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Yesterday: 

➤ QCD Lagrangian 

➤ Running coupling 

➤ Soft gluon emission & its divergences 

Today 

➤ Real–virtual cancellation 

➤ Factorisation 

➤ Parton Distribution Functions (PDFs) 

➤ Total cross sections & their perturbative series
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GLUON EMISSION FROM A QUARK
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Consider an emission with 
➤ energy E ≪ √s (“soft”) 
➤ angle θ ≪ 1  

(“collinear” wrt quark) 
Examine correction to 
some hard process with 
cross section σ0 
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This has a divergence when E→0 or θ→0 
[in some sense because of quark propagator going on-shell]

3



How come we get finite cross sections?
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Divergences are present 
in both real and virtual 
diagrams. 

If you are “inclusive”, 
i.e. your measurement 
doesn’t care whether a 
soft/collinear gluon has 
been emitted then the 
real and virtual 
divergences cancel.
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Beyond inclusive cross sections: infrared and collinear (IRC) safety
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QCD lecture 1 (p. 38)

e+e� ! qq̄

Infrared and Collinear safety

Infrared and Collinear Safety (definition)

For an observable’s distribution to be calculable in [fixed-order]
perturbation theory, the observable should be infra-red safe, i.e.
insensitive to the emission of soft or collinear gluons. In particular if ~pi
is any momentum occurring in its definition, it must be invariant under
the branching

~pi ! ~pj + ~pk

whenever ~pj and ~pk are parallel [collinear] or one of them is small
[infrared]. [QCD and Collider Physics (Ellis, Stirling & Webber)]

Examples

I Multiplicity of gluons is not IRC safe [modified by soft/collinear splitting]

I Energy of hardest particle is not IRC safe [modified by collinear splitting]

I Energy flow into a cone is IRC safe [soft emissions don’t change energy flow

collinear emissions don’t change its direction]

Examples 
Multiplicity of gluons is not IRC safe  

[modified by soft/collinear splitting]  
Energy of hardest particle is not IRC safe 

[modified by collinear splitting] 
Energy flow into a cone is IRC safe 

[soft emissions don’t change energy flow, 
collinear emissions don’t change its direction]



A proton-proton collision: INITIAL STATE
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A proton-proton collision: FINAL STATE
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A proton-proton collision: FILLING IN THE PICTURE
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A proton-proton collision: SIMPLIFYING IN THE PICTURE
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THE MASTER EQUATION — FACTORISATION
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8 1. Quantum chromodynamics

The PDFs’ resulting dependence on µF is described by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations [43], which to leading order (LO) read∗

µ2F
∂fi/p

(

x, µ2F
)

∂µ2F
=
∑

j

αs
(

µ2F
)

2π

∫ 1

x

dz

z
P
(1)
i←j (z) fj/p

(x

z
, µ2F

)

, (1.14)

with, for example, P
(1)
q←g(z) = TR(z

2+(1−z)2). The other LO splitting functions are listed
in Sec. 16 of this Review, while results up to NLO, α2s, and NNLO, α3s , are given in Refs.
44 and 45 respectively. Beyond LO, the coefficient functions are also µF dependent, for

example C
(1)
2,i (x,Q

2, µ2R, µ
2
F ) = C

(1)
2,i (x,Q

2, µ2R, Q
2)− ln

(µ2F
Q2

)
∑

j

∫ 1
x

dz
z C

(0)
2,j (

x
z )P

(1)
j←i(z).

As with the renormalization scale, the choice of factorization scale is arbitrary, but
if one has an infinite number of terms in the perturbative series, the µF -dependences
of the coefficient functions and PDFs will compensate each other fully. Given only N
terms of the series, a residual O(αN+1

s ) uncertainty is associated with the ambiguity in
the choice of µF . As with µR, varying µF provides an input in estimating uncertainties
on predictions. In inclusive DIS predictions, the default choice for the scales is usually
µR = µF = Q.

As is the case for the running coupling, in DGLAP evolution one can introduce flavor
thresholds near the heavy quark masses: below a given heavy quark’s mass, that quark
is not considered to be part of the proton’s structure, while above it is considered to
be part of the proton’s structure and evolves with massless DGLAP splitting kernels.
With appropriate parton distribution matching terms at threshold, such a variable flavor
number scheme (VFNS), when used with massless coefficient functions, gives the full
heavy-quark contributions at high Q2 scales. For scales near the threshold, it is instead
necessary to appropriately adapt the standard massive coefficient functions to account for
the heavy-quark contribution already included in the PDFs [46,47,48].

Hadron-hadron collisions. The extension to processes with two initial-state hadrons
can be illustrated with the example of the total (inclusive) cross section for W boson
production in collisions of hadrons h1 and h2, which can be written as

σ (h1h2 → W +X) =
∞
∑

n=0

αns

(

µ2R

)

∑

i,j

∫

dx1dx2 fi/h1

(

x1, µ
2
F

)

fj/h2

(

x2, µ
2
F

)

× σ̂
(n)
ij→W+X

(

x1x2s, µ
2
R, µ

2
F

)

+O

(

Λ2

M4
W

)

, (1.15)

∗ LO is generally taken to mean the lowest order at which a quantity is non-zero. This
definition is nearly always unambiguous, the one major exception being for the case of the
hadronic branching ratio of virtual photons, Z, τ , etc., for which two conventions exist:
LO can either mean the lowest order that contributes to the hadronic branching fraction,
i.e. the term “1” in Eq. (1.7); or it can mean the lowest order at which the hadronic
branching ratio becomes sensitive to the coupling, n = 1 in Eq. (1.8), as is relevant when
extracting the value of the coupling from a measurement of the branching ratio. Because
of this ambiguity, we avoid use of the term “LO” in that context.

May 5, 2016 21:57

ZH

ZH+X



THE MASTER EQUATION — FACTORISATION

11

+
µ

µ−
b
_

σ
u

Z

_
u

H
b

proton proton

8 1. Quantum chromodynamics

The PDFs’ resulting dependence on µF is described by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations [43], which to leading order (LO) read∗

µ2F
∂fi/p

(

x, µ2F
)

∂µ2F
=
∑

j

αs
(

µ2F
)

2π

∫ 1

x

dz

z
P
(1)
i←j (z) fj/p

(x

z
, µ2F

)

, (1.14)

with, for example, P
(1)
q←g(z) = TR(z

2+(1−z)2). The other LO splitting functions are listed
in Sec. 16 of this Review, while results up to NLO, α2s, and NNLO, α3s , are given in Refs.
44 and 45 respectively. Beyond LO, the coefficient functions are also µF dependent, for

example C
(1)
2,i (x,Q

2, µ2R, µ
2
F ) = C

(1)
2,i (x,Q

2, µ2R, Q
2)− ln

(µ2F
Q2

)
∑

j

∫ 1
x

dz
z C

(0)
2,j (

x
z )P

(1)
j←i(z).

As with the renormalization scale, the choice of factorization scale is arbitrary, but
if one has an infinite number of terms in the perturbative series, the µF -dependences
of the coefficient functions and PDFs will compensate each other fully. Given only N
terms of the series, a residual O(αN+1

s ) uncertainty is associated with the ambiguity in
the choice of µF . As with µR, varying µF provides an input in estimating uncertainties
on predictions. In inclusive DIS predictions, the default choice for the scales is usually
µR = µF = Q.

As is the case for the running coupling, in DGLAP evolution one can introduce flavor
thresholds near the heavy quark masses: below a given heavy quark’s mass, that quark
is not considered to be part of the proton’s structure, while above it is considered to
be part of the proton’s structure and evolves with massless DGLAP splitting kernels.
With appropriate parton distribution matching terms at threshold, such a variable flavor
number scheme (VFNS), when used with massless coefficient functions, gives the full
heavy-quark contributions at high Q2 scales. For scales near the threshold, it is instead
necessary to appropriately adapt the standard massive coefficient functions to account for
the heavy-quark contribution already included in the PDFs [46,47,48].

Hadron-hadron collisions. The extension to processes with two initial-state hadrons
can be illustrated with the example of the total (inclusive) cross section for W boson
production in collisions of hadrons h1 and h2, which can be written as

σ (h1h2 → W +X) =
∞
∑

n=0

αns

(

µ2R

)

∑

i,j

∫

dx1dx2 fi/h1

(

x1, µ
2
F

)

fj/h2

(

x2, µ
2
F

)

× σ̂
(n)
ij→W+X

(

x1x2s, µ
2
R, µ

2
F

)

+O

(

Λ2

M4
W

)

, (1.15)

∗ LO is generally taken to mean the lowest order at which a quantity is non-zero. This
definition is nearly always unambiguous, the one major exception being for the case of the
hadronic branching ratio of virtual photons, Z, τ , etc., for which two conventions exist:
LO can either mean the lowest order that contributes to the hadronic branching fraction,
i.e. the term “1” in Eq. (1.7); or it can mean the lowest order at which the hadronic
branching ratio becomes sensitive to the coupling, n = 1 in Eq. (1.8), as is relevant when
extracting the value of the coupling from a measurement of the branching ratio. Because
of this ambiguity, we avoid use of the term “LO” in that context.

May 5, 2016 21:57

Parton distribution function 
(PDF): e.g. number of up anti-
quarks carrying fraction x2 of 

proton’s momentum 

ZH

ZH+X



THE MASTER EQUATION — FACTORISATION

12

+
µ

µ−
b
_

σ
u

Z

_
u

H
b

proton proton

8 1. Quantum chromodynamics

The PDFs’ resulting dependence on µF is described by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations [43], which to leading order (LO) read∗

µ2F
∂fi/p

(

x, µ2F
)

∂µ2F
=
∑

j

αs
(

µ2F
)

2π

∫ 1

x

dz

z
P
(1)
i←j (z) fj/p

(x

z
, µ2F

)

, (1.14)

with, for example, P
(1)
q←g(z) = TR(z

2+(1−z)2). The other LO splitting functions are listed
in Sec. 16 of this Review, while results up to NLO, α2s, and NNLO, α3s , are given in Refs.
44 and 45 respectively. Beyond LO, the coefficient functions are also µF dependent, for

example C
(1)
2,i (x,Q

2, µ2R, µ
2
F ) = C

(1)
2,i (x,Q

2, µ2R, Q
2)− ln

(µ2F
Q2

)
∑

j

∫ 1
x

dz
z C

(0)
2,j (

x
z )P

(1)
j←i(z).

As with the renormalization scale, the choice of factorization scale is arbitrary, but
if one has an infinite number of terms in the perturbative series, the µF -dependences
of the coefficient functions and PDFs will compensate each other fully. Given only N
terms of the series, a residual O(αN+1

s ) uncertainty is associated with the ambiguity in
the choice of µF . As with µR, varying µF provides an input in estimating uncertainties
on predictions. In inclusive DIS predictions, the default choice for the scales is usually
µR = µF = Q.

As is the case for the running coupling, in DGLAP evolution one can introduce flavor
thresholds near the heavy quark masses: below a given heavy quark’s mass, that quark
is not considered to be part of the proton’s structure, while above it is considered to
be part of the proton’s structure and evolves with massless DGLAP splitting kernels.
With appropriate parton distribution matching terms at threshold, such a variable flavor
number scheme (VFNS), when used with massless coefficient functions, gives the full
heavy-quark contributions at high Q2 scales. For scales near the threshold, it is instead
necessary to appropriately adapt the standard massive coefficient functions to account for
the heavy-quark contribution already included in the PDFs [46,47,48].

Hadron-hadron collisions. The extension to processes with two initial-state hadrons
can be illustrated with the example of the total (inclusive) cross section for W boson
production in collisions of hadrons h1 and h2, which can be written as

σ (h1h2 → W +X) =
∞
∑

n=0

αns

(

µ2R

)

∑

i,j

∫

dx1dx2 fi/h1

(

x1, µ
2
F

)

fj/h2

(

x2, µ
2
F

)

× σ̂
(n)
ij→W+X

(

x1x2s, µ
2
R, µ

2
F

)

+O

(

Λ2

M4
W

)

, (1.15)

∗ LO is generally taken to mean the lowest order at which a quantity is non-zero. This
definition is nearly always unambiguous, the one major exception being for the case of the
hadronic branching ratio of virtual photons, Z, τ , etc., for which two conventions exist:
LO can either mean the lowest order that contributes to the hadronic branching fraction,
i.e. the term “1” in Eq. (1.7); or it can mean the lowest order at which the hadronic
branching ratio becomes sensitive to the coupling, n = 1 in Eq. (1.8), as is relevant when
extracting the value of the coupling from a measurement of the branching ratio. Because
of this ambiguity, we avoid use of the term “LO” in that context.
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8 1. Quantum chromodynamics

The PDFs’ resulting dependence on µF is described by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations [43], which to leading order (LO) read∗

µ2F
∂fi/p

(

x, µ2F
)

∂µ2F
=
∑

j

αs
(

µ2F
)

2π

∫ 1

x

dz

z
P
(1)
i←j (z) fj/p

(x

z
, µ2F

)

, (1.14)

with, for example, P
(1)
q←g(z) = TR(z

2+(1−z)2). The other LO splitting functions are listed
in Sec. 16 of this Review, while results up to NLO, α2s, and NNLO, α3s , are given in Refs.
44 and 45 respectively. Beyond LO, the coefficient functions are also µF dependent, for

example C
(1)
2,i (x,Q

2, µ2R, µ
2
F ) = C

(1)
2,i (x,Q

2, µ2R, Q
2)− ln

(µ2F
Q2

)
∑

j

∫ 1
x

dz
z C

(0)
2,j (

x
z )P

(1)
j←i(z).

As with the renormalization scale, the choice of factorization scale is arbitrary, but
if one has an infinite number of terms in the perturbative series, the µF -dependences
of the coefficient functions and PDFs will compensate each other fully. Given only N
terms of the series, a residual O(αN+1

s ) uncertainty is associated with the ambiguity in
the choice of µF . As with µR, varying µF provides an input in estimating uncertainties
on predictions. In inclusive DIS predictions, the default choice for the scales is usually
µR = µF = Q.

As is the case for the running coupling, in DGLAP evolution one can introduce flavor
thresholds near the heavy quark masses: below a given heavy quark’s mass, that quark
is not considered to be part of the proton’s structure, while above it is considered to
be part of the proton’s structure and evolves with massless DGLAP splitting kernels.
With appropriate parton distribution matching terms at threshold, such a variable flavor
number scheme (VFNS), when used with massless coefficient functions, gives the full
heavy-quark contributions at high Q2 scales. For scales near the threshold, it is instead
necessary to appropriately adapt the standard massive coefficient functions to account for
the heavy-quark contribution already included in the PDFs [46,47,48].

Hadron-hadron collisions. The extension to processes with two initial-state hadrons
can be illustrated with the example of the total (inclusive) cross section for W boson
production in collisions of hadrons h1 and h2, which can be written as

σ (h1h2 → W +X) =
∞
∑

n=0

αns

(

µ2R

)

∑

i,j

∫

dx1dx2 fi/h1

(

x1, µ
2
F

)

fj/h2

(

x2, µ
2
F

)

× σ̂
(n)
ij→W+X

(

x1x2s, µ
2
R, µ

2
F

)

+O

(

Λ2

M4
W

)

, (1.15)

∗ LO is generally taken to mean the lowest order at which a quantity is non-zero. This
definition is nearly always unambiguous, the one major exception being for the case of the
hadronic branching ratio of virtual photons, Z, τ , etc., for which two conventions exist:
LO can either mean the lowest order that contributes to the hadronic branching fraction,
i.e. the term “1” in Eq. (1.7); or it can mean the lowest order at which the hadronic
branching ratio becomes sensitive to the coupling, n = 1 in Eq. (1.8), as is relevant when
extracting the value of the coupling from a measurement of the branching ratio. Because
of this ambiguity, we avoid use of the term “LO” in that context.
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8 1. Quantum chromodynamics

The PDFs’ resulting dependence on µF is described by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations [43], which to leading order (LO) read∗

µ2F
∂fi/p

(

x, µ2F
)

∂µ2F
=
∑

j

αs
(

µ2F
)

2π

∫ 1

x

dz

z
P
(1)
i←j (z) fj/p

(x

z
, µ2F

)

, (1.14)

with, for example, P
(1)
q←g(z) = TR(z

2+(1−z)2). The other LO splitting functions are listed
in Sec. 16 of this Review, while results up to NLO, α2s, and NNLO, α3s , are given in Refs.
44 and 45 respectively. Beyond LO, the coefficient functions are also µF dependent, for

example C
(1)
2,i (x,Q

2, µ2R, µ
2
F ) = C

(1)
2,i (x,Q

2, µ2R, Q
2)− ln

(µ2F
Q2

)
∑

j

∫ 1
x

dz
z C

(0)
2,j (

x
z )P

(1)
j←i(z).

As with the renormalization scale, the choice of factorization scale is arbitrary, but
if one has an infinite number of terms in the perturbative series, the µF -dependences
of the coefficient functions and PDFs will compensate each other fully. Given only N
terms of the series, a residual O(αN+1

s ) uncertainty is associated with the ambiguity in
the choice of µF . As with µR, varying µF provides an input in estimating uncertainties
on predictions. In inclusive DIS predictions, the default choice for the scales is usually
µR = µF = Q.

As is the case for the running coupling, in DGLAP evolution one can introduce flavor
thresholds near the heavy quark masses: below a given heavy quark’s mass, that quark
is not considered to be part of the proton’s structure, while above it is considered to
be part of the proton’s structure and evolves with massless DGLAP splitting kernels.
With appropriate parton distribution matching terms at threshold, such a variable flavor
number scheme (VFNS), when used with massless coefficient functions, gives the full
heavy-quark contributions at high Q2 scales. For scales near the threshold, it is instead
necessary to appropriately adapt the standard massive coefficient functions to account for
the heavy-quark contribution already included in the PDFs [46,47,48].

Hadron-hadron collisions. The extension to processes with two initial-state hadrons
can be illustrated with the example of the total (inclusive) cross section for W boson
production in collisions of hadrons h1 and h2, which can be written as

σ (h1h2 → W +X) =
∞
∑

n=0

αns

(

µ2R

)

∑

i,j

∫

dx1dx2 fi/h1

(

x1, µ
2
F

)

fj/h2

(

x2, µ
2
F

)

× σ̂
(n)
ij→W+X

(

x1x2s, µ
2
R, µ

2
F

)

+O

(

Λ2

M4
W

)

, (1.15)

∗ LO is generally taken to mean the lowest order at which a quantity is non-zero. This
definition is nearly always unambiguous, the one major exception being for the case of the
hadronic branching ratio of virtual photons, Z, τ , etc., for which two conventions exist:
LO can either mean the lowest order that contributes to the hadronic branching fraction,
i.e. the term “1” in Eq. (1.7); or it can mean the lowest order at which the hadronic
branching ratio becomes sensitive to the coupling, n = 1 in Eq. (1.8), as is relevant when
extracting the value of the coupling from a measurement of the branching ratio. Because
of this ambiguity, we avoid use of the term “LO” in that context.
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8 1. Quantum chromodynamics

The PDFs’ resulting dependence on µF is described by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations [43], which to leading order (LO) read∗

µ2F
∂fi/p

(

x, µ2F
)

∂µ2F
=
∑

j

αs
(

µ2F
)

2π

∫ 1

x

dz

z
P
(1)
i←j (z) fj/p

(x

z
, µ2F

)

, (1.14)

with, for example, P
(1)
q←g(z) = TR(z

2+(1−z)2). The other LO splitting functions are listed
in Sec. 16 of this Review, while results up to NLO, α2s, and NNLO, α3s , are given in Refs.
44 and 45 respectively. Beyond LO, the coefficient functions are also µF dependent, for

example C
(1)
2,i (x,Q

2, µ2R, µ
2
F ) = C

(1)
2,i (x,Q

2, µ2R, Q
2)− ln

(µ2F
Q2

)
∑

j

∫ 1
x

dz
z C

(0)
2,j (

x
z )P

(1)
j←i(z).

As with the renormalization scale, the choice of factorization scale is arbitrary, but
if one has an infinite number of terms in the perturbative series, the µF -dependences
of the coefficient functions and PDFs will compensate each other fully. Given only N
terms of the series, a residual O(αN+1

s ) uncertainty is associated with the ambiguity in
the choice of µF . As with µR, varying µF provides an input in estimating uncertainties
on predictions. In inclusive DIS predictions, the default choice for the scales is usually
µR = µF = Q.

As is the case for the running coupling, in DGLAP evolution one can introduce flavor
thresholds near the heavy quark masses: below a given heavy quark’s mass, that quark
is not considered to be part of the proton’s structure, while above it is considered to
be part of the proton’s structure and evolves with massless DGLAP splitting kernels.
With appropriate parton distribution matching terms at threshold, such a variable flavor
number scheme (VFNS), when used with massless coefficient functions, gives the full
heavy-quark contributions at high Q2 scales. For scales near the threshold, it is instead
necessary to appropriately adapt the standard massive coefficient functions to account for
the heavy-quark contribution already included in the PDFs [46,47,48].

Hadron-hadron collisions. The extension to processes with two initial-state hadrons
can be illustrated with the example of the total (inclusive) cross section for W boson
production in collisions of hadrons h1 and h2, which can be written as

σ (h1h2 → W +X) =
∞
∑

n=0

αns

(

µ2R

)

∑

i,j

∫

dx1dx2 fi/h1

(

x1, µ
2
F

)

fj/h2

(

x2, µ
2
F

)

× σ̂
(n)
ij→W+X

(

x1x2s, µ
2
R, µ

2
F

)

+O

(

Λ2

M4
W

)

, (1.15)

∗ LO is generally taken to mean the lowest order at which a quantity is non-zero. This
definition is nearly always unambiguous, the one major exception being for the case of the
hadronic branching ratio of virtual photons, Z, τ , etc., for which two conventions exist:
LO can either mean the lowest order that contributes to the hadronic branching fraction,
i.e. the term “1” in Eq. (1.7); or it can mean the lowest order at which the hadronic
branching ratio becomes sensitive to the coupling, n = 1 in Eq. (1.8), as is relevant when
extracting the value of the coupling from a measurement of the branching ratio. Because
of this ambiguity, we avoid use of the term “LO” in that context.
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DEEP INELASTIC SCATTERING

17

Deep Inelastic Scattering: kinematics[PDFs]

[DIS kinematics]

Hadron-hadron is complex because of two incoming partons — so start
with simpler Deep Inelastic Scattering (DIS).

e+

xp

k

p

"(1−y)k"

q  (Q 2 = −q2)

proton

Kinematic relations:

x =
Q

2

2p.q
; y =

p.q

p.k
; Q

2 = xys

p
s = c.o.m. energy

I Q
2 = photon virtuality $ transverse

resolution at which it probes proton
structure

I x = longitudinal momentum fraction of
struck parton in proton

I y = momentum fraction lost by electron
(in proton rest frame)

Gavin Salam (CERN) QCD basics 3 3 / 32



DEEP INELASTIC SCATTERING

18

Deep Inelastic scattering (DIS): example[PDFs]

[DIS kinematics]

Q2 = 25030 GeV 2
; y = 0:56;

e+

x=0.50

e+

Q2

x

proton

e+

jet

proton

jet

Gavin Salam (CERN) QCD basics 3 4 / 32



DEEP INELASTIC SCATTERING
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E.g.: extracting u & d distributions[PDFs]

[DIS X-sections]

Write DIS X-section to zeroth order in ↵s (‘quark parton model’):

d
2�em

dxdQ2
'

4⇡↵2

xQ4

✓
1 + (1 � y)2

2
F
em
2 + O (↵s)

◆

/ F
em
2 [structure function]

F2 = x(e2uu(x) + e
2

dd(x)) = x

✓
4

9
u(x) +

1

9
d(x)

◆

[u(x), d(x): parton distribution functions (PDF)]

NB:

I use perturbative language for interactions of up and down quarks

I but distributions themselves have a non-perturbative origin.

F2 gives us combination of u and d .
How can we extract them separately?

Gavin Salam (CERN) QCD basics 3 5 / 32



Higher order corrections from initial state splittings?
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QCD lecture 2 (p. 14)

Initial-state splitting

1st order analysis
Initial-state splitting

For initial state splitting, hard process occurs after splitting, and
momentum entering hard process is modified: p → zp.

σg+h(p) ≃ σh(zp)
αsCF

π

dz

1− z

dk2
t

k2
t

zp
p

(1−z)p

σh

For virtual terms, momentum entering hard process is unchanged

σV+h(p) ≃ −σh(p)
αsCF

π

dz

1− z

dk2
t

k2
t

p p
σh

Total cross section gets contribution with two different hard X-sections

σg+h + σV+h ≃
αsCF

π

∫
dk2

t

k2
t

dz

1− z
[σh(zp)− σh(p)]

NB: We assume σh involves momentum transfers ∼ Q ≫ kt , so ignore extra

transverse momentum in σh

not in handout



Higher order corrections from initial state splittings?
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QCD lecture 2 (p. 15)

Initial-state splitting

1st order analysis
Initial-state collinear divergence

σg+h + σV+h ≃
αsCF

π

∫ Q2

0

dk2
t

k2
t

︸ ︷︷ ︸

infinite

∫
dz

1− z
[σh(zp)− σh(p)]

︸ ︷︷ ︸

finite

! In soft limit (z → 1), σh(zp)− σh(p)→ 0: soft divergence cancels.

! For 1− z ̸= 0, σh(zp)− σh(p) ̸= 0, so z integral is non-zero but finite.

BUT: kt integral is just a factor, and is infinite
This is a collinear (kt → 0) divergence.

Cross section with incoming parton is not collinear safe!

This always happens with coloured initial-state particles
So how do we do QCD calculations in such cases?

not in handout



Parton distributions and DGLAP

➤ Write up-quark distribution in proton as 
 

➤ Perturbative collinear (IR) divergence absorbed into the parton distribution 
(NB divergence not physical: non-perturbative physics provides a physical cutoff) 

➤ μF is the factorisation scale — a bit like the renormalisation scale (μR) for the 
running coupling. 

➤ As you vary the factorisation scale, the parton distributions evolve with a 
renormalisation-group type equation 

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations
22

Summary so far[Initial-state splitting]

[1st order analysis]

I Collinear divergence for incoming partons not cancelled by virtuals.
Real and virtual have di↵erent longitudinal momenta

I Situation analogous to renormalization: need to regularize (but in IR
instead of UV).

Technically, often done with dimensional regularization

I Physical sense of regularization is to separate (factorize) proton
non-perturbative dynamics from perturbative hard cross section.

Choice of factorization scale, µ2, is arbitrary between 1 GeV2 and Q
2

I In analogy with running coupling, we can vary factorization scale and get
a renormalization group equation for parton distribution functions.

Dokshizer Gribov Lipatov Altarelli Parisi equations (DGLAP)

Q
2

increase

Q
2

increase

u
u

u

g

g
g

du

u
d d

u
g

g
u u

Gavin Salam (CERN) QCD basics 3 13 / 32
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DGLAP EQUATION

23

DGLAP equation (q  q)[Initial-state splitting]

[DGLAP]

Change convention: (a) now fix outgoing longitudinal momentum x ; (b)
take derivative wrt factorization scale µ2

p

x

x
p

x

x/z x(1−z)/z

(1+δ)µ2(1+δ)µ2

µ 2µ 2

+

dq(x , µ2)

d lnµ2
=

↵s

2⇡

Z
1

x
dz pqq(z)

q(x/z , µ2)

z
�

↵s

2⇡

Z
1

0

dz pqq(z) q(x , µ2)

pqq is real q  q splitting kernel: pqq(z) = CF
1 + z

2

1� z

Until now we approximated it in soft (z ! 1) limit, pqq '
2CF
1�z

Gavin Salam (CERN) QCD basics 3 14 / 32



DGLAP EQUATION
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DGLAP rewritten[Initial-state splitting]

[DGLAP]

Awkward to write real and virtual parts separately. Use more compact
notation:

dq(x , µ2)

d lnµ2
=

↵s

2⇡

Z
1

x
dz Pqq(z)

q(x/z , µ2)

z| {z }
Pqq⌦q

, Pqq = CF

✓
1 + z

2

1 � z

◆

+

This involves the plus prescription:

Z
1

0

dz [g(z)]+ f (z) =

Z
1

0

dz g(z) f (z) �

Z
1

0

dz g(z) f (1)

z = 1 divergences of g(z) cancelled if f (z) su�ciently smooth at z = 1

Gavin Salam (CERN) QCD basics 3 15 / 32



DGLAP EQUATION
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DGLAP flavour structure[Initial-state splitting]

[DGLAP]

Proton contains both quarks and gluons — so DGLAP is a matrix in flavour

space:
d

d lnQ2

✓
q

g

◆
=

✓
Pq q Pq g

Pg q Pg g

◆
⌦

✓
q

g

◆

[In general, matrix spanning all flavors, anti-flavors, Pqq0 = 0 (LO), Pq̄g = Pqg ]

Splitting functions are:

Pqg (z) = TR

⇥
z
2 + (1 � z)2

⇤
, Pgq(z) = CF


1 + (1 � z)2

z

�
,

Pgg (z) = 2CA


z

(1 � z)+
+

1 � z

z
+ z(1 � z)

�
+ �(1 � z)

(11CA � 4nf TR)

6
.

Have various symmetries / significant properties, e.g.

I Pqg , Pgg : symmetric z $ 1 � z (except virtuals)

I Pqq, Pgg : diverge for z ! 1 soft gluon emission

I Pgg , Pgq: diverge for z ! 0 Implies PDFs grow for x ! 0

2015 EPS HEP prize to Bjorken, Altarelli, Dokshitzer, Lipatov & Parisi
Gavin Salam (CERN) QCD basics 3 16 / 32



NLO DGLAP
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Higher-order calculations[Initial-state splitting]

[DGLAP]

P (1)

ps (x) = 4 CF nf

✓
20

9

1

x
� 2 + 6x � 4H0 + x2


8

3
H0 �

56

9

�
+ (1 + x)


5H0 � 2H0,0

�◆

P (1)

qg (x) = 4 CAnf

✓
20

9

1

x
� 2 + 25x � 2pqg(�x)H�1,0 � 2pqg(x)H1,1 + x2


44

3
H0 �

218

9

�

+4(1 � x)


H0,0 � 2H0 + xH1

�
� 4⇣2x � 6H0,0 + 9H0

◆
+ 4 CF nf

✓
2pqg(x)


H1,0 + H1,1 + H2

�⇣2

�
+ 4x2


H0 + H0,0 +

5

2

�
+ 2(1 � x)


H0 + H0,0 � 2xH1 +

29

4

�
�

15

2
� H0,0 �

1

2
H0

◆

P (1)

gq (x) = 4 CACF

✓
1

x
+ 2pgq(x)


H1,0 + H1,1 + H2 �

11

6
H1

�
� x2


8

3
H0 �

44

9

�
+ 4⇣2 � 2

�7H0 + 2H0,0 � 2H1x + (1 + x)


2H0,0 � 5H0 +

37

9

�
� 2pgq(�x)H�1,0

◆
� 4 CF nf

✓
2

3
x

�pgq(x)


2

3
H1 �

10

9

�◆
+ 4 CF

2

✓
pgq(x)


3H1 � 2H1,1

�
+ (1 + x)


H0,0 �

7

2
+

7

2
H0

�
� 3H0,0

+1 �
3

2
H0 + 2H1x

◆

P (1)

gg (x) = 4 CAnf

✓
1 � x �

10

9
pgg(x) �

13

9

✓
1

x
� x2

◆
�

2

3
(1 + x)H0 �

2

3
�(1 � x)

◆
+ 4 CA

2

✓
27

+(1 + x)


11

3
H0 + 8H0,0 �

27

2

�
+ 2pgg(�x)


H0,0 � 2H�1,0 � ⇣2

�
�

67

9

✓
1

x
� x2

◆
� 12H0

�
44

3
x2H0 + 2pgg(x)


67

18
� ⇣2 + H0,0 + 2H1,0 + 2H2

�
+ �(1 � x)


8

3
+ 3⇣3

�◆
+ 4 CF nf

✓
2H0

+
2

3

1

x
+

10

3
x2 � 12 + (1 + x)


4 � 5H0 � 2H0,0

�
�

1

2
�(1 � x)

◆
.

NLO:

Pab =
↵s

2⇡
P
(0)+

↵2
s

16⇡2
P
(1)

Curci, Furmanski

& Petronzio ’80

Gavin Salam (CERN) QCD basics 3 17 / 32



NNLO DGLAP
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NNLO splitting functions[Initial-state splitting]

[DGLAP]

Divergences for x 1 are understood in the sense of -distributions.

The third-order pure-singlet contribution to the quark-quark splitting function (2.4), corre-

sponding to the anomalous dimension (3.10), is given by

P
2

ps x 16CACFnf

4

3

1

x
x2 13

3
H 1 0

14

9
H0

1

2
H 1ζ2 H 1 1 0 2H 1 0 0

H 1 2
2

3

1

x
x2 16

3
ζ2 H2 1 9ζ3

9

4
H1 0

6761

216

571

72
H1

10

3
H2 H1ζ2

1

6
H1 1

3H1 0 0 2H1 1 0 2H1 1 1 1 x
182

9
H1

158

3

397

36
H0 0

13

2
H 2 0 3H0 0 0 0

13

6
H1 0 3xH1 0 H 3 0 H 2ζ2 2H 2 1 0 3H 2 0 0

1

2
H0 0ζ2

1

2
H1ζ2

9

4
H1 0 0

3

4
H1 1 H1 1 0 H1 1 1 1 x

7

12
H0ζ2

31

6
ζ3

91

18
H2

71

12
H3

113

18
ζ2

826

27
H0

5

2
H2 0

16

3
H 1 0 6xH 1 0

31

6
H0 0 0

17

6
H2 1

117

20
ζ2

2 9H0ζ3
5

2
H 1ζ2 2H2 1 0

1

2
H 1 0 0 2H 1 2 H2ζ2

7

2
H2 0 0 H 1 1 0 2H2 1 1 H3 1

1

2
H4 5H 2 0 H2 1

H0 0 0 0
1

2
ζ2

2 4H 3 0 4H0ζ3
32

9
H0 0

29

12
H0

235

12
ζ2

511

12

97

12
H1

33

4
H2 H3

11

2
H0ζ2

11

2
ζ3

3

2
H2 0 10H0 0 0

2

3
x2 83

4
H0 0

243

4
H0 10ζ2

511

8

97

8
H1

4

3
H2

4ζ3 H0ζ2 H3 H2 0 6H 2 0 16CFnf
2 2

27
H0 2 H2 ζ2

2

3
x2 H2 ζ2 3

19

6
H0

2

9

1

x
x2 H1 1

5

3
H1

2

3
1 x

1

6
H1 1

7

6
H1 xH1

35

27
H0

185

54
1

3
1 x

4

3
H2

4

3
ζ2 ζ3 H2 1 2H3 2H0ζ2

29

6
H0 0 H0 0 0 16CF

2nf

85

12
H1

25

4
H0 0 H0 0 0

583

12
H0

101

54

73

4
ζ2

73

4
H2 H3 5H2 0 H2 1 H0ζ2 x2 55

12
85

12
H1

22

3
H0 0

109

6

13

54
H0

28

9
ζ2

28

9
H2

16

3
H0ζ2

16

3
H3 4H2 0

4

3
H2 1

26

3
ζ3

22

3
H0 0 0

4

3

1

x
x2 23

12
H1 0

523

144
H1 3ζ3

55

16

1

2
H1 0 0 H1 1 H1 1 0 H1 1 1

1 x
1

2
H1 0 0

7

12
H1 1

2743

72
H0

53

12
H0 0

251

12
H1

5

4
ζ2

5

4
H2

8

3
H1 0 3xH1 0

3H0ζ2 3H3 H1 1 0 H1 1 1 1 x
1669

216

5

2
H0 0 0 4H2 1 7H2 0 10xζ3

37

10
ζ2

2

7H0ζ3 6H0 0ζ2 4H0 0 0 0 H2 0 0 2H2 1 0 2H2 1 1 4H3 0 H3 1 6H4 (4.12)

Due to Eqs. (3.11) and (3.12) the three-loop gluon-quark and quark-gluon splitting functions read

P
2

qg x 16CACFnf pqg x
39

2
H1ζ3 4H1 1 1 3H2 0 0

15

4
H1 2

9

4
H1 1 0 3H2 1 0

H0ζ3 2H2 1 1 4H2ζ2
173

12
H0ζ2

551

72
H0 0

64

3
ζ3 ζ2

2 49

4
H2

3

2
H1 0 0 0

1

3
H1 0 0

16

385

72
H1 0

31

2
H1 1

113

12
H1

49

4
H2 0

5

2
H1ζ2

79

6
H0 0 0

173

12
H3

1259

32

2833

216
H0

6H2 1 3H1 2 0 9H1 0ζ2 6H1 1ζ2 H1 1 0 0 3H1 1 1 0 4H1 1 1 1 3H1 1 2 6H1 2 1

6H1 3
49

4
ζ2 pqg x

17

2
H 1ζ3

5

2
H 1 1 0

5

2
H 1 2

9

2
H 1 0

5

2
H 2 0

3

2
H 1 0 0

2H3 1 2H4 6H 2 2 6H 2 1 0 6H 2 0 0 2H0 0ζ2 9H 2ζ2 3H 1 2 0 2H 1 2 1

6H 1 1 1 0 6H 1 1 0 0 6H 1 1 2 9H 1 0ζ2 9H 1 1ζ2 2H 1 2 0
11

2
H 1 0 0 0

6H 1 3
1

x
x2 55

12
4ζ3

23

9
H1 0

4

3
H1 1 0

1

x
x2 2

3
H1 0 0

371

108
H1

23

9
H1 1

2

3
H1 1 1 1 x 6H2 1 0 3H2 1 1

5

6
H1 1 1 7H2 0 0 2H1 2 39H0ζ3 4H2ζ2

16

3
ζ3

H1 1 0
154

3
H0ζ2

899

24
H0 0

121

10
ζ2

2 607

36
H2

5

2
H1ζ2

65

6
H1 0 0

29

12
H1 0

13

18
H1 1

1189

108
H1

67

3
H2 1 29H2 0

949

36
ζ2

67

2
H0 0 0

142

3
H3

215

32

3989

48
H0 2H 3 0

1 x H 1 0 0 10H 2ζ2 6H 2 0 0 2H0 0ζ2 9H 1 1 0 7H 1 2 9H 2 0 2H3 1

4H 2 1 0 4H4 4H3 0 4H0 0 0 0
37

2
H 1 0

5

2
1 x H 1ζ2 4H 2 0 0 2H0 0ζ2

H2ζ2 3H1 1 0 2H0 0 0 0 H 3 0 9H2 1 0
9

2
H2 1 1

11

3
H1 1 1

19

2
H2 0 0

9

2
H1 2

91

2
H0ζ3 8H 2ζ2

5

2
H 1 1 0

5

2
H 1 2

9

2
H 1 0

39

2
H 2 0

473

12
H0ζ2

1853

48
H0 0

217

12
ζ3

59

4
ζ2

2 169

18
H2

13

4
H1ζ2

2

3
H1 0 0

167

24
H1 0

191

18
H1 1

1283

108
H1

185

12
H2 1

75

4
H2 0

170

9
ζ2

85

4
H0 0 0

425

12
H3

7693

192

3659

48
H0 2x xH2 2 4H3 0 4H 2 2

16CAnf
2 1

6
pqg x H1 2 H1ζ2 H1 0 0 H1 1 0 H1 1 1

229

18
H0

4

3
H0 0

11

2
x

1

6
H2

53

18
H0

17

6
H0 0 ζ3

11

18
ζ2

139

108

1

3
pqg x H 1 0 0

53

162

1

x
x2 2

9
1 x 6H0 0 0

7

6
xH1 H0 0

7

2
xH1 1

7

9
x 1 x H 1 0

7

4
H0

19

54
H1 H0 0 0

5

9
H1 1

5

9
H 1 0

85

216
16CA

2nf pqg x 3H1 3
31

6
H1 0 0

17

2
H2 1

7

5
ζ2

2 55

12
H1 1 0

31

12
H3

31

2
H1ζ3

5

12
H2 0

63

8
H1 0

23

12
H1 2

155

6
ζ3

25

24
H2

2537

27
H0

867

8

23

2
H 1 0 0 3H4 H1 1 1

383

72
H1 1

25

2
H 2 0

3

8
ζ2

7

4
H1ζ2 3H0 0ζ2

31

12
H0ζ2

103

216
H1

5

2
H1 0 0 0

2561

72
H0 0

H1 1 1 2H2 0 0 3H1 2 0 5H1 0ζ2 3H0 0 0 H1 1ζ2 H1 1 0 0 4H1 1 1 0 2H1 1 1 1

2H1 1 2 2H1 2 0 pqg x H 1 1ζ2 2H 1 2 6H 1 1 0 H1 1 1 2H 2ζ2 H 2 0 0

727

36
H 1 0 H 1ζ2 2H 2 2

5

2
H 1ζ3 H 1 2 0 2H 1 1 0 0 2H 1 1 2

3

2
H 1 0 0 0

17

6H 1 1 1 0 2H 1 3 2H 1 2 1
1

x
x2 2

3
H2 1

32

9
ζ2 2H1 0 0

4

3
H1 1 0

10

9
H1 1

8

3
H 1 0 0

3

2
H1 0 6ζ3

161

36
H1

2351

108

2

3

1

x
x2 26

3
H 1 0

28

9
H0 2H 1 1 0

2H 1 2 H1ζ2 H 1ζ2
10

3
H2 H1 1 1 1 x 15H0 0 0 0 5H2ζ2

65

6
ζ3

11

6
H1 1 1

3

2
H4

5

2
H0 0ζ2 H1 1 0

31

6
H2 0

17

12
H1 0

551

20
ζ2

2 29

4
H1 0 0

113

4
H2

18691

72
H0

2243

108

265

6
H 1 0 0

33

2
H2 0 0 19H2 1

31

12
H1 1

23

2
H 2 0

497

36
ζ2

29

6
H1ζ2

143

12
H3

11

6
H1 1 1

19

12
H0ζ2

1223

72
H1

43

6
H0 0 0

3011

36
H0 0 1 x 8H2 1 0 4H 1 2

7H 1 1 0
35

6
H1 1 1 5H 2ζ2 11H 2 0 0

1

3
H 1 0

15

2
H 1ζ2 8H3 1 10H 2 1 0

5H2ζ2 4H2 1 1 H 3 0 36H0ζ3 5H2ζ2 2H 1 2 6H 1 1 0 6H2 1 0 3H2 1 1

11H0 0 0 0 5H3 1
25

4
H1 1 1

13

2
H 2ζ2

27

2
H 2 0 0

11

2
H 3 0

13

2
H2ζ2

17

4
H1 0 0

13H 2 1 0
17

12
H1 1 1

3

4
H4

1

4
H0 0ζ2 H1 2

11

2
H1 1 0

79

12
H2 0

67

8
H1 0

263

8
ζ2

2

119

3
ζ3

967

24
H2

305

12
H 1 0 24H0ζ3 H 1ζ2

13375

72
H0

1889

18
38H 1 0 0

21

2
H2 1

79

4
H2 0 0

217

24
H1 1

7

2
H 2 0

79

72
ζ2

4

3
H1ζ2

17

12
H1 1 1

17

12
H0ζ2

31

18
H1 3H0 0 0

145

12
H3

1553

24
H0 0 16CFnf

2 7

6
H0 0 0

11

36
H1

739

96

163

24
H0

7

24
H0 0 2H0 0 0 0

5

9
H1 1

5

9
H2

5

18
H1 0

5

9
ζ2

1

6
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Finally the Mellin inversion of Eq. (3.13) yields the NNLO gluon-gluon splitting function

P
2

gg x 16CACFnf x2 4

9
H2 3H1 0

97

12
H1

8

3
H 2 0

2

3
H0ζ2

103

27
H0

16

3
ζ2 2H3

6H 1 0 2H2 0
127

18
H0 0

511

12
pgg x 2ζ3

55

24

4

3

1

x
x2 17

24
H1 0

43

18
H0

521

144
H1

6923

432

1

2
H2 1 2H1ζ2 H0ζ2 2H1 0 0

1

12
H1 1 H1 1 0 H1 1 1

175

12
H2

6H 1 0 8H0ζ3 6H 2 0
53

6
H0ζ2

49

2
H0

185

4
ζ2

511

12

1

2
H2 0 3H1 0 4H0 0 0 0

21

67

12
H0 0

43

2
ζ3 H2 1

97

12
H1 4ζ2

2 9

2
H3 8H 3 0

33

2
H0 0 0

4

3

1

x
x2 1

2
H2 H2 0

11

3
H 1 0 H 2 0

19

6
ζ2 2ζ3 H 1ζ2 4H 1 1 0

1

2
H 1 0 0 H 1 2 1 x 9H1ζ2

12H0 0 0 0
293

108

61

6
H0ζ2

7

3
H1 0

857

36
H1 9H0ζ3 16H 2 1 0 4H 2 0 0 8H 2ζ2

13

2
H1 0 0

3

4
H1 1 H1 1 0 H1 1 1 1 x

1

6
H2 0

95

3
H 1 0

149

36
H2

3451

108
H0

7H 2 0
302

9
H0 0

19

6
H3

991

36
ζ2

163

6
ζ3

35

3
H0 0 0

17

6
H2 1

43

10
ζ2

2 13H 1ζ2

18H 1 1 0 H3 1 6H4 4H 1 2 6H0 0ζ2 8H2ζ2 7H2 0 0 2H2 1 0 2H2 1 1 4H3 0

9H 1 0 0
241

288
δ 1 x 16CAnf

2 19

54
H0

1

24
xH0

1

27
pgg x

13

54

1

x
x2 5

3
H1

1 x
11

72
H1

71

216

2

9
1 x ζ2

13

12
xH0

1

2
H0 0 H2

29

288
δ 1 x

16CA
2nf x2 ζ3

11

9
ζ2

11

9
H0 0

2

3
H3

2

3
H0ζ2

1639

108
H0 2H 2 0

1

3
pgg x

10

3
ζ2

209

36
8ζ3 2H 2 0

1

2
H0

10

3
H0 0

20

3
H1 0 H1 0 0

20

3
H2 H3

10

9
pgg x ζ2

2H 1 0
3

10
H0ζ2 H0 0

1

3

1

x
x2 H3 H0ζ2

13

3
H2

5443

108
3H1ζ2

205

36
H1

13

3
H1 0 H1 0 0

1

x
x2 151

54
H0

8

3
ζ2

1

3
H 1ζ2 ζ3 2H 1 1 0

2

3
H 1 0 0

37

9
H 1 0

2

3
H 1 2 1 x

5

6
H 2 0 H 3 0 2H0 0 0

269

36
ζ2

4097

216
3H 2ζ2

6H 2 1 0 3H 2 0 0
7

2
H1ζ2

677

72
H1 H1 0

7

4
H1 0 0 1 x

193

36
H2

11

2
H 1ζ2

39

20
ζ2

2 7

12
H3

53

9
H0 0

7

12
H0ζ2

5

2
H0 0ζ2 5ζ3 7H 1 1 0

77

6
H 1 0

9

2
H 1 0 0

2H 1 2 3H2ζ2
2

3
H2 0

3

2
H2 0 0

3

2
H4

1

9
ζ2 7H 2 0 2H2

458

27
H0 H0 0ζ2

3

2
ζ2

2 4H 3 0 x
131

12
H0 0

8

3
H0ζ2

7

2
H3 H0 0 0 0

7

6
H0 0 0

1943

216
H0 6H0ζ3

δ 1 x
233

288

1

6
ζ2

1

12
ζ2

2 5

3
ζ3 16CA

3 x2 33H 2 0 33H0ζ2
1249

18
H0 0

44H0 0 0
110

3
H3

44

3
H2 0

85

6
ζ2

6409

108
H0 pgg x

245

24

67

9
ζ2

3

10
ζ2

2 11

3
ζ3

4H 3 0 6H 2ζ2 4H 2 1 0
11

3
H 2 0 4H 2 0 0 4H 2 2

1

6
H0 7H0ζ3

67

9
H0 0

8H0 0ζ2 4H0 0 0 0 6H1ζ3 4H1 2 0 10H2 0 0 6H1 0ζ2 8H1 0 0 0 8H1 1 0 0 8H4

134

9
H1 0

11

6
H1 0 0 8H1 2 0 8H1 3

134

9
H2 4H2ζ2 8H3 1 8H2 2

11

6
H3 10H3 0

8H2 1 0 pgg x
11

2
ζ2

2 11

6
H0ζ2 4H 3 0 16H 2ζ2 12H 2 2

134

9
H 1 0 2H2ζ2

8H 2 1 0 12H 1ζ3 18H 2 0 0 8H 1 2 0 16H 1 1ζ2 24H 1 1 0 0 16H 1 1 2

22

The large-

NNLO, P(2)

ab : Moch, Vermaseren & Vogt ’04

Gavin Salam (CERN) QCD basics 3 18 / 32

Pab =
↵s

2⇡
P (0)
ab

+
⇣↵s

2⇡

⌘2
P (1)
ab

+
⇣↵s

2⇡

⌘3
P (2)
ab

<latexit sha1_base64="8VMQHq9zOAcI4Jq8fueEO7LqdWI="></latexit><latexit sha1_base64="8VMQHq9zOAcI4Jq8fueEO7LqdWI="></latexit><latexit sha1_base64="8VMQHq9zOAcI4Jq8fueEO7LqdWI="></latexit><latexit sha1_base64="8VMQHq9zOAcI4Jq8fueEO7LqdWI="></latexit>



N3LO DGLAP [in progress]

28

ar
X

iv
:1

70
7.

08
31

5v
2 

 [h
ep

-p
h]

  5
 O

ct
 2

01
7

DESY 17–106 July 2017

Nikhef 2017-034

LTH 1139

Four-Loop Non-Singlet Splitting Functions

in the Planar Limit and Beyond

S. Mocha, B. Ruijlb,c, T. Uedab, J.A.M. Vermaserenb and A. Vogtd

aII. Institute for Theoretical Physics, Hamburg University

D-22761 Hamburg, Germany

bNikhef Theory Group

Science Park 105, 1098 XG Amsterdam, The Netherlands

cLeiden Centre of Data Science, Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

dDepartment of Mathematical Sciences, University of Liverpool

Liverpool L69 3BX, United Kingdom

Abstract

We present the next-to-next-to-next-to-leading order (N3LO) contributions to the non-singlet split-

ting functions for both parton distribution and fragmentation functions in perturbative QCD. The

exact expressions are derived for the terms contributing in the limit of a large number of colours.

For the remaining contributions, approximations are provided that are sufficient for all collider-

physics applications. From their threshold limits we derive analytical and high-accuracy numerical

results, respectively, for all contributions to the four-loop cusp anomalous dimension for quarks,

including the terms proportional to quartic Casimir operators. We briefly illustrate the numerical

size of the four-loop corrections, and the remarkable renormalization-scale stability of the N3LO

results, for the evolution of the non-singlet parton distribution and the fragmentation functions.

Our results appear to provide a first point of contact of four-loop QCD calculations and the so-

called wrapping corrections to anomalous dimensions in N = 4 super Yang-Mills theory.
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DGLAP evolution (initial quarks only)
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E↵ect of (LO) DGLAP: initial quarks[Initial-state splitting]

[Example evolution]
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Take example evolution starting with
just quarks:

@lnQ2q = Pq q ⌦ q

@lnQ2g = Pg q ⌦ q

I quark is depleted at large x

I gluon grows at small x
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DGLAP evolution (initial quarks only)
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DGLAP evolution (initial quarks only)
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DGLAP evolution (initial quarks only)
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DGLAP evolution (initial quarks only)
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DGLAP evolution (initial quarks only)

34

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.01  0.1  1

x

xq(x,Q2), xg(x,Q2)

Q2 = 90.0 GeV2

xg(x,Q2)

xq + xqbar

E↵ect of (LO) DGLAP: initial quarks[Initial-state splitting]

[Example evolution]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.01  0.1  1

x

xq(x,Q2), xg(x,Q2)

Q2 = 12.0 GeV2

xg(x,Q2)

xq + xqbar

Take example evolution starting with
just quarks:

@lnQ2q = Pq q ⌦ q

@lnQ2g = Pg q ⌦ q

I quark is depleted at large x

I gluon grows at small x

Gavin Salam (CERN) QCD basics 3 19 / 32



DGLAP evolution (initial quarks only)
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DGLAP evolution (initial gluons only)

36

 0

 1

 2

 3

 4

 5

 0.01  0.1  1

x

xq(x,Q2), xg(x,Q2)

Q2 = 12.0 GeV2

xg(x,Q2)

xq + xqbar

E↵ect of (LO) DGLAP: initial gluons[Initial-state splitting]

[Example evolution]

 0

 1

 2

 3

 4

 5

 0.01  0.1  1

x

xq(x,Q2), xg(x,Q2)

Q2 = 12.0 GeV2

xg(x,Q2)

xq + xqbar

2nd example: start with just gluons.

@lnQ2q = Pq g ⌦ g

@lnQ2g = Pg g ⌦ g

I gluon is depleted at large x .

I high-x gluon feeds growth of
small x gluon & quark.
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DGLAP evolution (initial gluons only)
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DGLAP evolution (initial gluons only)
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DGLAP evolution (initial gluons only)
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DGLAP evolution (initial gluons only)
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DGLAP evolution (initial gluons only)
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DGLAP evolution (initial gluons only)
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DGLAP evolution: 
➤ partons lose momentum and shift 

towards smaller x 
➤ high-x partons drive growth of 

low-x gluon 



determining the gluon
which is critical at hadron colliders (e.g. ttbar, 

Higgs dominantly produced by gluon-gluon fusion), 
but not directly probed in Deep-Inelastic-Scattering

43



Consider DIS data – F2(x,Q2) – in a world where the proton just had quarks
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[Evolution versus data]
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0
),

at initial scale Q
2

0
= 12 GeV2

.

NB: Q0 often chosen lower

Assume there is no gluon at Q2

0
:

g(x ,Q2

0 ) = 0

Use DGLAP equations to evolve to
higher Q2; compare with data.

Complete failure!
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Consider DIS data – F2(x,Q2) – in a world where the proton just had quarks
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Consider DIS data – F2(x,Q2) – in a world where the proton just had quarks
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Consider DIS data – F2(x,Q2) – in a world where the proton just had quarks
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Consider DIS data – F2(x,Q2) – in a world where the proton just had quarks
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[Evolution versus data]

 0

 0.4

 0.8

 1.2

 1.6

 0.001  0.01  0.1  1

x

F2
p (x,Q2)

Q2 = 12.0 GeV2

DGLAP: g(x,Q0
2) = 0

ZEUS

NMC

Fit quark distributions to F2(x ,Q2

0
),

at initial scale Q
2

0
= 12 GeV2

.

NB: Q0 often chosen lower

Assume there is no gluon at Q2

0
:

g(x ,Q2

0 ) = 0

Use DGLAP equations to evolve to
higher Q2; compare with data.

Complete failure!
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COMPLETE FAILURE 
to reproduce data evolution



Consider DIS data – F2(x,Q2) – with specially tuned gluon
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If gluon ≠ 0, splitting  

generates extra quarks at large 
Q2 ➠ faster rise of F2 

Global PDF fits (CT, MMHT, 
NNPDF, etc.) choose gluon 
distribution that leads to the 
correct Q2 evolution.

g ! qq̄



Consider DIS data – F2(x,Q2) – with specially tuned gluon
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Consider DIS data – F2(x,Q2) – with specially tuned gluon
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Consider DIS data – F2(x,Q2) – with specially tuned gluon
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Consider DIS data – F2(x,Q2) – with specially tuned gluon
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Consider DIS data – F2(x,Q2) – with specially tuned gluon
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Resulting gluon distribution, compared to quarks
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Resulting gluon distribution is 
HUGE! 

Carries 47% of proton’s 
momentum  
(at scale of 100 GeV) 

Crucial in order to satisfy 
momentum sum rule. 

Large value of gluon has big 
impact on phenomenology
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Today’s PDF fits: huge array of data (and choices about which data to use)
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Today’s PDF fits: huge array of data (and choices about which data to use)
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MSHT20 data sets & χ2



data is precise, correlations between systematics are crucial
e.g. from MSHT20 (2012.04684)

60

Figure 6: Data vs. MSHT20 NNLO theory for the ATLAS 8 TeV W± data with W+ (W�) in the left
(right) plots. The purple represents the unshifted data, the black the data after shifting via correlated and
uncorrelated systematics and other error sources, and the red line is the MSHT20 theory prediction, with
these data included in the fit. The errors plotted here are the total uncorrelated errors for each point.

Figure 7: Ratio of Data to MSHT20 NNLO theory for the ATLAS double di↵erential 8 TeV Z data,
di↵erential in [yll,mll]. The errors plotted here are the total uncorrelated errors for each point which is the
quadrature sum of the statistical and uncorrelated systematic errors. Both the unshifted and shifted data
are shown.

21

original (unshifted) data 

data including shifted 

nuisance parameters



today’s PDF fits: fitting functions

A generic function  involves an infinite number of degrees of 
freedom. How can you fit this with a finite number of data 
points?

f(x)
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Figure 2: As in Fig. 1, but at NLO.

of the form

xf(x,Q2

0
) = A(1� x)⌘x�

 
1 +

nX

i=1

aiT
Ch

i
(y(x))

!
, (1)

where Q
2

0
= 1 GeV2 is the input scale, and T

Ch

i
(y) are Chebyshev polynomials in y, with

y = 1� 2xk, where we take k = 0.5.

In the MMHT14 study we took n = 4 in general, though used a slightly di↵erent parameteri-

sation for the gluon and used more limited parameterisations for d̄�ū and s�s̄ (‘s�’), since these

were less well constrained by data, whilst for similar reasons two of the s+ s̄ (‘s+’) Chebyshevs

and its low x power were tied to those of the light sea, S(x) = 2(ū(x)+ d̄(x))+s(x)+ s̄(x). How-

ever, with the substantial increase in the amount of LHC and other data included in MSHT20,

we can now extend the parameterisation of the PDFs significantly. We therefore take n = 6 by

default in MSHT20, allowing a fit of better than 1% precision over the vast majority of the x

range [47]. The MSHT20 set of input distributions are now1:

uV (x,Q
2

0
) = Au(1� x)⌘ux�u

 
1 +

6X

i=1

au,iTi(y(x))

!
(2)

dV (x,Q
2

0
) = Ad(1� x)⌘dx�d

 
1 +

6X

i=1

ad,iTi(y(x))

!
(3)

S(x,Q2

0
) = AS(1� x)⌘Sx�S

 
1 +

6X

i=1

aS,iTi(y(x))

!
(4)

1As is usual in PDF definitions, there is an implicit x preceding the input distributions in their definitions in
equations (2)-(8), so that they are in reality like the left-hand side of (1), this also applies to figures and other
uses throughout the rest of the paper.

8

CT / MSHT use parameterisations with hand-picked number 
of terms, e.g. up to   in Chebyshev series:n = 6

NNPDF use a neural network as a generic fit function, and 
separate data into training / validation. Fit is done using just 
the training subset, and stops when   on training + 
validation starts to increase. (Supplemented with closure tests)

χ2



today’s PDF fits: uncertainty estimation

With fits to O(60) data sets, chances are they won’t all be 
consistent (plainly inconsistent data sets may simply be 
excluded, but that can be biased)
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CT / MSHT do a Hessian fit, with error eigenfunctions, scaled 
by a tolerance T that is like replacing  with . 

Squared error on a cross section is obtained by summing 
squared variations from each of the eigenfuntions.

Δχ2 = 1 Δχ2 = T

NNPDF fits Monte Carlo replica data sets 
i.e. fluctuate the data according to errors, and fit the fluctuated 
data; repeat over and over, to get O(100) replica fits; prediction for 
any cross section is then average and std.dev. across the replicas



today’s PDF fits: treatment of charm

Charm-quark mass is around 1.5 GeV. Is this perturbative 
enough to treat it as purely perturbative generated? Or should 
one fit the charm as a light flavour?

63

CT / MSHT treat charm perturbatively, turning on its 
evolution from (almost zero) at the charm mass. 

NB: CT also explores “fitted” charm

NNPDF fits by default treat the charm as light, but also 
provide PDF sets with perturbative charm



Comparing different sets: the gluon

In much of region 
relevant to LHC, 
uncertainty is in 
the 1-2% range 
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gluon



65dbar

down quark up quark

ubar
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➤ strange (anti-)quark is least 
well known PDF (small 
charge, few good experimental 
handles) 

➤ charm: current debate about 
intrinsic charm 

➤ bottom: mostly driven by 
gluon

strange quark charm

bottom



the concept of a PDF luminosity

“Think” at Leading Order (LO) in QCD: 

➤ collide protons at CoM energy ,  
➤ take momentum fractions  and  from the two protons 
➤ producing a system of mass  requires  

Number of parton-parton collisions with flavours  and  is 
proportional to partonic luminosity  

 

s
x1 x2

m x1x2s = m2

i j
ℒij(m2)

ℒij(m2) = ∫ dx1dx2 fi,p(x1, μ2
F) fj,p(x2, μ2

F) δ(x1x2s − m2)
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comparing PDF “luminosities”
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PDF4LHC151.0000 ± 0.0184

PDF4LHC210.9930 ± 0.0155

CT18       0.9914 ± 0.0180

MSHT20     0.9930 ± 0.0108

NNPDF40    0.9986 ± 0.0058

gg-lumi, ratio to PDF4LHC15 

× 3

Amazing that MSHT20 & NNPDF40 are reaching %-level precision 

At this level, QED effects probably no longer optional (MSHT20QED: 0.9870)

 
NB: PDF4LHC21 uses CT18/MSHT20/NNPDF31



Example: W mass
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Table 3: Uncertainty correlation between the ?

✓

T and <T fits, combination weights and combination results for <,

and the indicated PDF sets.

PDF set Correlation weight (?✓T) weight (<T) Combined <, [MeV ]

CT14 52.2% 88% 12% 80363.6 ± 15.9
CT18 50.4% 86% 14% 80366.5 ± 15.9
CT18A 53.4% 88% 12% 80357.2 ± 15.6
MMHT2014 56.0% 88% 12% 80366.2 ± 15.8
MSHT20 57.6% 97% 3% 80359.3 ± 14.6
ATLASpdf21 42.8% 87% 13% 80367.6 ± 16.6
NNPDF3.1 56.8% 89% 11% 80349.6 ± 15.3
NNPDF4.0 59.5% 90% 10% 80345.6 ± 14.9

6.4 Combination

All event categories are statistically independent as long as only the ?
✓

T or only the <T distributions are
considered. The correlation between the final ?✓T- and <T-based results for <, is determined from an
ensemble of fit results obtained by fluctuating the data and the most probable values of the nuisance
parameters within their respective uncertainties. The ?

✓

T and <T results are then combined using the BLUE
prescription [59]. The results of this procedure are given in Table 3. The weight of the ?

✓

T fit ranges from
86% to 97%, depending on the PDF set, and dominates the final result. For the CT18 PDF set, the final
result is:

<, = 80366.5 ± 9.8 (stat.) ± 12.5 (syst.) MeV = 80366.5 ± 15.9 MeV,

where the first uncertainty component is statistical and the second corresponds to the total systematic
uncertainties.

The decomposition of the post-fit uncertainties is performed according to Ref. [51] and shown in Table 4.
Statistical uncertainties contribute about 10 MeV in the present fit. This is in contrast with 6 MeV obtained
from fits considering statistical uncertainties only, with all nuisance parameters fixed to their best-fit values.
The increase reflects the larger number of parameters determined from the same data. Correspondingly,
the systematic uncertainty components are smaller than systematic ‘impacts’ conventionally reported for
PLH fits.3 Systematic uncertainties contribute about 13 MeV, dominated by PDF uncertainties, missing
higher-order electroweak corrections, and electron and muon calibration uncertainties.

The fits are performed assuming the SM value for the ,-boson width, �SM
,

= 2088± 1 MeV [6]. The fitted
value of <, varies with the assumed value for �, following �<, = �0.06��, . Assuming an alternate
SM prediction of �SM

,
= 2091 ± 1 MeV, as obtained in Ref. [7], does not change the measured value of the

,-boson mass significantly.

The compatibility of the measured value of the ,-boson mass using the CT18 PDF set with the Standard
Model expectation is illustrated in Figure 10(a), together with selected previous measurements. The
two-dimensional 68% and 95% confidence limits for the predictions of <, and <C in the context of the

3 Impacts are obtained from the quadratic subtraction between the total fit uncertainty and the uncertainty of a fit with selected
nuisance parameters removed and overestimate the genuine systematic uncertainty.
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ATLAS

46

Figure A.23: Measured and simulated (pµ
T, hµ) distributions used in the mW measurement, for

positively (upper) and negatively (lower) charged muons. The predictions and their uncer-
tainties are adjusted to the best fit values obtained from the maximum likelihood fit. The two-
dimensional distribution is “unrolled” such that each bin on the x-axis represents one (pµ

T, hµ)
cell. The gray band represents the full uncertainty in the prediction, after the nuisances param-
eters are adjusted to the best fit values.

Table A.4: Dominant systematic uncertainties in the W-like mZ and mW measurements, using
the “nominal” [26] and “global” [101] definition of the impacts.

Source of uncertainty
Impact (MeV)

Nominal Global
in mZ in mW in mZ in mW

Muon momentum scale 5.6 4.8 5.3 4.4
Muon reco. efficiency 3.8 3.0 3.0 2.3
W and Z angular coeffs. 4.9 3.3 4.5 3.0
Higher-order EW 2.2 2.0 2.2 1.9
pV

T modeling 1.7 2.0 1.0 0.8
PDF 2.4 4.4 1.9 2.8
Nonprompt background – 3.2 – 1.7
Integrated luminosity 0.3 0.1 0.2 0.1
MC sample size 2.5 1.5 3.6 3.8
Data sample size 6.9 2.4 10.1 6.0
Total uncertainty 13.5 9.9 13.5 9.9

approach. These two procedures give identical total uncertainties and only differ in the split
between the statistical and systematic components. To facilitate the comparison with the uncer-
tainty breakdown of the ATLAS measurement, Table A.4 also reports the leading uncertainties
using global impacts.

Table A.5 shows a summary of the number of nuisance parameters included in the likelihood
for the W-like mZ and mW fits. The parameters are categorized into groups, corresponding
to the main sources of uncertainty reported in Table A.4, and gathering conceptually related
systematic uncertainties. Uncertainties specific to W bosons, for instance the mass or width

W mass is one area where LHC 
is unexpectedly competitive. 
Depending on the extraction 
method, PDFs can be critical

NNPDF31

Figure 13: Measured value of mW compared to those from the ALEPH [61], DELPHI [62],
L3 [63], OPAL [64], CDF [10], D0 [11] and ATLAS [12] experiments. The current prediction of
mW from the global electroweak fit is also included.

10 Summary and Conclusion

This paper reports the first measurement of mW with the LHCb experiment. A data
sample of pp collisions at

p
s = 13TeV corresponding to an integrated luminosity of

1.7 fb�1 is analysed. The measurement is based on the shape of the pT distribution of
muons from W boson decays. A simultaneous fit of the q/pT distribution of W boson decay
candidates and of the �⇤ distribution of Z boson decay candidates is verified to reliably
determine mW . This method has reduced sensitivity to the uncertainties in modelling the
W boson transverse momentum distribution compared to previous determinations of mW

at hadron colliders. The following results are obtained

mW = 80362± 23stat ± 10exp ± 17theory ± 9PDFMeV,

mW = 80350± 23stat ± 10exp ± 17theory ± 12PDFMeV,

mW = 80351± 23stat ± 10exp ± 17theory ± 7PDFMeV,

with the NNPDF3.1, CT18 and MSHT20 PDF sets, respectively. The first uncertainty
is statistical, the second is due to experimental systematic uncertainties, and the third
and fourth are due to uncertainties in the theoretical modelling and the description of the
PDFs, respectively. Treating the three PDF sets equally results in the following arithmetic
average

mW = 80354± 23stat ± 10exp ± 17theory ± 9PDFMeV.
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CT18
MSHT20arXiv:2109.01113

LHCb

https://arxiv.org/abs/2403.15085
https://cds.cern.ch/record/2910372/files/SMP-23-002-pas.pdf
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FINAL REMARKS ON PDFS

➤ In range 10-3 < x < 0.1, core PDFs (up, down, gluon) known 
to ~ 1–3% accuracy 

➤ For many LHC applications, you can use PDF4LHC21 set, 
which merges CT18, MSHT20, NNPDF31, all available at 
NNLO 

➤ first N3LO sets also indicate  

➤ Situation is not full consensus:  

➤ differences in errors (e.g. NNPDF40 v. CT18),  

➤ differences in central values (ABMP; approx N3LO v. 
NNLO)
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SO FAR

➤ We discussed the “Master” formula  

➤ and its main inputs 

➤ the strong coupling αs 

➤ Parton Distribution Functions (PDFs) 

➤ Next: we discuss the actual scattering cross section
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8 1. Quantum chromodynamics

The PDFs’ resulting dependence on µF is described by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations [43], which to leading order (LO) read∗

µ2F
∂fi/p

(

x, µ2F
)

∂µ2F
=
∑

j

αs
(

µ2F
)

2π

∫ 1

x

dz

z
P
(1)
i←j (z) fj/p

(x

z
, µ2F

)

, (1.14)

with, for example, P
(1)
q←g(z) = TR(z

2+(1−z)2). The other LO splitting functions are listed
in Sec. 16 of this Review, while results up to NLO, α2s, and NNLO, α3s , are given in Refs.
44 and 45 respectively. Beyond LO, the coefficient functions are also µF dependent, for

example C
(1)
2,i (x,Q

2, µ2R, µ
2
F ) = C

(1)
2,i (x,Q

2, µ2R, Q
2)− ln

(µ2F
Q2

)
∑

j

∫ 1
x

dz
z C

(0)
2,j (

x
z )P

(1)
j←i(z).

As with the renormalization scale, the choice of factorization scale is arbitrary, but
if one has an infinite number of terms in the perturbative series, the µF -dependences
of the coefficient functions and PDFs will compensate each other fully. Given only N
terms of the series, a residual O(αN+1

s ) uncertainty is associated with the ambiguity in
the choice of µF . As with µR, varying µF provides an input in estimating uncertainties
on predictions. In inclusive DIS predictions, the default choice for the scales is usually
µR = µF = Q.

As is the case for the running coupling, in DGLAP evolution one can introduce flavor
thresholds near the heavy quark masses: below a given heavy quark’s mass, that quark
is not considered to be part of the proton’s structure, while above it is considered to
be part of the proton’s structure and evolves with massless DGLAP splitting kernels.
With appropriate parton distribution matching terms at threshold, such a variable flavor
number scheme (VFNS), when used with massless coefficient functions, gives the full
heavy-quark contributions at high Q2 scales. For scales near the threshold, it is instead
necessary to appropriately adapt the standard massive coefficient functions to account for
the heavy-quark contribution already included in the PDFs [46,47,48].

Hadron-hadron collisions. The extension to processes with two initial-state hadrons
can be illustrated with the example of the total (inclusive) cross section for W boson
production in collisions of hadrons h1 and h2, which can be written as

σ (h1h2 → W +X) =
∞
∑

n=0

αns

(

µ2R

)

∑

i,j

∫

dx1dx2 fi/h1

(

x1, µ
2
F

)

fj/h2

(

x2, µ
2
F

)

× σ̂
(n)
ij→W+X

(

x1x2s, µ
2
R, µ

2
F

)

+O

(

Λ2

M4
W

)

, (1.15)

∗ LO is generally taken to mean the lowest order at which a quantity is non-zero. This
definition is nearly always unambiguous, the one major exception being for the case of the
hadronic branching ratio of virtual photons, Z, τ , etc., for which two conventions exist:
LO can either mean the lowest order that contributes to the hadronic branching fraction,
i.e. the term “1” in Eq. (1.7); or it can mean the lowest order at which the hadronic
branching ratio becomes sensitive to the coupling, n = 1 in Eq. (1.8), as is relevant when
extracting the value of the coupling from a measurement of the branching ratio. Because
of this ambiguity, we avoid use of the term “LO” in that context.
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the hard cross section
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LO

INGREDIENTS FOR A CALCULATION (generic 2→2 process)
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Tree 
2→2

to illustrate the 
concepts, we don’t 
care what the 

particles are ̶ just 
draw lines

2

Tree 
2→3

2

NLO
1-loop 
2→2 × + complex conj.



INGREDIENTS FOR A CALCULATION (generic 2→2 process)
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Tree 
2→4

2

NNLO

1-loop 
2→3 × + complex conj.

2-loop 
2→2 × + complex conj.

1-loop 
2→2

2



EXAMPLE SERIES #1

75

�(e+e� ! hadrons)

�(e+e� ! µ+µ�)
=

= R0

�
1 + 0.32↵s + 0.14↵2

s � 0.47↵3
s � 0.59316↵4

s + · · ·
�

[↵s ⌘ ↵s(
p
se+e�)]

Baikov et al., 1206.1288  
(numbers for γ-exchange only) 

This is one of  the few quantities calculated to N4LO 

Good convergence of  the series at every order 
(at least for αs(MZ) = 0.118)



EXAMPLE SERIES #2
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�(pp ! H) = (961 pb)⇥⇥(↵2
s + 10.4↵3

s + 38↵4
s + 48↵5

s + · · · )
↵s ⌘ ↵s(MH/2)
p
spp = 13TeV

Anastasiou et al., 1602.00695 (ggF, hEFT)

pp→H (via gluon fusion) is one of  a few 
hadron-collider processes known at N3LO 

(others are pp→H via weak-boson fusion, Drell-Yan production) 

Series convergence is poor until last term 
(explanations for why are only moderately convincing)



SCALE DEPENDENCE

➤ On previous page, we wrote the series in terms of powers of 
αs(MH/2) 

➤ But we are free to rewrite it in terms of αs(μ) for any choice  
of “renormalisation scale” μ.
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SCALE DEPENDENCE

➤ On previous page, we wrote the series in terms of powers of 
αs(MH/2) 

➤ But we are free to rewrite it in terms of αs(μ) for any choice  
of “renormalisation scale” μ.
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NLO
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SCALE DEPENDENCE

➤ On previous page, we wrote the series in terms of powers of 
αs(MH/2) 

➤ But we are free to rewrite it in terms of αs(μ) for any choice  
of “renormalisation scale” μ.
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NNLO

�(pp ! H) = �0⇥
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SCALE DEPENDENCE

➤ On previous page, we wrote the series in terms of powers of 
αs(MH/2) 

➤ But we are free to rewrite it in terms of αs(μ) for any choice  
of “renormalisation scale” μ.
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SCALE DEPENDENCE

➤ On previous page, we wrote the series in terms of powers of 
αs(MH/2) 

➤ But we are free to rewrite it in terms of αs(μ) for any choice  
of “renormalisation scale” μ.
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N3LO
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scale dependence (an intrinsic uncertainty) 
gets reduced as you go to higher order



Convention: “theory uncertainty” (i.e. from missing higher 
orders) is estimated by change of  cross section when 

varying μ in range 1/2 → 2 around central value 82
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Scale dependence as the “THEORY UNCERTAINTY”
Here, only the renorm. scale 
μ has been varied. In real life 
you need to change renorm. 
and factorisation scales.



Convention: “theory uncertainty” (i.e. from missing higher 
orders) is estimated by change of  cross section when 

varying μ in range 1/2 → 2 around central value 83

�

��

��

��

��

��

��

�� � ����

��

���
���� ����

�����������
��

������
����

�
����

� ��
� ����

� ��
�

��
��
�

�
��
��
�

����� ����� �������
Scale dependence as the “THEORY UNCERTAINTY”

Here, only the renorm. scale 
μ(≡μR) has been varied. In 
real life you need to change 
renorm. and factorisation (μF) 
scales.

Higgs cross section (EFT)



NLO/NNLO/N3LO for Drell-Yan process

Convergence from NNLO to N3LO is not so good. 

(Apparent good convergence from NLO to NNLO & small NNLO 
uncertainty were perhaps accident of cancellation between flavour channels)
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WHAT DO WE KNOW?

➤ LO: almost any process  (with MadGraph, Comix, ALPGEN, etc.) 

➤ NLO: most processes (with MCFM, NLOJet++, MG5_aMC@NLO, 
 POWHEG, OpenLoops/Blackhat/NJet/Gosam/etc.+Sherpa) 

➤ NNLO: all 2→1, most 2→2, and a few 2→3 (some approx) 
(top++, DY/HNNLO, FEWZ, MATRIX, MCFM,  

NNLOJet, MINNLO, Geneva etc.) 

➤ N3LO: pp → Higgs and Drell Yan 
some with approximations (EFT, QCD1×QCD2) 

➤ NLO EW corrections, i.e. relative αEW rather than αs: 
most 2→1, 2→2 and 2→3 

➤ mixed NNLO (EW×QCD) for 2→1 
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