentum occurring in its definition, it must be invariant under the branching

$$\vec{p_i} 
ightarrow \vec{p_j} + \vec{p_k}$$

whenever  $\vec{p}_j$  and  $\vec{p}_k$  are parallel [collinear] or one of them is small [infrared]. [QCD and Collider Physics (Ellis, Stirling & Webber)]

### Examples

- ► Multiplicity of gluons is *not* IRC safe [modified by soft/collinear splitting]
- ► Energy of hardest particle is *not* IRC safe [modified by collinear splitting]
- ► Energy flow into a cone is IRC safe [soft emissions don't change energy flow collinear emissions don't change its direction]

# Infrared and Collinear Safety (definition)

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if  $\vec{p_i}$  is any momentum occurring in its definition, it must be invariant under the branching

$$\vec{p_i} 
ightarrow \vec{p_j} + \vec{p_k}$$

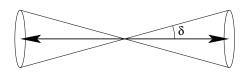
whenever  $\vec{p}_j$  and  $\vec{p}_k$  are parallel [collinear] or one of them is small [infrared]. [QCD and Collider Physics (Ellis, Stirling & Webber)]

### Examples

- ► Multiplicity of gluons is *not* IRC safe [modified by soft/collinear splitting]
- ► Energy of hardest particle is *not* IRC safe [modified by collinear splitting]
- Energy flow into a cone is IRC safe [soft emissions don't change energy flow collinear emissions don't change its direction]

# The *original* (finite) jet definition

An event has 2 jets if at least a fraction  $(1-\epsilon)$  of event energy is contained in two cones of half-angle  $\delta$ .

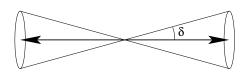


$$\sigma_{2-jet} = \sigma_{q\bar{q}} \left( 1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \frac{d\theta}{\sin\theta} \left( R\left(\frac{E}{Q}, \theta\right) \times \left( 1 - \Theta\left(\frac{E}{Q} - \epsilon\right) \Theta(\theta - \delta) \right) - V\left(\frac{E}{Q}, \theta\right) \right) \right)$$

- For small E or small  $\theta$  this is just like total cross section full cancellation of divergences between real and virtual terms.
- For large E and large  $\theta$  a *finite piece* of real emission cross section is *cut* out.
- Note The Power Po

# The *original* (finite) jet definition

An event has 2 jets if at least a fraction  $(1-\epsilon)$  of event energy is contained in two cones of half-angle  $\delta$ .

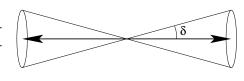


$$\sigma_{2-jet} = \sigma_{q\bar{q}} \left( 1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \frac{d\theta}{\sin\theta} \left( R\left(\frac{E}{Q}, \theta\right) \times \left( 1 - \Theta\left(\frac{E}{Q} - \epsilon\right) \Theta(\theta - \delta) \right) - V\left(\frac{E}{Q}, \theta\right) \right) \right)$$

- For small E or small  $\theta$  this is just like total cross section full cancellation of divergences between real and virtual terms.
- ▶ For large E and large  $\theta$  a *finite piece* of real emission cross section is *cut* out.
- ightharpoonup Overall final contribution dominated by scales  $\sim Q$  cross section is perturbatively calculation.

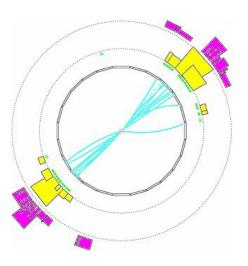
# The *original* (finite) jet definition

An event has 2 jets if at least a fraction  $(1 - \epsilon)$  of event energy is contained in two cones of half-angle  $\delta$ .



$$\sigma_{2-jet} = \sigma_{q\bar{q}} \left( 1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \frac{d\theta}{\sin\theta} \left( R\left(\frac{E}{Q}, \theta\right) \times \left( 1 - \Theta\left(\frac{E}{Q} - \epsilon\right) \Theta(\theta - \delta) \right) - V\left(\frac{E}{Q}, \theta\right) \right) \right)$$

- For small E or small  $\theta$  this is just like total cross section full cancellation of divergences between real and virtual terms.
- ▶ For large E and large  $\theta$  a *finite piece* of real emission cross section is *cut* out.
- ightharpoonup Overall final contribution dominated by scales  $\sim Q$  cross section is perturbatively calculation.



### Near 'perfect' 2-jet event

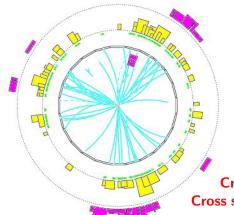
2 well-collimated jets of particles.

Nearly all energy contained in two cones.

Cross section for this to occur is

$$\sigma_{2-\text{jet}} = \sigma_{q\bar{q}}(1 - c_1\alpha_s + c_2\alpha_s^2 + \ldots)$$

where  $c_1, c_2$  all  $\sim 1$ .



# How many jets?

- Most of energy contained in 3 (fairly) collimated cones
- Cross section for this to happen is

$$\sigma_{3-\text{jet}} = \sigma_{q\bar{q}}(c_1'\alpha_s + c_2'\alpha_s^2 + \ldots)$$

where the coefficients are all  $\mathcal{O}(1)$ 

Cross section for extra gluon diverges Cross section for extra jet is small,  $\mathcal{O}\left(\alpha_{s}\right)$ 

NB: Sterman-Weinberg procedure gets complex for multi-jet events. 4th lecture will discuss modern approaches for defining jets.

- ▶ QCD at colliders mixes weak and strong coupling
- ▶ No calculation technique is rigorous over that whole domain
- Gluon emission repaints a quark's colour
- ► That implies that gluons carry colour too
- Quarks emit gluons, which emit other gluons: this gives characteristic "shower" structure of QCD events, and is the basis of *Monte Carlo* simulations
- To use perturbation theory one must measure quantities that are insensitive to the (divergent) soft & collinear splittings, like jets.