Flavour Physics and CP violation Lecture 2 of 3

Tim Gershon University of Warwick

The 2024 European School of High-Energy Physics

Peebles, United Kingdom, 25 September – 8 October 2024

2 October 2024

Contents

- Part 1
 - Why is flavour physics & CP violation interesting?
- Part 2
 - What do we know from the previous generation of experiments?
- Part 3
 - What do we hope to learn from current and future heavy flavour experiments?

What do we know about heavy quark flavour physics as of today?

CKM Matrix : parametrizations

- Many different possible choices of 4 parameters
- PDG: 3 mixing angles and 1 phase

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{od} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

- Apparent hierarchy: $s_{12} \sim 0.2$, $s_{23} \sim 0.04$, $s_{13} \sim 0.004$
 - Wolfenstein parametrization (expansion parameter $\lambda \sim \sin \theta_c \sim 0.22$)

$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \stackrel{\mathsf{PRL}\,\mathsf{51}\,(\mathsf{1983})\,\mathsf{1945}}{+\mathcal{O}\left(\lambda^4\right)}$$

• Other choices, eg. based on CP violating phases

PLB 680 (2009) 328

PRL 53 (1984) 1802

Hierarchy in quark mixing

$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}\left(\lambda^4\right)$$

Very suggestive pattern No known underlying reason Situation for leptons (vs) is completely different

CKM matrix to $O(\lambda^5)$

Remember – only *relative* phases are observable

Unitarity Tests

• The CKM matrix must be unitary

$$V_{CKM}^{+}V_{CKM} = V_{CKM}V_{CKM}^{+} = 1$$

• Provides numerous tests of constraints between independent observables, such as

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1$$

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

CKM Matrix – Magnitudes

theory inputs (eg., lattice calculations) required

First row unitarity

• The eagle eyed may have spotted:

The Unitarity Triangle

$$V_{ud}V_{ub}^{*}+V_{cd}V_{cb}^{*}+V_{td}V_{tb}^{*}=0$$

$$\stackrel{\text{imaginary}(\overline{\eta})}{\alpha = \arg\left[-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right]\beta = \arg\left[-\frac{V_{ud}V_{cb}^{*}}{V_{td}V_{tb}^{*}}\right]\gamma = \arg\left[-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right]$$

$$\stackrel{\text{Three complex numbers add to}}{\Rightarrow \text{triangle in Argand plane}} \qquad R_{u} = \left|\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right|R_{t} = \left|\frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right|$$

$$\stackrel{\text{Axes are } \overline{p} \text{ and } \overline{\eta} \text{ where}}{\overline{p} + i\overline{\eta} = -\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}}$$

$$\rho + i\eta = \frac{\sqrt{1 - A^{2}\lambda^{4}}(\overline{p} + i\overline{\eta})}{\sqrt{1 - \lambda^{2}}[1 - A^{2}\lambda^{4}(\overline{p} + i\overline{\eta})]}$$

Tim Gershon Flavour physics & CP violation

Predictive nature of KM mechanism

In the Standard Model the KM phase is the sole origin of CP violation

Hence:

all measurements must agree on the position of the apex of the Unitarity Triangle

(Illustration shown assumes no experimental or theoretical uncertainties)

Area of (all of) the unrescaled Unitarity Triangle(s) is given by the Jarlskog invariant

Time-Dependent CP Violation in the B⁰–B⁰ System

• For a B meson known to be 1) B^0 or 2) B^0 at time t=0, then at later time t:

$$\Gamma \left(B^{0}_{phys} \rightarrow f_{CP}(t) \right) \propto e^{-\Gamma t} \left(1 - \left(S \sin \left(\Delta m t \right) - C \cos \left(\Delta m t \right) \right) \right)$$

$$\Gamma \left(\overline{B}^{0}_{phys} \rightarrow f_{CP}(t) \right) \propto e^{-\Gamma t} \left(1 + \left(S \sin \left(\Delta m t \right) - C \cos \left(\Delta m t \right) \right) \right)$$

$$\text{here assume } \Delta \Gamma \text{ negligible - will see full expressions later}$$

$$S = \frac{2 \Im (\lambda_{CP})}{1 + \left| \lambda_{CP}^{2} \right|} \quad C = \frac{1 - \left| \lambda_{CP}^{2} \right|}{1 + \left| \lambda_{CP}^{2} \right|} \quad \lambda_{CP} = \frac{q}{p} \frac{\overline{A}}{\overline{A}}$$

$$For B^{0} \rightarrow J/\Psi \text{ K}_{S}, S = \sin(2\beta), C=0$$

$$\text{Find Gershon}$$

$$\text{Flavour physics} \qquad \text{NPB 193 (1981) 85} \\ \text{1. Bigi and A. Sanda} \qquad 12$$

Tim

Categories of CP violation

• Consider decay of neutral particle to a CP eigenstate $\lambda_{CP} = \frac{q}{p} \frac{\overline{A}}{A}$

$$\frac{|\frac{q}{p}| \neq 1}{|\frac{\overline{A}}{A}| \neq 1}$$

CP violation in mixing

CP violation in decay

$$\Im\left(\frac{q}{p}\frac{\overline{A}}{A}\right) \neq 0$$

CP violation in interference between mixing and decay

Asymmetric B factory principle

To measure t require B meson to be moving

- \rightarrow e⁺e⁻ at threshold with asymmetric collisions (P. Oddone)
- Other possibilities considered

Flavour physics & CP violation

14

Asymmetric **B** Factories

PEPII at SLAC 9.0 GeV e⁻ on 3.1 GeV e⁺ 8.0 GeV e⁻ on 3.5 GeV e⁺

KEKB at **KEK**

B factories – world record luminosities

Total over 10⁹ BB pairs recorded

Tim Gershon Flavour physics & CP violation

World record luminosities (2) SuperKEKB & HL-LHC 10 ³⁵ Peak luminosity (cm⁻²s⁻¹ Peak Luminosity trends in last 40 years **KEKB** 10 ³⁴ LHC PEP II 10³³ DAFNE CESR TEVATRON 10 ³² **BEPC2** ISI TRA TRISTA HERA 10 ³¹ DORIS SPEAR BEPC 10 ³⁰ SppS DCI 29 10 1975 1980 1985 1990 1995 2000 2005 2010 1970 2015 Year **Tim Gershon** 17 Flavour physics

& CP violation

BaBar Detector

Tim Gershon

Belle Detector

Particle ID with Cherenkov radiation

Particle travelling above speed of light in medium (with refractive index n) emits light in cone with opening angle given by $\cos \theta_c = 1/(\beta n)$ BaBar DIRC: quartz radiator (n = 1.473)

Thresholds also provide separation

Particle ID with Cherenkov radiation

Compilation of results

Flavour physics & CP violation

LHCb results on $sin(2\beta)$

& CP violation

Measurement of α

- Similar analysis using $b \rightarrow u\overline{u}d$ decays (e.g. $B_d^0 \rightarrow \pi^+\pi^-$) probes $\pi (\beta + \gamma) = \alpha$
 - but b → duu penguin transitions contribute to same final states ⇒ "penguin pollution"
 - C ≠ 0 \Leftrightarrow CP violation in decay can occur
 - S ≠ +η_{CP} sin(2α)
- Two approaches (optimal approach combines both)
 - try to use modes with small penguin contribution
 - correct for penguin effect (isospin analysis)

PRL 65 (1990) 3381

Experimental situation for α

improved measurements needed!

Tim Gershon Flavour physics & CP violation

Measurement of $\boldsymbol{\alpha}$

The UT sides

R_t side from $B^0 - \overline{B}^0$ mixing

R_t side from $B_{(s)}^{0} - \overline{B}_{(s)}^{0}$ mixing

R_u side from semileptonic decays

- Approaches:
 - exclusive semileptonic B decays, eg. $B^0 \rightarrow \pi^{\scriptscriptstyle -} e^{\scriptscriptstyle +} \, \nu$
 - require knowledge of form factors
 - can be calculated in lattice QCD at kinematical limit
 - inclusive semileptonic B decays, eg. B $\rightarrow~X_u~e^+~\nu$
 - clean theory, based on Operator Product Expansion
 - experimentally challenging:
 - need to reject $b \rightarrow c$ background
 - cuts re-introduce theoretical uncertainties

|V_{ub}| from exclusive semileptonic decays

Current best measurements use $B^0 \rightarrow \pi^- I^+ \nu$ (recent competitive measurement from LHCb with $\Lambda_b \rightarrow p \mu \nu$)

$|V_{ub}|$ from inclusive semileptonic decays

- Main difficulty to measure inclusive B $\rightarrow~X_u~I^+~\nu$
 - background from B \rightarrow $X_c~I^+~\nu$
- Approaches

Tim Gershon

Flavour physics

& CP violation

- cut on E_1 (lepton endpoint), q^2 (lv invariant mass squared), $M(X_u)$, or some combination thereof
- Example: endpoint analysis

|V_{ub}| average

- Averages on $\left|V_{ub}\right|$ from both exclusive and inclusive approaches
 - exclusive: $|V_{ub}| = (3.67 \pm 0.09 \pm 0.12) \times 10^{-3}$
 - inclusive: $|V_{ub}| = (4.13 \pm 0.12^{+0.13} 0.14 \pm 0.18) \times 10^{-3}$
 - slight tension between these results
 - in both cases theoretical errors are dominant
 - but some "theory" errors can be improved with more data
 - PDG2014 does naïve average rescaling due to inconsistency to obtain $|V_{ub}| = (3.82 \pm 0.20) \times 10^{-3}$

Inclusive vs. exclusive : $|V_{ub}|$ and $|V_{cb}|$

Tim Gershon Flavour physics & CP violation

Discrepancies need to be understood!

Flavour physics at hadron colliders

	$e^+e^- \to \Upsilon(4S) \to B\bar{B}$	$p\bar{p} \rightarrow b\bar{b}X$	$pp \rightarrow b\bar{b}X$
	PEP-II, KEKB	$(\sqrt{s} = 2 \text{ rev})$ Tevatron	$(\sqrt{s} = 14 \text{ lev})$ LHC
Production cross-section	1 nb	$\sim 100\mu b$	$\sim 500\mu b$
Typical <i>b</i> b̄ rate	10 Hz	$\sim 100\mathrm{kHz}$	$\sim 500\mathrm{kHz}$
Pile-up	0	1.7	0.5 - 20
b hadron mixture	B^+B^- (50%), $B^0\overline{B}^0$ (50%)	B^+ (40%), B^0	$(40\%), B_s^0 (10\%),$
		Λ_{b}^{0} (10%), others (< 1%)	
b hadron boost	small ($\beta \gamma \sim 0.5$)	large ($\beta \gamma \sim 100$)	
Underlying event	BB pair alone	Many additional particles	
Production vertex	Not reconstructed	Reconstructed from many tracks	
$B^0 - \overline{B}^0$ pair production	Coherent (from $\Upsilon(4S)$ decay)	Incoherent	
Flavour tagging power	$arepsilon D^2 \sim 30\%$	$arepsilon D^2 \ \sim 5\%$	

Tim Gershon Flavour physics & CP violation Huge production rate: can we exploit it?

Geometry

 In high energy collisions, bb pairs produced predominantly in forward or backward directions

b

• LHCb is a forward spectrometer

LHCb detector features

- Tracking and calorimetry
 - basic essentials of any collider experiment!
 - muon chambers
- VELO
- reconstruct displaced vertices
- RICH
- particle ID (K/ π separation)
- Trigger

Tim Gershon

Flavour physics & CP violation

- fast and efficient

En

IP_x Resolution Vs 1/p₊

√s = 7 TeV

0.5

↔ 2011 Data
★ Simulation

LHCb VELO Preliminary 2011 Data: σ = 13.2 + 24.7/p_ μ m

1/͡pັ_ [c/GeV]

38

Simulation: $\sigma = 11$

VELO

Material imaged used beam gas collisions

Vertexing kills background

Comparison of (left) Belle and (right) LHCb signals for $B^0 \rightarrow D^-\pi^+$ Which is the "low background" environment?

Tim Gershon Flavour physics & CP violation

Tim Gershon

Flavour physics & CP violation

Particle ID kills other backgrounds

Comparison of (left) Belle and (right) LHCb signals for $B^0 \to \pi^-\pi^+$

Luminosity levelling in LHCb

from C. Gaspar, via. F. Zimmerman

Run 1+2 data taking

1 fb⁻¹ @ \sqrt{s} = 7 TeV, 2 fb⁻¹ @ \sqrt{s} = 8 TeV, 6 fb⁻¹ @ \sqrt{s} = 13 TeV (considering pp collisions only)

Heavy flavour production @ LHCb

What does $\int Ldt = 1$ fb⁻¹ mean?

• Measured cross-section, in LHCb acceptance (for $\sqrt{s} = 7 \text{ TeV}$) $\sigma(pp \rightarrow b\overline{b}X) = (75.3 \pm 5.4 \pm 13.0) \ \mu b$

PLB 694 (2010) 209

• So, number of $b\overline{b}$ pairs produced in 1 fb⁻¹

 $10^{15} \times 75.3 \ 10^{-6} \sim 10^{11}$

• Compare to combined data sample of e^+e^- "B factories" BaBar and Belle of ~ 10⁹ BB pairs

for any channel where the (trigger, reconstruction, stripping, offline) efficiency is not too small, LHCb has world's largest data sample^(*)

• p.s.: for charm, $\sigma(pp \rightarrow ccX) = (6.10 \pm 0.93)$ mb

LHCb-CONF-2010-013

Tim Gershon

& CP violation

The all important trigger

Challenge is

- to efficiently select most interesting B decays
- while maintaining manageable data rates

Main backgrounds

- "minimum bias" inelastic pp scattering
- other charm and beauty decays

Handles

Tim Gershon

Flavour physics

& CP violation

- high p_T signals (muons)
- displaced vertices

Spectroscopy

- I've talked about the headline items of flavour physics
 - CP violation, searches for new physics
 - what we tell the funding agencies, and the press
- But, much of the physics performed by flavour experiments is the study of properties of hadronic states
 - lifetimes, masses, decay channels, quantum numbers
 - and the discoveries of new ones

PRL 91 (2003) 262001 Most highly cited paper (>2500 citations) from BaBar or Belle

Discovery of the lightest $b\overline{b}$ state – 2008

Why wasn't the η_b discovered at a hadronic experiment?

- Remember: Y(1S) discovered at FNAL in 1977
 - fixed target experiment: p on Be

• η_{b} is lighter

• e⁺e⁻ collisions produce only vector mesons

- i.e. $J^{PC} = 1^{--}$, same as γ^*

- but pp or pp collisions produce hadrons with all quantum numbers
- So why couldn't the η_{b} be discovered, e.g., at the Tevatron?

PRL 39 (1977) 252

Why wasn't the η_b discovered at a hadronic experiment?

- Remember: Y(1S) discovered at FNAL in 1977
 - fixed target experiment: p on Be
- η_{b} is lighter
- So why couldn't the η_{b} be discovered, e.g., at the Tevatron?
- It's all about the trigger! (Although it's also about the detection capability)
 - need clean signature for trigger and reconstruction
 - CDF search used $\eta_{\rm b}\ \rightarrow J/\psi J/\psi$ decay, with predicted BF \sim 0!

CDF note 8448

PRL 39 (1977) 252

The ingredients for precision flavour

Enormous production cross-section of beauty and charm

Large boost

Ability to identify displaced vertices ... with capability to exploit this online Detection and separation of different final state particles

- charged: e, π , μ , K, p
- neutral: y, π^0 [challenging]
- missing: ν, K_L, n [challenging²]

Same ingredients enable spectroscopy

Tim Gershon

& CP violation

54

One example: charmonium pentaquark

PRL 115 (2015) 072001

Tim Gershon

Flavour physics & CP violation

A resonance in J/ψp has minimal quark content ccuud Not a conventional 3 quark baryon – "pentaquark"

One example: charmonium pentaquark

PRL 115 (2015) 072001

With more data, later resolved into multiple resonances

Tim Gershon Flavour physics & CP violation

PRL 122 (2019) 222001

In case you forget importance of vertexing and particle identification

Tomorrow

- More key observables
 - CP violation in decay: the CKM angle γ
 - CP violation in the B_s and D systems
 - Rare decays: $B_{(s)} \rightarrow \mu^+\mu^-$, $B \rightarrow K^{(*)}I^+I^-$, $B \rightarrow K^{(*)}\nu\overline{\nu}$
- Future flavour physics experiments
 - Belle II
 - LHCb upgrades

