Machine Learning
Lecture 1: BDTs, NNs and ML in HEP

“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”



Comment on “The AI Hype”

Machine Learning is a tool like all others (logic, math, computers, statistics, etc.)

Despite the connotations of machine learning and artificial
intelligence as a mysterious and radical departure from
traditional approaches, we stress that machine learning has a
mathematical formulation that is closely tied to statistics, the
calculus of variations, approximation theory, and optimal

control theory.
[PDG 2024, Review of Machine Learning]

So this is just a sharpening of our tools... albeit a cool sharpening!
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Outline

What is ML & Humans vs. ML

Two main ingredients:

- Universal Approximation Theorems
- Stochastic Gradient Descent

The linear vs. non-linear case

Tree based models

Neural Network models

Loss functions

Train, Validation & Test
Preprocessing

Domain Adaptation:

- What are the dangers?

- MC signal, data background

- How to find data-MC differences

- How to mend data-MC differences
- Training in/with data

Coding example



What is ML?



What is Machine Learning?

While there is no formal definition, an early attempt is the following intuition:

“Machine learning programs can perform tasks

without being explicitly programmed to do so.”
[Arthur Samuel, US computer pioneer 1901-1990]

“Little Peter is capable of finding his way home
without being explicitly taught to do so.”



What is Machine Learning?

While there is no formal definition, an early attempt is the following intuition:

"A computer program is said to learn from
experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as

measured by P, improves with experience E.”
[T. Mitchell, “Machine Learning” 1997]

“Little Peter is said to learn from traveling around with
respect to finding his way home and the time it takes, if his
ability to find his way home, as measured by the time it
takes, improves as he travels around.”



Humans vs. ML



Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.
Linear Humans: Humans:

Computers: Computers:
Non- Humans: Humans:
linear Computers: Computers:

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!

That is essentially what Machine Learning has enabled! 0
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Dimensionality and Complexity

Humans & Computers are good at seeing/understanding linear data in few
dimensions:

Waich:

Hzigh.
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
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Dimensionality and Complexity

However, when the dimensionality goes beyond 3D, we are lost, even for simple

linear data. Computers are not...

Shown is the famous

Fisher Iris dataset:
150 irises (3 kinds) with
4 measurements for each.

4 dimensional data!

Iris Data (redmselosa,greensversicolor,blues=virginica)
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.
Linear Humans: v/ Humans: +

Computers: v |Computers: v
Non- Humans: Humans:
linear Computers: Computers:

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!

That is essentially what Machine Learning has enabled! 5
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.
Linear Humans: v/ Humans: +

Computers: v |Computers: v
Non- Humans: v~ Humans:
linear Computers: (V) Computers:

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!

That is essentially what Machine Learning has enabled! -



This illustration is just a silly attempt at complexity.
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Dimensionality and Complexity

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.

Linear Humans: v Humans: +
Computers: v |Computers: v

Non- Humans: v Humans: =
linear Computers: (v') |Computers: (V)

Computers, on the other hand, are OK with high dimensionality, albeit the
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!

That is essentially what Machine Learning has enabled! .



Types of ML



Unsupervised vs. Supervised
Classification vs. Regression

Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)... [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).

But of course also over here! We will be mostly on this side!
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Reinforcement Learning
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Two main ingredients:

1. Solutions exists
2. How to find them



Solutions exists

(Technically called Universal Approximation Theorems)

24



Where to separate?

Look at the red and green points, and imagine that you wanted to draw a curve
that separates these.
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Where to separate?

Look at the red and green points, and imagine that you wanted to draw a curve
that separates these.

This could be an example:
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Generally, we want to find a function that does this well!
But how to write such a function? In N-dim space?!?




Universal Approx. Theorems

Decision tree
A simple function can be siq
obtained simply by asking -~
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Answer: Yes — Red .
Answer: No — Blue ! ] : 2\
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of asking many such
questions, corresponding
to setting a lot of lines.
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Parameler A
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Question: Is B > 0.237?
Answer: Yes — Red
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Universal Approx. Theorems
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Universal Approx. Theorems

A simple function can be
obtained simply by asking
a lot of questions:
Question: Is B > 0.237?
Answer: Yes — Red
Answer: No — Blue

This question is illustrated
in the drawing by the
horizontal line with red
and blue on the sides.

A Decision Tree consists
of asking many such
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to setting a lot of lines.

Parameter B

N

Decision tree

9
bkg

.......

Parameler A

32



Universal
Approximation Theorems

Theorem 5.1.1 (Universal Approximation Theorem) '° Let o be a non-
constant, bounded, and monotone-increasing continuous function. Let I,
denote the my-dimensional unit hypercube [0,1]™0. The space of contin-
uous functions on Iy, is denoted as C(Iy,). Then given any function
f € C(Im,) and € > 0 there exists a set of real constants a;, b; and wj;,
wherei=1,...,myand j =1,...,my such that we may define

n i
F(x1,...,Xmy) = ) _ ai0 (Z w;iX;j + b,-) (5.6)
i=1 j=1
as an approximate realization of the function f; that is,

\F(x1,...,Xmg) — f(X1,--.,Xm,)| <€ (5.7)

for all x1,x3,...,Xm, that lie in the input space.




Universal
Approximation Theorems

Theorem 5.1.1 (Universal Approximation Theorem) '° Let ¢ be a non-

Summary:

Neural Networks etc. can approximate
functions in any dimension very well!

F(x1,...,%my) = Z a;o kz w;iXj + b,-) (5.6)
i=1 j=1
as an approximate realization of the function f; that is,

\F(x1,..Xmy) — f(X1,. .., Xm,)| <€ (5.7)

for all x1,x3,...,Xm, that lie in the input space.
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Universal Approx. Theorems

Such approximations typically entails a large amount of parameters, for which

the UATs give no recipe on how to find - only that such a construction is possible.
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Universal Approx. Theorems

One main ingredient behind ML are Universal Approximation Theorems (UAT).

These imply that Neural Networks can approximate a very wide variety of
functions given simple function constraints and enough degrees of freedom.

This typically entails a large amount of weights, for which the UATs give no
recipe on how to find - only that such a construction is possible.

Even if one assumes that there is no noise in the training set, then there will still
be infinitely many functions that passes through all training points and not all

of them will have the same error on an unseen point (i.e. the test set).

So how to find actual solutions that are behaving nicely?

36



How to find these

(Technically called Stochastic Gradient Descent)
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Stochastic Gradient Descent

The way to obtain the parameters/weights of ML algorithms,
is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from
the last layer (avoiding redundancies). See Goodfellow et al. for details.

Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation
Algorithms". Deep Learning. MIT Press. pp. 200-220. ISBN 9780262035613.
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(Normal) Gradient Descent

The choice of loss function, L, depends on the problem at hand, and in particular
what you find important! You want to minimise this with respect to the model

parameters O: 1 N
L(0) = N ZLz’(@)

In order to find the optimal solution, one can use Gradient Descent, typically
based on the whole dataset:

N
0.1 =0; — VL) =0, — % N VLi(6)

This is the procedure used by e.g. Minuit and other minimisation routines.

Note the very important parameter: Learning rate n. 29



(Nasty) Loss Landscapes

Loss landscapes may (even in 2D) be very
complicated, with many local minima.

.....

arXiv: 1712.09913
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Stochastic Gradient Descent

The way to obtain the parameters/weights of ML algorithms,
is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from
the last layer (avoiding redundancies). See Goodfellow et al. for details.

The gradient descent is made stochastic
(and fast) by only considering a fraction
(called a “batch”) of the data, when
calculating the step in the search for
optimal parameters for the algorithm.
This allow for stochastic jumping, that
avoids local (false) minima.

‘_‘_\

Ordinary
Gradient Descent

x‘-"*?\‘

.
™
Y <te
% 8
o .
’
L

Stochastic
Gradient Descent

Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation
Algorithms". Deep Learning. MIT Press. pp. 200-220. ISBN 9780262035613.
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Stochastic Gradient Descent

In order to give the gradient descent some degree of “randomness” (stochastic),
one evaluates the below function for small batches instead of the full dataset.

0,11 =0; — VL) =0; — % N VLi(6)

The algorithm thus becomes: :
| 3
e Choose an initial vector of parameters w and learning rate 7). ,S
e Hepeat until an approximate minimum is obtained: ) *
¢ Randomly shuffle examples in the training set. : \ ﬁ“‘ l
e Fort=1,2,....,n,do: . JLK k
; ! "‘*4-4,
ow:=w—nNVQ;(w). \u.h .....

Iteration

A A A A A A J
2 e ) o [ e S

10

Not only does this vectorise well and gives smoother descents, but with
decreasing learning rate, it “almost surely” finds the global minimum
(Robbins-Siegmund theorem).



Learning Rate Schedulers

But, there is no reason to consider a fixed value for the learning rate!

More practically, one would typically adapt the learning rate to the situation:
e When exploring: Use larger learning rate.

e When exploiting: Use lower learning rate (when converging).

Below is illustrated what happens, when the learning rate is right/wrong.

Too low Just right Too high
Jl: ({J | { ": {',) " J( (‘) ﬂ\\ “
F
’_F’ ‘/
™ g
N M" e 4.l""
8 fi 2]
A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
before reaching the rminimum peint which lead to divergent
minimum paint behaviors
From: https://www.jeremyjordan.me/nn-learning-rate/
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Choosing Learning Rate

Too low learning rate: Convergence very (too) slow.
Too high learning rate: Random jumps and no convergence.
You want to increase it until it fails and then just below...
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Lo:s

Learning Rate Schedulers

First, we want to investigate, which learning rates are relevant (and best) for
our problem. The best learning rate is when the loss decreases the fastest.
Thus we look for the greatest slope of the loss as a function of learning rate:
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Learning Rate Schedulers

For this reason, Learning Rate Schedulers have been “invented”.
There are MANY different types, and as usual, there is no “right answer”.

However, it is fair to say, that the learning rate is (especially for NNs) the most
important Hyper Parameter, and thus it requires attention.
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Ingredients for ML

So now we know that at least in principle:
e a solution exists (Universal Approximation Theorem) and
e that it can be found (Stochastic Gradient Descent).

But this does not in reality make us capable of getting ML results.

We (at least) also need:

e actual functions/algorithms for making approximations
Boosted Decision Trees (BDTs) & Neural Networks (NNs)

e knowledge about how to tell them what to learn
Loss functions (and how to minimise these)

¢ a scheme for how to use the data we have available
Training, validation, and testing samples & Cross Validation

47



Target of ML



Classification

Null Hypothesis

Alternative Hypothesis

Do Not Reject Null
STATISTICAL

DECISION: ,
Reject Null

110

REALITY
Nullis True Null is False
1-a §
Correct Type |l error
a 1-B
Type | error Correct
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Classification

Null Hypothesis Alternative Hypothesis

100 % 110

Machine Learning typically enables
a better separation between hypothesis

DECISION: , a 1-8
Reject Null
Type | error Correct
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40000 A

Frequency / 0.01

10000 A

Typical ML Distribution

An ML score distribution from binary classification typically looks as follows:
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20000 A

1 Signal
Background

Challenges:
e Hard to inspect visually
e Numerically challenging
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p, ML classification score

0.8

1.0
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Logit transformation

Once logit transformed, it takes on a “nicer” (and numerically friendly) shape:
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Logit transformation

Once logit transformed, it takes on a “nicer” (and numerically friendly) shape:
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Logit transformation

Once logit transformed, it takes on a “nicer” (and numerically friendly) shape:
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Logit transformation:
* Hasy to inspect visually
* Numerically stable

S

-10.0

—%5 —50 —iS Ob 25 50 fS 160
Logit(p), Logit of ML classification score
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Hypothesis testing

Hypothesis testing is like a criminal trial. The basic “null” hypothesis is Innocent
(called Ho) and this is the hypothesis we want to test, compared to an
“alternative” hypothesis, Guilty (called Hj).

Innocence is initially assumed, and this hypothesis is only rejected, if enough
evidence proves otherwise, i.e. that the probability of innocence is very small
(“beyond reasonable doubt”). This is summarised in a Contingency Table:

Truly innocent Truly guilty
(Hp is true) (H; is true)
Acquittal Right decision Wrong decision
(Accept Ho) True Positive (TP) | False Negative (FN)
Conviction Wrong decision Right decision
(Reject Ho) False Positive (FP) | True Negative (TN)

The rate of FP and FN are correlated, and one can only choose one of these!
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http://en.wikipedia.org/wiki/Graph_of_a_function

Which metric to use?

There are a ton of metrics in hypothesis testing, see below. However,
those in the boxes below are the most central ones.

One metric - not mentioned here - is the Area Under the Curve (AUC),
which is simply an integral of the ROC curve (thus 1 is perfect score).
This is sometimes used to optimise performance (loss), but not great!

Predicled condilion

Trua condition
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) ) * Batal paoulalion P ,
papulaken 3 Totod pope/ation
Sredicisd =ashve precicinee walie (PPY),
recicie False pasitive, f ’ ¢ Faloe daoovary ale [FUH) =
condition True positive e | - ;""""""' = T Tulse positive
i ype L error Twe Dositive T TTadiciec conciiion posive
posiiva 1 Pyedcted candlizn posiine PO
=
’9‘”_‘“ False negative, ' Faiae ceniezion rate (FON) = Negative peadicliva value (NP) =
condition - True negative * Falsy negative > Inw regative
- lype Il errar Z Prodifec conditan nogative 2 Froded pand Bon neeaa
nesakva - -
True post va raba (TPR), Racall Sarsiiity, Faka pasiive e |FPR|, Falkoon,
peabablity of estactian, Powar praoatility of felgs alarm Posive ikelhoze ratic (LR I:—H
* Trun poetive > Fasn postnn Diagroz4c odds o
2 Corc bon posiliag & Condnon nogrilve ratia (DOR) Pr-l '_ '. o
_ - Specilicily (SPC), Selecliviy, True LA- 2 .
Faise nugalve rebs (FNAD. Miss rule , . AR LA receace 1 Fox
rwge.ve rabs [TRA) Negativa Ikelihcod rata |LR-| = g

£ False naqelive
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I True negave

https:/ /en.wikipedia.org /wiki/Receiver_operating_characteristic
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Matthew’s Correlation Coefficient

Given a Contingency Table:

Got well |Remained ill
Medicin 28 5
No Medicin 19 9

One of the commonly used measures of separation the MCC, which
(in this case) is the Pearson @, and related to the ChiSquare:

TP x TN — FP x FN
V(TP ¥ FP)(TP + FN)(TN + FP)(TN + FN)

MCC =

Read more at:
https:/ /en.wikipedia.org /wiki/Phi_coefficient

However, when optimising an algorithm and giving continuous
scores in the range ]0,1[, there are other things to consider (see talk on
Loss Functions).


https://en.wikipedia.org/wiki/Phi_coefficient

The linear analysis case
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Simple Example

Problem: You want to figure out a method for getting sample that is mostly male!
Solution: Gather height data from 10000 people, Estimate cut with 95% purity!

A

Male

Female

Cut




Simple Example

Additional data: The data you find also contains shoe size!
How to use this? Well, it is more information, but should you cut on it?

Male ) Male
Female | Female
\ Cut Cut?
A > — >
Height Shoe size

The question is, what is the best way to use this (possibly correlated) information!
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Simple Example

So we look if the data is correlated, and consider the options:

Cut on each var? Advanced cut? Combine var?
Poor efficiency! Clumsy and Smart and
hard to implement promising
A A A
WD) Q b
N N N
v v 7, ]
()] Q (4}
o 0 O
- - o
v w v
Male Male Male
Female Female Female
Cut? Cut? Cut?
» » »-
Height Height Height

The latter approach is the Fisher discriminant!

It has the advantage of being simple and applicable in many dimensions easily!
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Shoe size

Simple Example

So we look if the data is correlated, and consider the options:

Cut on each var? Advanced cut? Combine var?
Poor efficiency! Clumsy and Smart and
hard to implement promising
4 This is what we ol This is actually o1 This is the most
have been doing| .M how tree based B elegant way,
for many years! 9 methods works! @ when possible!
< <
» 7

Male Male

Female Female Female
Cut? Cut? Cut?

Height Height Height

Male

The latter approach is the Fisher discriminant!

It has the advantage of being simple and applicable in many dimensions easily!
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Separating data

Fisher’s friend, Anderson, came home from picking Irises in the Gaspe peninsula...
180 MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS

Table I
fris setosa {riz versicolor I'ris virginica j
Sepal | Sepal | Potal | Potal Sepul | Sspal | Polal | Petal | Sepal | Sepal - Detal | Potal

length | width | leuglh | widvh | length | width | length | width | length | width  length | width

51 35 1-4 0-2 -0 32 4-7 i4 63 33 60 2D
19 30 1-4 0-2 64 32 4-H 1-5 58 27 51 1-9
4-7 32 1-3 0-2 69 | 31 40 15 30 21
4-6 a1 15 Q-2 a5 | 23 440 1-3 29 l'g

/ “”‘ 1




Fisher’s Linear Discriminant

You want to separate two types/classes (A and B) of events using several

measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

F=wyg+w-x

Q: How to choose the values of w?
A: Inverting the covariance matrices:

| :. -. '1 - i
.' L r"
| - e
SRl & it
{.veF:- °
-

W= (Za+25)"" (Ga—iB)

This can be calculated analytically, and
incorporates the linear correlations into
the separation capability.

Iris Data (redesetosa, green«versicolor bluewvirginica)
oo . e o .i.“
s v .
. :‘. 4 r... L
Sepal.Length ¢ ":.” ' tr "
I AL R PR e
v w' ...—-..r' ' }: ‘r'e *"

"o

o
Sepal Width

et |
|

R AN
A

. H
' -
A
!
-ﬂ*;"l.
. "

Petal._ength

uf.{.
-
.j' Petalwidtr
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Fisher’s Linear Discriminant

The details of the formula are outlined below:

You have two samples, A and B,
that you want to separate.

For each input variable (x),
you calculate the mean (p),
and form a vector of these.

AN

@ = (Sa+32p) (fa— i)

Using the input variables (x),
you calculate the covariance
matrix (2) for each species
(A/B), add these and invert.

Given weights (w),
you take your input

variables (x) and \
_|_

combine them f’ — Wy
linearly as follows:

?17 . T F is what you base
your decision on.
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Fisher’s Linear Discriminant

The details of the formula are outlined below:

You have two samples. A and B

For each input variable (x),

that you want

W =

//

This is surprisingly close to
what Neural Networks do!

They just apply a non-linear
function to the result, and repeat! s

NOTE:

‘IO f"""""’.te the mean (u);

vector of these.

iB)

(x),

Nce

Given weights (w),
you take your input
variables (x) and
combine them
linearly as follows:

(A/B), add these and invert.

F

N

wo

—

W - T

F is what you base
your decision on.

68



Non-linear cases

While the Fisher Discriminant uses all separations and linear correlations,

it does not perform optimally, when there are non-linear correlations present:

O
Background

Signal

'\

Use Fisher

>
Xl

D

x

Don’t use Fisher

Background
Signal /

>
X]

If the PDFs of signal and background are known, then one can use a likelihood.
But this is very rarely the case, and hence one should move on to the Fisher.

However, if correlations are non-linear, more “tough” methods are needed...
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Tree based models



Decision tree learning

“Tree learning comes closest to meeting
the requirements for serving as an
off-the-shelf procedure for data mining”,

because it:
e isinvariant under scaling and various other transformations of feature values,
* is robust to discontinuous, categorical, and irrelevant features,
e produces inspectable models.

HOWEVER... they are seldom accurate (i.e. most performant)!

[Trevor Hastie, Prof. of Mathematics & Statistics, Stanford]

Again, for tabular data, I tend to disagree with the last statement!
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Decision Trees

A decision tree divides the parameter
space, starting with the maximal
separation. In the end each part has a
probability of being signal or
background.

e Works in 95+% of all problems!

® Fully uses non-linear correlations.

But BDTs require a lot of data for
training, and is sensitive to
overtraining.

Overtraining can be reduced by
limiting the number of nodes and

number of trees.

Decision trees are from before 1980!!!

™ 4

X

h

Background
Signal
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Boosting...

There is no reason, why you can not
have more trees. Each tree is a simple
classifier, but many can be combined!

To avoid N identical trees, one assigns
a higher weight to events that are hard
to classity, i.e. boosting:

Boost weight
First classifier P -

err
/ 1 A"::vlle-;:( on \

3/1'30-:15:(}() = ln[o,;) - h,A l:X:l

A collection

Parameters in event N Individual tree

Boosting is from 1997 (AdaBoost).

N A

X

Background
Signal
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Boosting...

There is no reason, why you can not X T
have more trees_Each tree is a simnle BaCI(gf Ou nd

classifier, but m

el JRETULN. ..

a higher weight

to classity, i.e. b{

increasing the weight /

First classifier

/ of misclassified entries| |x

IBooss (X ) =
]\7(' ollection ‘_" / \ /
Parameters in event N Individual tree \;0 y A
Q
x7>b th

Boosting is from 1997 (AdaBoost).
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Boosting illustrated

Boosting provides a reweighing scheme giving harder cases higher weights.
At the end of training, the trees are collected into an “ensemble classifier”.

1@ »
0 %0 A
O U. 00, @ @ o
0g790 ¢ —— 09 ® o
@O Q@O
Origiral Data Weighted data Weighted data
Ensemble
Classifer
Iz Vv
o000
‘ X 0000
_ 00000
00000
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Where to split?

How does the algorithm decide which variable to split on and where to split?
There are several ways in which this can be done, and there is a difference
between how to do it for classification and regression. But in general, one would

like to make the split, which maximises the improvement gained by doing so.

In classification, one often uses the average binary cross entropy (aka. “log-loss”):

N
1 R ~

n=1
Here, Yn, is the truth, while @n is the estimate (in [0,1]).

Other alternatives include using Gini coefficients, Variance reduction, and even
ChiSquare. However, in classification the above is somewhat “standard”.
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Housing Prices decision tree

Decision tree for estimating the price in the housing prices data set:

/

samples = 6986
value = 1963348.0471

AN

samples = 4941
value = 1530318.8873

J/

/

SCHOOL_DISTANCE_1 < 1695.405

mse = 9.79228685447e+11
samples = 3444
value = 1259853.806

CONSTRUCTION_YEAR < 1985.5

mse = 5.10892846075e+11
samples = 978
value = 9536961452

o

("SIZE_OF_HOUSE <235.5
mse = 4.99606026506e+12
samples = 1497

L value = 2152551.1784 )

(" POSTAL_CODE < 3680.0
mse = 3.68022716583e+12
samples = 1345

(" POSTAL_CODE <3110.0
mse = 1.16202252824e+13

 \

("SIZE_OF HOUSE < 144.5
mse = 2.36452076724e+12

L value = 2019988.1539 )

SIZE_OF_HOUSE < 462.0
mse = 1.3836907023e+13
samples = 7014
value = 2028954.3037

SPERRKET DSTICE
“Sarmareea.ia

vake o4

\

False

(" POSTAL_CODE < 7980.0
mse = 1.51080057315e+13
samples = 152

L value = 3325559.5197 )

CONSTRUCTION_YEAR < 1812.0
mse = 2.97888770906e+14
samples = 28
value = 18397715.3214

mse = 0.0

samples = 1
value = 74000000.0

v i

SUPERMARKET_DISTANCE_1 < 1224.845
mse = 4.37090668214e+11

samples =

value = 856331.2918

802

SIZE?OF?HOUSE <975
mse = 6.07151144402e+11
samples = 176
value = 1397370.0795

POSTAL_CODE < 3395.0
mse = 2.25780802539e+12
samples = 116
value = 3138769.319

CONSTRUCTION_YEAR < 1993.5
mse = 3.68519260761e+12
samples = 1229
value = 1914391.2335

(" POSTAL_CODE < 42305
mse = 4.84879610682¢e+12
samples = 100

\__ Vvalue =2580827.09 )

SUPERMARKET_DISTANCE_1 <2
mse = 3.17195326885e+1
samples = 52
value = 4757737.2692

/

/

/

\

/ 1\

/__\




Housing Type decision tree

Decision tree for determining, if a house will be sold for more or less than 2Mkr.

L BODE < 2350.0

 \ class =0 )

('SIZE_OF_HOUSE <755 )
gini = 0.4875
samples = 2477
value = [1434, 1043]

(POSTAL_CODE < 2975.0 )
gini = 0.3416
samples = 1638

True

value = [1280, 358]

L class =0

o

('SIZE_OF_HOUSE <88.5)
gini = 0.256
samples = 1221
value = [1037, 184]

L class =0 )

/

(POSTAL_CODE < 2550.0 )
gini = 0.193
samples = 989
value = [882, 107]

class =0

J

SIZE_OF_HOUSE < 116.5
gini = 0.4863
samples = 417
value = [243, 174]
class =0

POSTAL_CODE < 3395.0
gini = 0.4359
samples = 162
value = [52, 110]
class =1

VAN

T

POSTAL_CODE < 3395.0
gini = 0.376
samples = 255
value = [191, 64]
class =0

POSTAL_CODE < 3615.0
gini = 0.4521
samples = 7014
value = [2422, 4592]
class =1

POSTAL_CODE < 2695.0
gini = 0.2484
samples = 688

gini

POSTAL_CODE < 3085.0

samples = 110

=0.32

SIZE_OF_HOUSE < 98.5
gini =
samples = 52

0.4882

POSTAL_CODE < 3175.0
gini = 0.4717
samples = 126

CONSTRUCTION_YEAR < 1970.5

gini = 0.2173
samples = 129



XGboost - a neat little story!
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The HiggsML Kaggle Challenge

CERN analyses its data using a
vast array of ML methods. CERN
is thus part of the community
that developpes ML!

After 20 years of using Machine
Learning it has now become very
widespread (NN, BDT, Random
Forest, etc.)

A prime example was the Kaggle
“HiggsML Challenge”. Most
popular challenge of its time!
(1785 teams, 6517 downloads,
35772 solutions, 136 forums)

i90sIH the HiggsML challenge

nge
May to September 2014

When High Energy Physics maots Machine Learning

72 «Q‘




XGBoost history

History |[edit]

XGBoost initially started as a research project by Tiangi Chenl®! as part of the Distributed (Deep) Machine
Learning Community (DMLC) group. Initially, it began as a terminal application which could be configured
using a libsvm configuration file. After winning the Higgs Machine Learning Challenge, it became well known
in the ML competition circles. Soon after, the Python and R packages were built and now it has packages for
many other languages like Julia, Scala, Java, etc. This brought the library to more developers and became
popular among the Kaggle community where it has been used for a large number of competitions.[”)

Higge Boson Machina Learning Challenge

While Tiangi Chen did not win ., .

Higgs|
himself, he provided a method /el
used by about half of the teams, ... ou s totsins
the second place among them!

Use tre ATLAS egoenmert 1 genofy the MOrs dascn

Feardption Fimt Phaceo

For thiS, he gOt a special award s LR R e e
Frizes Second Place:
and XGBoost became instantly  smeemes - fim e i st i ot s o

Trekne Thied Flace

known in the community.

oted C, - Kreminbeatey, France with this code aind medel Josumantyion
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XGBoost algorithm

The algorithms is documented on the arXiv: 1603.02754

XGBoost: A Scalable Tree Boosting System

Tlanqi Chen
University ot Washingion

tcchen@cs.washington.edu

ABSTRACT

Tree boostayg is & higlly ellective and widey usel mechine
learning method. In this paper, we describe a scalable end-
to-emd tree boosting svetem called XCGHoost, which is usec
wodely Ly Cata scentists Lo aclueve stetssclethesarl resulls
on many machine learning challenges. We propose a nove
soarsity-aware algorizhm for sparse data snc weighted quan-
tile sketel for approxumate tree lsarning. Moce caportantly,
we provide insighss on cache access patterns, dase compres-
siom and sherding to build a scalable tres boosting system

By combining these osaglits, XG3oost scales beyond Dillions
of examples using, 2 tewer resources thar existing systems

Keywords

Larpe-scale Machine Learning

Carlos Guestrin
University of Washington

guestrin@cs. washington.edu

problcms. Besices being uscd os & stand-alonc predictor. it
i3 al=o incorporates into recl-world production pipelinzs for
ad click through rate predicsion [13. Finclly, 1t is the de
‘rote choice of cnsemble meshod and is used in challenges
guch as the Neatflix prize [3].

In this pepar, we describe XCBooat, a scalable machine
lcarning systuem for tree Doosting. The system is evailable as
an oper. source package’. The impact of the svstem has bean
widely reoognized (1 a number of machine Jeamning and data
miring challenges, Take tae challenges hoeted by the ma-
chine learning eompetition site Kaggle for example, Among
the 20 challerge winninz solutions * publlshed o Kazgle's
oleg during 2018, 17 colutions used XCBoost. Amaeng those
golutions, eight solely used XGBowst to train the modal,
while mcet others combined XCBooat with neursl nets i1 en
gernblee, For comparison, the second most popular method,

Anar wmaneal wends an ssnad e 11 calutlan- The scmnrns
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XGBoost algorithm

The algorithms is an extension of the decision tree idea (tree boosting), using
regression trees with weighted quantiles and being “sparcity aware” (i.e.
knowing about lacking entries and low statistics areas of phase space).

Unlike decision trees, each regression tree contains a continuous score on each

leaf:
tree1 tree2

N

Y _— ~—_N Y 7 TSN

- —— e ~.
<

3

+2 +0.7 -1 : 0.9
i Q )=2+09=29 f( & 1=-1-09=-1.9

Figure 1: Tree Ensemble Model. The final predic-
tion for a given example is the sum of predictions
from each tree.
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Time per Tres(sec)

XGBoost algorithm

The method’s speed is partly
due to an approximate but fast
algorithm to find the best splits.

32

Algorithm 1: Exact Greedy Algorithin for Split Finding

1B M Basic elgorithm
. v ’
| e |
2 - -3
1
C.5-
0.25 - . Sparsity aware alganthm
0.125 e
-.-"-_
0.0525 - ——_
0.03125- 1 4 n A 18
Number of Threads

Input: I, instance set of current node

Input: d, featurc dimension

gain « ()

(¢ Ejfm qi, H ¢ Z“_H h,

for k=1 te v do

Gr+ 0, H.+0

for 3 m sorted(I, by x;) do
Cre Gr gy, U o it hy
Gr+G—-Gr, Hp +— H — Hy.

G , Gh G2y

.  p— _
seore «— maxiseore, pouy o By - )

end
end
Qutput: Split with max score

Algorithm 2: Approximate Algorithm for Split Finding

for k — 1 to m do

Propuse Sy = {851, 8ep. - - - 8 } bv percentiles on festure £,
Propoesal can be done per tree (global), or per split{local).
end

for k=1 lowm do

Gy = L (o, o 255 04, 0-2) 9
Hr'-'i.' —= T ilj

i {8k v2Xqn 80 01}
end

Follow same step as in previous section Lo find max

score only among proposed splits. 34




XGBoost algorithm

In order to “punish” complexity, the cost-function has a regularised term also:

L£(9) =D Ui wi) + Y Qf)

where Q(f) = 4T + %)\Hw”z

Table 1: Comparison of major tree boosting systems.

Svstem exacth approximate | approximate out-of-core sparsity parallel
v greedy | global local aware

XGDBoost YCS YOS Yos yes YOS VS
pGBRT no no YOS no no VS
Spark MLLib | no ves no no partially ves
H20 no yes no no partially ves
scikit-learn YOS no no no no 1o

R GBM YOS no no no partially 1o
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XGBoost

As it turns out, XGBoost is not only very performant but also very fast...

The most important factor behind the success of XGBoost
is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.

But this will of course only last for so long - new algorithms see the light of day
every week... day?

shortly after

Meanwhile, LightGBM has seen the light of day, and it is even faster...
Which algorithm takes the crown: Light GBM vs XGBOOST?

Very good blog with introduction to tree based learning
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Neural Network models



Neural Networks (NN)

NIURING

NPUT LAVE=1 LAYER 2 ouru-

In machine learning and related fields, artificial neural networks (ANNSs) are
computational models inspired by an animal’s central nervous systems (in particular
the brain) which is capable of machine learning as well as pattern recognition.

Neural networks have been used to solve a wide variety of tasks that are hard to
solve using ordinary rule-based programming, including computer vision and
speech recognition.

[Wikipedia, Introduction to Artificial Neural Network] ”



A “Linear Network”

Imagine that we consider a “Linear Network”, and use the (simplest) architecture:
A single layer (linear) perceptron:

t(x) = ag + Z a;T;

As can be see, this is simply a linear regression in multiple dimensions or the
(linear) Fisher Discriminant.

Inpt Hicden Ot
Well, then we could consider putting in vayer e Aol
a hidden (linear) layer:

tt(x) = t(ag + Z a;T;) -

Clurpnt

However, this doesn’t help anything
as combination of linear functions remain linear. It boils down to the Fisher again!

What we need is something non-linear in the function...
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Logistic Regression

Though the word “regression” suggests otherwise, this is in fact a way of doing
classification, as the “regression” is usually for a score (s) in the interval [0,1].

1.00-
Q
A
g 0.50-
»
2 0.25-
0.00-
I | l | |
0 2 4 6 8
Hours Studied
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y (time to boundary)

Logistic Regression

Though the word “regression” suggests otherwise, this is in fact a way of doing
classification, as the “regression” is usually for a score (s) in the interval [0,1].

The model expands 1
s(x)

naturally with more == 1 4+ e (@—w0)/0x—(y—yo)/0oy
parameters:

Logistic Regression Model with decision threshold

- ., - =
2 »
. % " o 4 A
%
‘ L g - .v - :
HEN f e
.- e . »y
. SN R U
v:llm .. Q... . .'. W. -, -~ D E
5 o SIEESS e u) LA =
o -t » -
it '9".°;;§ R
%" 3 e A 2
ot - 2 o\c ‘e -
- Py -~ " v .8 Y /
o 98 g o wEEigTRe 5 04
oo Po o :. - . Q
( L] LAY - ® ’ ® A
o . % - ey ob0 =
- . o et 0 S = 04
..0:. A L ¢ : - 7, - 1 5
PR e ¢ o av®s ' W
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w . .
' » 0
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10 iC 0 40 5) 60 70 £0 : ) C y (tlme to boundary)

x (distance to boundary) X (distance to boundary)
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Neural Networks

Neural Networks combine the input y 1 o
variables using a “activation” function 1 s(x) = e
v ST 1 4 e~al@=zo) |

s(x) to assign, if the variable indicates 27 __

signal or background. 15 P

The simplest is a single layer perceptron: =< = , i
t(.fl?) =i (CLO + E CLi$i) -;l;' ._. Co ,_ Gl

This can be generalised to a multilayer lpu Hicclon Chil gl

laver layoer lzyver

perceptron (shown right, 1 hidden layer):

t(x)=s (ai + Z aihi(:z:)) _—
hz' (ZC) ] (”LU?;O —+ Z wija:j) [nput #2

[aout 73

Output
Activation function can be any
“sigmoidal” function. Fout. 44
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Neural Networks

Neural Networks combine the input
variables using a “activation” function
s(x) to assign, if the variable indicates
signal or background.

The simplest is a single layer perceptron:

t(x)=s (ao + Z az‘l’z‘)

(/“ \\
X1 )
w1l
) —
. \

— \ —
<x2\/ w2 < f(z WiX;) | (Y >
- W3 A \_/

N N
\
<,

11
] 1 —= —
1 s0) = e
1.0~ — — ’ .
; 1 4 e—a(z—z0) |
i J g ’::"..
5 §#
o N _— -
)
- y -
14 o ’
0 porr— | - ” . (-
| '
4T U 5 ¥ |
lapu Hic clon Cholpl
laver layoer lzyver
Input #1
Input #2
Output
[nput 773
[nput 774



Activation Functions

There are many different activation functions, some of which are shown below.
They have different properties, and can be considered a HyperParameter.

Activation Functions

Sigmoid Leaky RelLU
Yy — 1 max(0.1x, x)

o(x) = v _

tanh

Maxout

t.a,nh(:r:) max(w’f‘;r + by, wg x+ bz)

19

RelLU S
] T X : 0
ma.X(O, Q-) - § {(}'(r'ﬂ‘r —1) x<0

For a more complete list, check: https:/ /en.wikipedia.org/wiki/Activation_function

94


https://en.wikipedia.org/wiki/Activation_function

Normalising Inputs

While tree based learning is invariant to (transformations of) distributions,
Neural Networks are not. To avoid hard optimisation, vanishing/exploding
gradients, and differential learning rates, one should normalise the input:

20 ;
I ¥
| s e ®
| o oqe *
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Deep Neural Networks

Deep Neural Networks (DNN) are simply (much) extended NNs in terms of layers!

./ [lidden laver

N

jy ————————» 2, 44— T

Instead of having just one (or few)
hidden layers, many such layers are
introduced.

This gives the network a chance to
produce key features and use them
for many different specialised tasks.

Currently, DNNs can have up to
millions of neurons and
connections, which compares to
about the brain of a worm.
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Deep Neural Networks

Deep Neural Networks likes to get both raw and “assisted” variables:

hidden lagor 1 hidden Inger 2 hidden lngor %

input layer

» »

Xi bl » 2, 44—, Tage

ot
v
L

A

Shallow networks Deep networks

Introduction to Neural Networks .
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The role of NNs

The reason why NNs play such a central role is that they are versatile:

e Recurrent NN (for time series)

e Convolutional NNs (for images)
e Adversarial NNs (for simulation)
e Graph NNs (for geometric data)
® ctc.

Unlike trees, NNs typically make the “foundation”
of all the more advanced ML paradigms. However,
they are harder to optimise!

This is why trees a great for simpler tasks (i.e. data
that typically fits into an excel sheet [2110.01889]),

while NN are typically used for the more advanced.

Have this in mind, when you attack problems with
ML - and like any other project or analysis, it is
typically good to get a “rough result” fast, and then
to refine it from there.
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Method’s (dis-)advantages

Another comparison is done in Elements of Statistical Learning II (ESL II), where linear

methods are not included.

As can be seen,
Neural Networks are
“difficult” in almost
all respects, but
performant.

For trees, the case is
almost the opposite.

However, I don’t agree
with the evaluation

of the predictive power
of trees.

At least not for normal
structured data.

For tabular data, I disagree!

Chiaracteristic Neural] SVM | Trees | MARS | k-NN,
Nels= Kernels

Natural handling of data v v A A v

ol “mixed” type

Handling of missing values v v A A A

Rabustness to outliers in A 4 v A v A

input spacc

Inscnsitive to monotonac A 4 v A v A 4

transformarions of inputs

Compurational scalability 4 v A A v

(large N)

Ability to deal with irrel- v v A A v

evant inputs

Ability to extract linecar A A v v

comtbinations of features

Intcrpretability v v A v

Pv‘ 11 ~t3vn :'. ~TI-ny ‘ ‘ ) v ‘

...and others do too [https:/ /arxiv.org/abs/2110.01889]

From ESL II, Chapter 10.799




Ensemble method

Different methods have different advantages, and for that reason the very best
performance is often obtained by “ensemble methods”.

Here, several different ML methods are used on data, and subsequently their
results are combined in a new “ensemble” ML algorithm (or by voting!), which
benefits from all the advantages.

These have lately been the most performant methods (i.e. winning competitions).
However, they are cumbersome (you have to optimise many methods), and
typically a single method reaches close to the information limit.

Y Model-1
----- i ‘4  Model-2 votin -
1 Caravnon 4 l!-ul---l-l(.!-)ul l > Final
’ ) Moded Predcton) Prediction
Dataset
. st
Outanset A Model-N
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Loss functions
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What loss function to use?

The choice of loss function depends on the problem at hand, and in particular

what you find important!

In classification:

* Do you care how wrong the wrong are?

e Do you want pure signal or high efficiency?

e Does it matter what type of errors you make?

In regression:

* Do you care about outliers?

* Do you care about size of outliers?
* s core resolution vital?

Classification

Log Loss

Focal Loss

KL Divergence/

Relative

Entropy

Expanential

LOSS

Hinge Loss

Regression

L

Absolute Error

Mean Sguare
Error/
Quadratic Loss

Vean Absolute
Error

Huber Loss/
Smocth Mean

Log cash Loss

Quantile Loss




What loss function to use?

The choice of loss function depends on the problem at hand, and in particular

what you find important!

Loss functions for classification

—Logistic
———Expanential

—Hinge
e ZETO-ONNE

i

) 1

3 2 -1 0 1 2 3
Correctness (Ypred * Yirue) With yerue € [-1,1]

Classification

Log Loss

Focal Loss

KL Divergence/

Relative
Entropy

txponential
Loss

Hinge Loss

Regression

—

: Mean Sguare

Errar/

Quadratic Loss

Vean Absolute
Error

Huber Loss/

Smonth Mean

Absplute Error

Log cash Loss

Quantile Lnss




What loss function to use?

The choice of loss function depends on the problem at hand, and in particular
what you find important!

Loss functions for classification

—Hinge
——Loglstic
—— Expanential
—Zero-One

Classification

Log Loss ‘

Regression

: Mean Sguare

Errar/

Quadratic Loss

Binary Cross Entropy (aka. Logloss or Logistic Loss):

n=1

N
1 . -

N\

C 1

]

3 2 -1 0 1 2 3
Correctness (Ypred * Yirue) With yerue € [-1,1]

| Exponential

LOSS

Hinge Loss

Lt

Log cash Loss

Quantile Loss
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Unbalanced data

If the data is unbalanced, that is if one outcome/target is much more abundant

than the alternative, case has to be taken.

Example: You consider data with 19600 (98%) healthy and 400 (2%) ill patients.

An algorithm always predicting “healthy” would get an accuracy score of 98%)!

In this case, using Area Under Curve (AUC) or F1 for
loss is better. An alternative is “focal loss”, which
focuses on the lesser represented cases:

Binary Cross Entropy loss:

N
Z Yn 10g G + (1 — yn) log(1 — gn)]

Focal loss:

N
1 A
= § (1 —a)y)logn + (1 —yn)7 log a(l — §y,)]
n=1

BCE loss:

Focal loss:
(a=0.25, y=4)
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What loss function to use?

The choice of loss function depends on the problem at hand, and in particular

what you find important!

Loss functions for regression

g
Squarad
4.5 —— Absolute
——Log-Cosh
4 ——Huber (§=5)
——Huber (5=1}

w
($9 ]

()

N
on

-3 -2 -1 0 |
Error (Ypred - Ytrue)

Discussion of regression loss functions

Classification

Log Loss

Focal Loss

KL Divargence/f

Relative
Entropy

txponential
Loss

Hinge Loss

Regression

L

: Mean Sguare

Errar/

Quadratic Lass

Vean Absolute
Error

Huber Loss/

Smocth Mean

Absplute Error

Log cash Loss

Quantile Lnss
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What loss function to use?

The choice of loss function depends on the problem at hand, and in particular

what you find important!

Loss functions for regression

Squared
—— Absolute

Log-Cosh
—Huber (4=8)
—— Huber If(i:‘l “I

-3 -2 -1 0 |
Error (Ypred - Ytrue)

N F

Discussion of regression loss functions

Squared Loss:

e Most popular regression loss function

e Estimates Mean Label

e ADVANTAGE: Differentiable everywhere
e DISADVANTAGE: Sensitive to outliers

Absolute Loss:
e Also a very popular loss function
e Estimates Median Label
e ADVANTAGE: Less sensitive to noise
e DISADVANTAGE: Not differentiable at O

Huber Loss:

e ADVANTAGE: "Best of Both Worlds"
of Squared and Absolute Loss.
e DISADVANTAGE: Only once-differentiable

LogCosh Loss:

e ADVANTAGE: "Best of Both Worlds"
of Squared and Absolute Loss.

e ADVANTAGE: Similar to Huber Loss,
but twice differentiable everywhere.

107


https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0

What loss function to use?

The choice of loss function depends on the problem at hand, and in particular

what you find important!

In classification:

* Do you care how wrong the wrong are?
e Do you want pure signal or high efficiency?
 Does it matter what type of errors you make?

In regression:

* Do you care about outliers?

* Do you care about size of outliers?
* s core resolution vital?

Ultimately, the loss function should be
tailored to match the wishes of the user.
This is however not always that simple,
as this might be hard to even know!

~ Expanential

Les

(=]

<055

Focal Loss

KL Divergence/
Relative
Entropy

LOSS

Hinge Lass

Absolute Error

Classification

Mean Sguare
Error/
Quadratic Loss

WVean Absolute
Error

Huber Loss/
Smonth Mean

Log cash Loss

Quantile Loss
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XGBoost algorithm

In order to “punish” complexity, the cost-function has a regularised term also:

L£(9) =D Ui wi) + Y Qf)

where Q(f) = 4T + %)\Hw”z

Table 1: Comparison of major tree boosting systems.

Svstem exacl approximate | approximate olt-of-core sparsity parallel
v greedy | global local aware

XGDBoost YCS YOS Yos yes YOS VS
pGBRT no no YOS no no VS
Spark MLLib | no ves no no partially ves
H20 no yes no no partially ves
scikit-learn YOS no no no no 1o

R GBM YOS no no no partially 1o
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XGBoost algorithm

In order to “punish” complexity, the cost-function has a regularised term also:

L(9) =D 15y + Y )

where Q(f) = 4T + %Auwn?

Table 1: Comparison of major tree boosting systems.

Qvstem exac?. approximale | approximate R sparsily parallel
v greedy | global local | aware

XGDBoc . . .

oaprr| Generally, all constraints or priors should be included

:[P;gk M into the model through additions to the loss function.

scikit-lecarn yos ﬁo no no no | 1o

R GBM yes no no no partially 1o
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Train, Validation & Test
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Test for simple over-training

In order to test for overtraining, half the sample is used for training, the other for testing:

TMVA overtraining check for classifier: BDT_0pOm_2e2mu

-é 3.5 f-ISig'na'I (t('est Eallnplle) L S‘gn'al (irai'nin'g s'am'ple') o
% /| Background (test sample) » Background (training sample)
E 3 —Kolmogorov-Smirnov test: signal (background) probabili 0.137 ( 0.87) —]
< r =
25 =

C 42

= - o

2 —s

- Je

— H4<

1.5 — =

- 1=

L e

- Ja

11— —1<

£ ul)

0.5 =

2 F 13

- 1%

C 19

0 H S

06 04 0.2 0 0.2 0.4
BDT_OpOm_2e2mu response 112



Test for simple over-training

In order to test for overtraining, half the sample is used for training, the other for testing:

TMVA overtraining check for classifier: BDT_0pOm_2e2mu

B Signal (Gstbample) T

fad

T 35
=

= 3
&
=

2.5

2

1.5

1

0.5

« Signal (training sample) '

" { Background (test sample) * Background (training sample)

—Kolmogorov-Smirnov test: signal (background) probability;= 0.137 ( 0.87)

L =

However, “weak” over-training in itself is not a
“sin”, as long as one is aware that the performance
in a new dataset will follow that of the test sample,

NOT the training sample.

!A.||||||||

e L e - e Ay o s s A s

0. 0.4 0.2 0 02 04
BDT_OpOm_2e2mu response

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%
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Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

- Traming error
— CV error

o4} undertraining

- l\ some aver training
\\ optimal
\T\gﬁm,_‘_m s m NN AN AN

SCOre
o

Performance of the classifier

\
\
\

S
N clear over training

Some overtrdining is good!

ol |

50 100 150
max_leat_noses Cornp]exity of the classifier
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The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

Real overtraining

Pelfcmpance of the classifier

Some overtrdining is good!

Trammng error
— CV error
o4t undertraining
. Why does the red
03 f| ..
| Someovertraining curve reach zero?

\:\ optimal

L)

. clear over training

ol

\‘\L ‘NW‘WWM
\l\ ’*—r\l"‘— A ) M v»/“—i"“\"-

50 100 150
max_leal_nocses

Complexity of the classifier
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The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

Real overtraining

Perfcmpance of the classifier

L)

-Oll

!

\
\t\

\\ "‘{\—r\r-‘-w*—m. PO e i AT LT

Some overtrdining is good!

undertraining

some aver training

optimal

\
\

Trammng error
CV error

Why does the red
curve reach zero?

Iy

From: Ian Goodfellow et al: “Deep Learning” I

50

max l2al nodes

100

150

Complexity of the classifier
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Real overtraining

The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

Trammng error
— CV error

(]
I N

undertraining

some aver training

\ optimal
|

"™ b
T \ — iy
\ - A+\--'\,——-—w AL NNV AR A AA

sSLove

Performance of the classifier

So how can we know, when to stop
| increasing the complexity of our

Some overtrdining is good! algorithm?
(i.e. including more trees for BDTs)

o |
50 100 150

max st nozes Complexity of the classifier
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Dividing Data



How to “use” your data?

If you train you algorithm on all data, you will not recognise overtrain, nor what
the expected performance on new data will be. Thus we divide the data into:

Train Dataset
* Set of data used for learning (by the model), that is, to fit the parameters to
the machine learning model using stochastic gradient descent.
Valid Dataset
* Set of data used to provide an unbiased evaluation of intermediate models
fitted on the training dataset while tuning model parameters and
hyperparameters, and also for selecting input features.
Test Dataset
* Set of data used to provide an unbiased evaluation of a final model fitted

on the training dataset.

Train Valid Test
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How to do the division?

You can of course do this yourself with your own code, but there are specially
prepared functions for the task:

Scikit-Learn method:

from sklearn.model_selection import train_test_split

X_train, X_rem, y_train, y_rem = train_test_split(X, y, train_size=0.8)

X_valid, X_test, y_valid, y_test = train_test_split(X_rem, y_rem, test_size=0.5)

Fast ML method:

from fast_ml.model_development import train_valid_test_split

X_train, y_train, X_valid, y_valid, X_test, y_test =

train_valid_test_split(df, target = *?, train_size=0.8, valid_size=0.1, test_size=0.1)

There are a few important things to remember:

e Always do the data cleaning, selecting, weighting, etc. before splitting!
e [f there is “more than enough” data, then use less than the total.

o If there is “a little too little” data, then use cross validation (next).

12(



k-fold Cross Validation

In case your data set is not that large (and perhaps anyhow), one can train on
most of it, and then test on the remaining 1/k fraction.

This is then repeated for each fold... CPU-intensive, but easily parallelisable and
smart especially for small data samples.

Dataset
Fold1 Fold2 Fold3 Fold4 Foldd  Foldk

» Split the dataset into k randomly sampled independent subsets (folds).
» Train classifier with k-1 folds and test with remaining fold.

» Repeat k times.
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Getting an uncertainty estimate

The k-fold cross validation (CV) does not only allow you to train on almost all

(1-(1/k)) and test on all the data, but also has a two additional advantages:

e If you consider the performance (“Error” below) on each fold, then you can
also calculate the uncertainty on the performance.

e Since you can test on all data, the uncertainty on the loss estimate goes down.

Training Sets Test Set

_ |

\(
Iteration 1 p» Erron
Iteration 2 » Error;
Iteration 3 » Error, | FError= ;Z Erron

: (=1

Iteration 4 » LTTOT,
lteration 5 » ETTOTS




Why use CV?

The k-fold cross validation (CV) allows you to get a better error estimate and
knowledge of the uncertainty.

Imagine that you train N different models (different type, HPs, training, etc.),
and that you get results as shown:

You conclude that model #2 is best.
However, you don’t know, that the

uncertainties are rather large, because
your test sample (20%) is small! n | il
H

Loss >

Then you do 5-fold CV... and get
a more accurate evaluation with
smaller uncertainties (by factor

1/sqrt(5)).

Now you conclude, that model #1 is
the best... and that model #2 is worst! 1 2 3 N



Why use CV?

The k-fold cross validation (CV) allows you to get a better error estimate and
knowledge of the uncertainty.

Imagine that you train N different models (different type, HPs, training, etc.),
and that you get results as shown:

Note that Cross Validation especially applies mostly to
You conclud three cases:

However, y{ ® When there is little (test) data.

uncertaintie ® When you want uncertainty on performance.

your test sal ® When accurate performance measure is wanted, N
e.g. to find the very best model.
Then you d«
a more accu| At very high statistics, Cross Validation is less relevant.

smaller uncertainties (by factor
1/sqrt(5)).
Now you conclude, that model #1 is | | : : Mgdel #

the best... and that model #2 is worst! 1 2 3 N
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CV for time series

Special care has to be taken, when doing Cross Validation for time series, as one
should ensure that training is done only on data from the past, not the future!

The figure below illustrates the principle. One should choose a certain data
period, and put the test period immediately after, and then shift this setup.

Data

!

Train Test

i

Train Test

Train Test

'
'

Train Test
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Preprocessing Data
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When data is imperfect

So far, we have looked at “perfect” data, i.e. data without any flaws in it.
However, real world datasets are hardly ever “perfect”, but contains flaws that
makes preprocessing imperative.

Effects may be (non-exhaustive list):

e NaN-values and "Non-values" (i.e. -9999)

Wild outliers (i.e. values far outside the typical range)

Shifts in distributions (i.e. part of data having a different mean/width/etc.)
Mixture of types (i.e. numerical and text, from something humans filled out)

It is also important to consider, if entries are missing...
1. Randomly (in which case there should be no bias from omitting) or
2. Following some pattern (in which case there could be problems!).

In case of NaN values, we might simply decide to drop the variable column or
entry row, requiring that all variables/entries have reasonable values.

Alternatively, we might insert “imputed” values instead, saving statistics.
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NaN-values tend to correlate

It is often seen, that several variables have the same source, and thus their NaN
occurrence might be correlated with each other.

This can be tested by substituting 0’s for numerical values and 1’s for NaN
values. By considering the correlation matrix of these substitute 0/1 values, one
gets a pretty clear picture. DR Sn e Rtee e

Typically, some entries are 100%
correlated, as the source of these
variables is shared.

Based on this information, one can
better decide how to deal with these
variables.
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How to deal with outliers?

Sometimes, (a few?) entries take on extreme values, which ruin either the NN
performance, or the transformation applied first (and then the performance).
How to deal with that?

("’J. -
Make (very loose) truncations...

(\! -
>
B
=
1))
O

o T T T I

5 0 5 10
lognlevel
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How to deal with outliers?

Sometimes, (a few?) entries take on extreme values, which ruin either the NN
performance, or the transformation applied first (and then the performance).
How to deal with that?

(o I
Make (very loose) truncations...
A -
However... don’t do so until you suspect it
to be causing problems. Even extreme values
_ | are often “tamed” in BDTs or by sigmoids.
o T —

lognlevel
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Conclusions

No matter what you plan to do with data, my first advice is always:

Print & Plot

This is your first assurance, that you even remotely know what the data
contains, and your first guard against nasty surprises.

Also, working with others (from know-nothings to domain experts) you will be
required to show the input, and assuring that it is valid and makes sense.

Remember to do so in all your ML work...
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Domain Adaptation
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Domain shift dangers

Domain shift refers to training an ML algorithm on one set of data (domain)
and then applying it on another different data set (shift in domain).

Domain adaptation is ensuring that the trained model works on new data.

Labeled Source I llu-ll d Souroe th \n arget

Train l

¥

Wi Pre-trained‘ Adapted ‘
Model Tran-;g [ Model Model J
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Domain shift dangers

The dangers are, that one does not know of or notice the domain shifts!

In order not to become a “domain shift victim”, one should:

e Plot the input variables for MC signal and background, with data on top,
as shown below (though for ML output).

e If possible, use a Tag&Probe technique to get the signal and background
distributions in data, and compare these (possibly also correlation matrix).

Histogram of the logit values

However, even if all of these are (MCTruth trained, ePid]

on top of each other, then there is :‘3; 00— ALAS Simuation O3 Choctons, MC

no guarantee that data and MC is o e

alike. _— .

Simulating from first principle is 'r\

what makes us hopeful that it is. J /

The real test is to see, if you can . /

classify between data and MC! - e ~ ‘\\
N28 2100 75 B0 25 00 25 50 s

| ogit value 134



Domain shift dangers

How about getting signal from MC but background from data? Then the
algorithm should become good at rejecting background as it looks in data.

Well, not only that. If it is possible for the model to (also) detect differences
between data and MC, then it partially learns to reject events that looks like
data.

Thus, when employed on real data, it is less effective even to signal!

135



Finding data-MC differences

How to find differences between data and MC? The usual answer: Use ML!
More specifically, find a clean and relevant control sample, and compare.

Here is an example (from cosmic muons in IceCube)... clearly different!

1.C

0.4

True Positive Rate

0.2

0.C

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

But are the differences related to learning to ID and reconstruct these muons? 136



Mending data-MC differences

The first step is to reweighs MC to match data in the most important
features, such as energy and direction. How? Use ML (GBReweighter).
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Mending data-MC differences

The next step is to check which variables are the most “guilty” in the
differences, given by the feature ranking of the data-MC ML classifier.

Recall, this can be done in many ways:

e SHAP values (also giving individual scores)
e Permutation invariance

® Build in methods

From such a ranking, one can see which variables to inspect. The challenge
is, that if all 1D distributions match, then the corrections need to be done in
higher dimensions!
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Mending data-MC differences

This is all hard work, but consider ML a helper to speed up the process

(compared to earlier days). It is somehow the “inverse ROC game”.

True Positive Rate

0.6

<
P

0.2

0.0

0.0

Summary ROC Curves With Noise In Triggered Time

Improvement in data-MC

correspondance

-=== ROC: Unmerged + Time Noise (AUC=0.894)

--== ROC: Merged + Time Noise (AUC=0.848)

-=== ROC: Merged + Noise & HLC (AUC=0.758)
ROC: Merged + Noise & SLC (AUC=0.782)
Random Guessing

0.2 0.4 0.6 0.8 1.0

False Positive Rate
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Mending data-MC differences

At some point (well, the end), we reached this stage:

SLC Merged

What do you conclude?
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Training in/with data

[s it possible to train models on the real data? In particle physics, the answer
is often “yes”, though it is rarely easy.

Think about how we calibrate /check our PID /reconstruction. We typically
use a control channel with a known decay and resulting mass peak.

This can be used in a “reverse” manner: Given the known PID/energy of
particles in real data, train on these!

The labels are of course approximate and the training sample finite (small?).
This can be mitigated using “hybrid training” (yet to be published):

Train on data and MC simultaneously:

L="Lpuin+ Lyc = Z £(?)Data,z’ — yData,i) + Z E(?)Mc,i — yMC,z’)

1€Data 1€eMC
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When to apply ML?



When to use ML in HEP?

Using ML in an analysis is usually a (favorable) trade-off between:
e Higher statistics — Lower statistical error

(better efficiency, sharper peaks...

unless the cases are simple!)

e Larger data-MC differences — Higher systematic errors

(more inputs, non-linearities...

unless there are good control channels!)

So consider the table of uncertainties from a previous analysis (or estimate
these with a colleague), and ask yourself which of the two are dominant?

Jet multiplicity Measured cross section
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With this in mind, consider if it is worthwhile to apply Machine Learning.

Search for Higgs boson decays to a Z boson and a photon
in proton-proton collisions at \,'5 = 13 TeV
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Coding examples



Example analysis

I've produced a HEP example of classification based on the Aleph data from

LEP times (with BDTs and NNs applied).

It runs out of the box, and you are welcome to copy it for your own use :-)
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https:/ / github.com / troelspetersen / CERNSchoolOfPhysics_MI1.2024
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https://github.com/troelspetersen/CERNSchoolOfPhysics_ML2024

Summary
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Summary

The main ingredients in ML are:
e Solutions exists (Universal Approximation Theorems)
¢ Solutions can be found (Stochastic Gradient Descent)
e Algorithms that are implemented:
- Boosted Decision Trees
- Neuralt Networks
e Knowledge about how to tell them what to learn (Loss function)
e A scheme for how to use the data (Splitting/Cross Validation)

When applying ML to HEP data, there are several challenges:
e Data and MC do not follow the same distributions!!!

- Sometimes it is clear: Spells disaster

- But when it is not clear, then the impact is unknown.

- Therefore, always think in turns of control channels.
* Loss functions are important

- They are your way of telling the algorithm what to do (i.e. optimise for).

e Training is great, but stopping when it is done is also important.
* Good control of dividing dataset is important

- Use Cross Validation (CV) when there is little data or errors are needed.

e Print and plot your data as the first thing!
* Work hard on getting MC to match data.
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1987: First ML in HEP?

While this is incredibly ahead of its time, it also shows the sign of being early...

NEURAL NETWORES AND CELLULAR AUTOMATA
IN EXPERIMENTAL HIGH ENERGY PHYSKS
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On the right is a figure showing a possible
neural network implementation in
hardware!

While seemingly premature, this might be
the first FPGA design envisioned!
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Fig. 3. Schematc of a fully connected neiwork. Neurons

represented a3 amplfiers, have normal and inveried outputs,

for making reinforcing and inhikitive connections, respectively.

The network shown is fully conneccted, with signs of connec-

tons zssigaed at rancom. Note the absence of connections
along the dizgenal.




