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Troels C. Petersen (NBI)

“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”



| Entries 3784

On a dark and stormy afternoon in Paris,
while working on my Ph.D. (October 2002):

120

80

“" |

."Background “ J w Fﬁ Signal
40 o ar
J | JH Uf;rw l
20 JU lJ h J
a0
DI 05 Sk a2 e i a4 e ol.z‘;:‘

D' Neural Net output (generic MC)




Applied Machine Learning Overview of subjects
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https://arxiv.org/pdf/1611.08097.pdf
https://en.wikipedia.org/wiki/Overfitting
https://lvdmaaten.github.io/tsne/
https://umap-learn.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://towardsdatascience.com/introduction-to-data-preprocessing-in-machine-learning-a9fa83a5dc9d
https://en.wikipedia.org/wiki/Feature_selection
https://github.com/slundberg/shap
https://en.wikipedia.org/wiki/Domain_adaptation
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Input feature ranking
Unsupervised Learning
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- Dimensionality reduction

- AutoEncoders

Why is image data special?
Convolutional Neural Networks (CNN)
- Filter convolutions

- Adding attention to a CNN

- An example analysis with a CNN
What is a graph?

Graph Neural Networks (GNN)

- Motivation for GNNs

- From data to graphs

- Edge convolutions

- Transformers

- An example analysis with GNN
Dreaming...




Feature Ranking



ML as a science

While Machine Learning is fantastic, it is a black box, and thus unsatisfactory
both regarding understanding it, and as a science in itself.

"As a data scientist, I can predict what is likely to happen, but I cannot explain why it
is going to happen. I can predict when someone is likely to attrite, or respond to a
promotion, or commit fraud, or pick the pink button over the blue button, but I cannot
tell you why that’s going to happen. And I believe that the inability to explain why

something is going to happen is why I struggle to call "data science’ a science.”
[Bill Schmarzo, Author of "Big Data: Understanding How Data Powers Big Business”]

However, there are ways of “opening the box”, and the most common one is to
find out, which input features are important and which are not.

For more info, see:
Interpretable Machine Learning

A Guide for Making Black Box Models Explainable.

Christoph Molnar


https://christophm.github.io/interpretable-ml-book/index.html

Input Feature Ranking

It is of course useful to know, which of your input
features/variables are useful, and which are not.
Thus a ranking of the features is desired.

This is not only possible, but actually a general nice
feature of ML and feature ranking:
It works as an automation of the detective work
behind finding relations.

In principle, one could obtain a variables ranking by
testing all combinations of variables. But that is not
feasible in most situation (N features > 5-7)...

Most algorithms have a build-in input feature
ranking, which is based on various approximations.

A very simple idea (next slide) that works quite well is
“permutation importance”.




Input Feature Ranking

There are many different ways of ranking input
features. Three (simple) implementations into
XGBoost are:

e Weight. The number of times a feature is used to
split the data across all trees.

e Cover. The number of times a feature is used to split
the data across all trees weighted by the number of
training data points that go through those splits.

e Gain. The average training loss reduction gained
when using a feature for splitting.

These have different pro’s and con’s.

Personally, I much like the idea of...
“permutation invariance”




Permutation Importance



Permutation Importance

One of the most used methods is “permutation importance” (below quoting
Christoph M.: "Interpretable ML" chapter 5.5). The idea is really simple:

We measure the importance of a feature by calculating the increase in the

model’s loss function after permuting the feature.

e A feature is “important” if shuffling its values increases the model error,
because in this case the model relied on the feature for the prediction.

e A feature is “unimportant” if shuffling its values leaves the model error
unchanged, because the model thus ignored the feature for the prediction.


https://christophm.github.io/interpretable-ml-book/feature-importance.html

Permutation Importance

One of the most used methods is “permutation importance” (below quoting
Christoph M.: "Interpretable ML" chapter 5.5). The idea is really simple:

We measure the importance of a feature by calculating the increase in the

model’s loss function after permuting the feature.

e A feature is “important” if shuffling its values increases the model error,
because in this case the model relied on the feature for the prediction.

e A feature is “unimportant” if shuffling its values leaves the model error
unchanged, because the model thus ignored the feature for the prediction.

Height at age 20 (cm) Height at age 10 (cm) Socks awned at age 10
182 155 ; 20
175 147 10
156 142 8

153 130 24


https://christophm.github.io/interpretable-ml-book/feature-importance.html

Permutation Importance

Input: Trained model f, feature matrix X, target vector y, loss function L(y,f).

e Estimate the original model error eqig = L(y, £(X))

e For each featurej=1,...,p do:

[Fisher, Rudin, and Dominici (2018)]

— Generate feature matrix Xpermj by permuting feature j in the data X.
This breaks the association between feature j and true outcome y.
— Estimate error eperm;j = L(Y,f(Xpermj)) based on the predictions of Xperm,j.
— Calculate permutation feature importance Flj= €perm,j/ €orig (OT €perm,j - €orig)-
* Sort features by descending FI;.

X_A X_B X_C Y
xal b1 xcf /1
XA’ xh7 xir? /7
xaJd xb3 xcd ¥3
xad xk4 i /4
Xdd xb& xed /5
Xao xE6 xcb /6

Note: Permutation Importance calculations are computationally fast. (why?)

Feature importance with Neural Networks (Towards Data Science)



https://towardsdatascience.com/feature-importance-with-neural-network-346eb6205743

SHAP Values



SHAP Values

SHAP is a technique for deconstructing a machine learning model's
predictions into a sum of contributions from each of its input variables.

The result is an evaluation of the input variables for each single case!



Shapley values

Shapley values is a concept from corporative game theory, where they are
used to provide a possible answer to the question:
“How important is each player to the overall cooperation,
and what payoff can each player reasonably expect?”

The Shapley values are considered “fair”, as they are the only distribution
with the following properties:
e Efficiency: Sum of Shapley values of all agents equals value of grand coalition.

® Linearity: If two coalition games described by v and w are combined, then the
distributed gains should correspond to the gains derived from the sum of v and w.

* Null player: The Shapley value of a null player is zero.
* Stand alone test: If v is sub/super additive, then ©i(v) < /> v({i}), where ¢ is

the Shapley value for agent i, and v is the worth function (of a coalition). Also called
“Monotonicity”: A consistently more contributing feature much a get higher v.

* Anonymity: Labelling of agents doesn't play a role in assignment of their gains.

* Marginalism: Function uses only marginal contributions of player i as arguments.

From such values, one can determine which variables contribute to a final result. And
summing the values, one can get an overall idea of which variables are important.



Shapley value calculation

Consider a set N (of n players) and a (characteristic or worth) function v that
maps any subset of players to real numbers:

vy 22 SRSy =10

If S is a coalition of players, then v(S) yields the total expected sum of payoffs
the members of S can obtain by cooperation.

The Shapley values are calculated as:

)= Y B EIE D 50 40y~ w(s)

SCN\{i}

To formula can be understood, of we imagine a coalition being formed one
actor at a time, with each actor demanding their contribution v(S U {i}) — v(S)
as a fair compensation, and then for each actor take the average of this
contribution over the possible different permutations in which the coalition
can be formed.



Shapley value calculation

Consider a set N (of n players) and a (characteristic or worth) function v that
maps any subset of players to real numbers:

vy 22 SRSy =10

If S is a coalition of players, then v(S) yields the total expected sum of payoffs
the members of S can obtain by cooperation.

The Shapley values can also be calculated as:
1 .
pi(v) = — > P u{i}) —o(P)]
" R

where the sum ranges over all n! orders R of the players and PR is the set of
players in N which precede i in the order R. This has the interpretation:

1 marginal contribution of ¢ to coalition C

pi(v) = NplayeI‘S el number of coalitions excluding 7 of this size



Shapley value calculation example

Example 1:

Two friends (F1 and F2) make a business: Payoff 600$ (i.e. v(F1,F2) = 600).
If F1 or F2 did not participate, payoff would be 0% (i.e. v(F1) = v(F2) = 0).
Result: F1 and F2 each gets 300%$.

Example 2:
Two friends (F1 and F2) make a business: Payoff 600$ (i.e. v(F1,F2) = 600).
If F1 did not participate, payoff would be 0% (i.e. v(F1) = 0).
If F2 did not participate, payoff would be 200% (i.e. v(F2) = 200).
Cases:
F1 1st gets 0$. With F2 also they get 600$. F2’s marginal contribution: 600$.
F2 1st gets 200$. With F1 also they get 600$. F1’s marginal contribution: 400%.
Result:
F1 should have: 0.5x 0% + 0.5 x400% =200%
F2 should have: 0.5 x 200$ + 0.5 x 600% = 400%

Note that the number of cases quickly expands!



SHAP Values

A great approximation was developed by Scott Lundberg with SHAP values:

SHAP (SHapley Additive exPlanations):
https:/ / github.com /slundberg/shap

This algorithm provides - for each entry - a ranking of the input variables, i.e.
a sort of explanation for the result.

One can also sum of the SHAP values over all entries, and then get the overall
ranking of feature variables. They are based on Shapley values.

Note: SHAP values are computationally “heavy”.
Note2: Lately, this seems to have been improved in 2023!


https://github.com/slundberg/shap

Input Feature Ranking

Here is an example from SHAP’s github site.

Clearly, LSTAT and RM are the best variables (whatever they are!).

shap.sumnary_plot{shap_values, X, plot_type="bar")
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https://github.com/slundberg/shap

Individuel estimates

Shapley-values also gives the possibility to see the reason behind individuel
estimates. Below is an example, illustrating this point.
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Above is shown which factors that influences the final estimate of the sales price
(and how much). The estimate is the sum of the contributions (here 6.86 MKz.).

This is a fantastic tool to get insight into the ML workings!!!




Example of usage



Input Feature Ranking

Here is an example from particle physics. The blue variables were “known”,
but with SHAP we discovered three new quite good variables in data.

p_Rhad

p_Reta

p_Rhadl

p_nTracks
p_deltaEtal
p_core57cellsEnergyCorrection
p_Eratio

p_Rphi
p_deltaPhiRescaled2
p_E7x11_Lr3
p_TRTPID

p_EptRatio

p_weta2
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p_dPOverP

p_wtotsl

p_E3x5 Lrl
p_E3x5_Lr0

p_E7x11 _Lr2
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p_eta

p_pt_track
p_deltaEta2
NvtxReco
p_ambiguityType
p_flcore
p_numberOfinnermostPixelHits
p_f3

p_deltaEta0

p_fl

p_dO0Sig

p_do
averagelnteractionsPerCrossing
p_numberOfPixelHits

p_numberOfSCTHits 1
0.0

LightGBM Model SHAP Value Rankings

LH PDF variables
+Binning vars
+Selection vars
+Extra vars
+Abundant vars

2.5




Input Feature Ranking

We could of course just add all variables, but want to stay simple, and
training the models, we see that the three extra variables gives most of gain.

Electron ROC Curve Trained in Data

1071

FPR (Background Efficiency)

10—3 1

Reference Likelihood (LH) (AUC = 0.99711)
LightGBM (LH PDF varibles) (AUC = 0.99838)
LightGBM (LH +Binning vars) (AUC = 0.99879)
LightGBM (LH +Selection vars) (AUC = 0.99897)
LightGBM (LH +Extra vars) (AUC = 0.99915)
LightGBM (LH +Abundant vars) (AUC = 0.99923)

1.000

0.800

0.825

0.850

0.875

0.900
TPR (Signal Efficiency)

0.925

0.950

0.975




Unsupervised Learning;:
Clustering

25
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Evaluating clustering

Evaluation of identified clusters is subjective and may require a domain
expert, although many clustering-specific quantitative measures do exist.

Typically, clustering algorithms are compared on synthetic datasets with pre-
defined clusters, which an algorithm is expected to discover.

“Clustering is an unsupervised learning technique, so it is hard

to evaluate the quality of the output of any given method.”
[Page 534, Machine Learning: A Probabilistic Perspective, 2012.]
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https://amzn.to/2TwpXuC

Evaluating clustering

Evaluation of identified clusters is subjective and may require a domain
expert, although many clustering-specific quantitative measures do exist.

Typically, clustering algorithms are compared on synthetic datasets with pre-
defined clusters, which an algorithm is expected to discover.

One way of visually evaluating a clustering algorithm
is to combine it with a dimensionality reduction,
though one then observes the combined performance of the two.

One of the simple principles is that
of the “Elbow Method”.
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Clustering algorithms

Clustering is an “old field” and many philosophies (and algorithms) have been

developed. They can roughly be reduced to two approaches:

e Hierarchical clustering algorithms are based on recursively either merging
smaller clusters in to larger ones or dividing larger clusters to smaller ones.

e Partitioning clustering algorithms generate various partitions and then
iteratively place each instance best in one of k mutually exclusive clusters.

Hierarchical clustering does not require any input parameters, while
partitioning clustering algorithms require the number of clusters to start
running. Hierarchical clustering returns a much more meaningful and
subjective division of clusters but partitioning clustering results in exactly k
clusters.

Divisive .
1 : Sirgle-linkage, Comalete-
Hierarchical linkage, Average-linkage,
clustering / Centroid-dinkage, Ward.linkage
: Agglomerative
Clustering
alzorithms Cont . K-Neans, K-Medoids,
8 Center-hased O AT
Partitioning /| o based —— Meighbor-based, DBSCAN,
clustering indag fhkonti Oensity-peaks, Robust-DB
Spectral-based —— POCA, PCCAS




Hierarchical clustering algorithms

Hierarchical clustering algorithms can be further divided:
* Agglomerative: Merge smaller clusters into larger ones
* Divisive: Divide larger clusters into smaller ones.

The only requirement is a similarity measure to decide distance between cases.

Agglomerative Divisive
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|
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Partitioning clustering algorithms

Partitioning clustering algorithms can (also) be further divided:

¢ Center-based: Build clusters around (random?) centers (k-Means).

e Density-based: Build clusters around (high) densities (DBSCAN).

* Spectral-based: Uses eigenvalues of the similarity matrix to perform
dimensionality reduction before clustering (PCCA+).

“k-Means clustering is the “go-to” clustering algorithm. You should see it as a
basic recipe from which many algorithms can be concocted.”

[David Forsyth, “Applied ML” chapter 8.2.6]

algorithms

Hierarchical

/ clustering
Clustering

Fartu nng

Oivisive Sirgle-linkage, Comaplete
linkage, Average-linkage,
Lcr-!rc-d-lmlr.u':. Ward linkage
Agglomerative

K-Neans, K-Medoids,

Center-based K-Centers, AFM
b Ne ghbor-based, DBSCAN,
' De .
eNSRy-Daseo Sensity-peaks, Fobust-DB

Y Spectral-based —— POCA, PCCAS
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k-Means clustering

The recipe is to iterate the below points, until movements are “small”:
e Allocate each data point to the closest cluster center
e Re-estimate cluster centers from their data points.

Demcenstration of the standard algorithm
o //
o = ¢ o e} =
ce o 5 5 g
°© ® o)\ . e
o o - i _
o D E » - Q a
no N, 8 (m)
oo (=ffs
1. kiritial "means" (in this 2 kclusters are created by 3. The centroid of cach of the 4. Steps 2 and 3 are repeated
case k=3) are rardomly assocaling every observation  kcluslzis becomes the new unlil convergence has been
genaraed within the data with the nearest mean. "he mear. reached.
domain (shown in color). partitions here represent the
Voronoi diagram generated by
lhe means.

There are many variations, improvements, etc. that refines this algorithm.

Most notably are the k-means++ (better initial points) and k-mediods methods.
33



2

k-Means clustering

The recipe:

¢ Allocate each data
point to the closest
cluster center

e Re-estimate cluster
centers from their
data points.

X2

Iteration number 1

34



DBSCAN algorithm

DBSCAN classifies points as core points, reachable points and outliers:

e A point p is a core point if at least minPts points are within distance ¢ of it.

e A point q is directly reachable from p if point q is within distance & from
core point p. Points are only said to be directly reachable from core points.

e A point q is reachable from p if there is a path pj, ..., pn with p1 = p and
Pn = q, where each pj1 is directly reachable from p;. Note that this implies
that the initial point and all points on the path must be core points, with the
possible exception of g.

e All points not reachable from any other point are outliers or noise points.

DBSCAN has two parameters: minPts and e.

If p is a core point, then it forms a cluster
together with all points (core or non-core) that '
are reachable from it. Each cluster contains at

least one core point; non-core points can be
part of a cluster, but they form its “edge",
since they cannot be used to reach more points.

35



DBSCAN algorithm

As can be seen, DBSCAN is a rather generic algorithm, capable of handling a
large variety of data.

epsilon =1.00
minPoints = 4

Restart
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Clustering algorithms in scikit-learn

Scikit-Learn has a rather good selection of clustering algorithms:

Meathod name

K-Means

Affinity
propagation

Mear-shift

Spectrel
clustering

Ward h'lC rarchica
clustering

Agclomerative
cluslering

D3SCAN

CFTICS

Gaussian
mixlures

BIRCH

Parameters

number of clusters

damping, sample
oreference

sandwidth

amhber of clusters

aumber cf clusters
or distance
threshald

aumber of clusters
or distance
threshold, inkage
type, distance

neighberhood size

minimum cluster
membearship

Tany

aranching factor,
thresheld, cptional
qlobal clusterer.

Scalability

Vary large n_samples
meaedium n_clusters
with

MiniBatch coce

Not scalable with
n_samples

Not scalable with
n_samplas

Madum n_samples,
small n_clusters

Lerae n samples and
a_clusters

Large n_samples and
n_clusters

Very large n_samples,
meadium n_clusters

Very large n_samples
larce n_clusters

Not scalable

Large n_cluslers and
n_samples

Usacase

General-purpcse, even cluster

size, flat geamelry, ‘
not too many clusters, Incuct ve

Many clusters, unaver cluster
size, non-flat geomelry,
inductive

Many clusters, unaven clustaer
size, non-flat geometry,
inductive

Few clusters, even cluster size,
non-flat geometry, transduciive

Many clusters, possibly connec-
tivity constraints, transductive

Many cluslers, possibly connec-
tiity constraints, non Euclidean
distances, transductive

Non-flat geometry, uneven clus-

ter sizes, cutlier removal,
lransduchive

Non-Tlal geamelry, uneven clus

ter sizes, variable cluster censity,

outl'er remova , transo uctive
Flat geometry, good for density
eshimalion, inductlive

Large dataset, outlier removal,
data reduction, inductive

Geometry (metric used)

Distances between points

Graph distance (e.g. near-
ast-neighbor cragh)

Distances between poirts

Graph distance (e.g. near-
ect-neighbor cragh;]

Distances belween poinls

Any pairwise distance

Distances belween near-
ast points

Distances between poirts

\Mahalanob's distances 1o
cenlers

Cuclidean distance be-
Iwaen points
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Clustering algorithms in scikit-learn

MiniBatch Affinily Spectial duglumesalive Gaussiarn
KMeans Propagaticn Meansh it Clustering ‘Ward Clustering DBSCTAN O5TICS BIRCH Mixiure

115 145/ ofs, 03/ 01s)
A comparisaon of the clustering algorithms in scikit-learn




Conclusions

Clustering is an “old” art form, for which there is a vast ocean of methods.

The K-means (and further developments) is the standard algorithm, if there is
one such. DBSCAN is also an old (and awarded!) classic.

Note that like in dimensionality reduction, it is important to transform the
input variables first, so that mean and variances are of order zero and unity.

It is HARD to evaluate the performance, and visual inspection and testing on
similar (typically simulated) cases are some of few methods.
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Example Use Cases
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OK - what is it good for?

Clustering is used for several things:
* Market segmentation:
Dividing costumers or products into similar classes is used in advertising.

* Production quality assurance:
Clustering of images is used for detecting faulty productions automatically.

* DNA analysis:
The ability to cluster very high dimensional data (DNA) to groups/families.

* Medical imaging:
Classification of medical images without labels.

* Image segmentation:
Dividing an image into its parts is used in e.g. self-driving and security.

e Anomaly detection:
Quick detection of e.g. credit card fraud saves large amounts of money.

41



Clustering of Danish housing

Show is a simple clustering of the Danish housing market, based on position

(x,y) and price/m2. In this way, one can see developments for each market.
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Unsupervised Learning;:
Dimensionality Reduction
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PCA, t-SNE & UMAP

High dimensionality has always been a curse - it is extremely hard to make
sense of, and requires a lot of work and domain knowledge to boil down to

few dimensions without loosing a lot of information.

PCA has long reigned the linear case, and k-means the clustering, but two
new(er) non-linear and powerful candidates are around: t-SNE and UMAP.

Below are their performance on the MNIST data set.

t-SNE

B8 O

MNKIE™ Dogts Cmbedded ra UMAP

UMAP |

a2t

Source: Towards data science (PCA and t-SNE)

Source: UMAP GitHub page: https://github.com/Imcinnes/umap
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t-SNE Pro’s and Con’s

Pro: In the words of the t-Distributed stochastic neighbour embedding (t-SNE) paper,
the t-SNE algorithm... “...minimises the divergence between two distributions: a distribution
that measures pairwise similarities of the input objects and a distribution that measures pairwise
similarities of the corresponding low-dimensional points in the embedding” .

The great thing about this is, that there are no assumptions about distributions,
relationships, or number of clusters. The algorithm is non-linear, which gives it a clear
edge over e.g. PCA.

Con: However, computationally it is a “heavy” (ugly?) algorithm, since t-SNE scales
quadratically in the number of objects N. This limits its applicability to data sets with
only a few thousand input objects; beyond that, learning becomes too slow to be
practical (and the memory requirements become too large)”.

In real life, the t-SNE algorithm has especially had its impact in (a)DNA research, where
the number of cases is typically not that large.
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UMAP

UMAP builds on using Riemannian manifolds! Within differential geometry, this
allows the definition of angles, hyper-area, and curvature in high dimensionality.

Abstract

UMAP (Uniform Manifold Approximation and Projection) is a navel
manifold learning technique for dimension reduction. UMAP is constructed
from a theoretical framework based in Riemannian geometry and algebraic
topology. The result is a practical scalable algorithm that is applicable to
real world data. The UMAP algorithm is competitive with t-SNE for visu-
alization quality, and arguably preserves more of the global structure with
superior run time performance. Furthermore, UMAP has no computational
restrictions on embedding dimension, making it viable as a general purpose
dimension reduction technique for machine learning.

UMAP paper, arXiv 1802.03426, Sep. 2020

The paper is quiet mathematical with (10) definitions, lemmas, and proofs in the
appendix. I find it a bit hard to read, but like their discussion of scaling and cons.
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UMAP

As in the t-SNE case, UMAP tries to find a metric in both the original (large) space X,
and the lower dimension output space Y, which can be (topologically) matched:

At a high level, UMAP uses local manifold approximations and patches
together their local fuzzy simplicial set representations to construct a topo-
logical representation of the high dimensional data. Given some low dimen-
sional representation of the data, a similar process can be used to construct
an equivalent topological representation. UMAP then optimizes the layout

of the data representation in the low dimensional space, to minimize the
cross-entropy between the two topological representations.
UMAP paper, arXiv 1802.03426, Sep. 2020

However, the metrics in X and Y used by UMAP and t-SNE differ:

For t-SNE these metrics are as follows:

1
2 2
vjje = exp(— ||zi — z;l|3 /207) Wiy = (1 + lly: — |§)

For UMAP they are:

, ~1
vj;; = exp|(—d (x5, x;) — p;) /0] Wi = (l Fally v 3")




Example use cases...
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Differentiating cells types

UMAP of different cell types.
The labelling comes from
known cells, but might be
based on very little data.

The unsupervised clustering
gives a quite clear pattern,
and ability to determine cell
type without having a large
training sample.
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Mapping news group discussions

UMAP showing the
differences between different
news group discussion fora.

The ability to cluster fairly
well would allow editors to
direct text to the relevant
news group.

4

-

alt.atheism
comp.graphics
camp.os.ms-windows.misc
camp.sys.ibm.pc. hardware
comp.sys.mac hardware
comp.wincows.x
misc.forsale

rec.autos

rec. motorcycles

rec sporl.baseball
rec.sport.hockey

sCi.crypt

sci.electronics

scl.med

sciospace
soc.religion.christian

talk politics.guns
talk.politics.mideast
talk.politics.misc
talk.religion.misc

uUmMaP: metric=hellinger, n_neighbars=15, min_dist=0.1

From: Vec2GC -- A Graph Based Clustering Method for Text Representations
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Unsupervised Learning;:
AutoEncoders
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AutoEncoders

An AutoEncoder (AE) is a coupled pair of encoder and decoder. The encoder
maps signals into code, and the decoder reconstructs the original signal from

those codes.

The pair is trained to have the most accurate reconstruction: If you give a
signal x to an encoder E to get y = E(x), then the decoder D should ensure that

D(y) is close to x.

moul mage

| E

Lotenl apuce
Reprasemevion

Reconswucted
wge

Encodar

Botl ek

Decader

One application is unsupervised feature learning, where it tries to construct a
useful feature set from a set of unlabelled images. We could use the code

produced as a source of features.
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PCA as an autoencoder

A PCA is a linear AE. One can project a higher dimension down on (fewer)
principle components (encoding) and then “reconstruct” the original data
from the latent space, by choosing the low dimensional points in the original
dimensionality.

intialdim 3

N best lnear
" W} oa

R

initialdim 2

T S‘:‘:"""Z'

ble on with- war il oo




Usage of AE

AEs are used for many things, such as:

e Unsupervised learning (e.g. clustering) on images, sound, graphs, etc.
e Compression (with loss!) of e.g images

* De-noising and inpainting images

e Anomaly detection

e Training on large dataset with few labels

Most AEs are CNN based and produced for images. However, the AE concept
is more general, and applies to anything, that can be passed through an NN.

The most central hyperparameters to consider are:
e Size of the latent space (code)

e Architecture of NN (layers and nodes)

e [ oss function

As we shall see, these HPs to some extend determine
what type of AE you're making.
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AE Unsupervised

Since one might have no knowledge of the content of images (or sound, etc.),
training an AE is inherently unsupervised. The result is simply a latent space
that is a good representation of the images.

However, this can be used to cluster “less simple data”, as one can apply both
dimensionality reduction and/or clustering to the latent space.

This enables one to analyse very complex data in an unsupervised manner.
(e.g. “THow many zebra calls exists?”)

Reconswucted
wge

Lotwnl apuce
Reprasemevan
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Inpainting with AEs

AEs can also be used for “inpainting”, which means replacing damaged /lost
parts of an image.
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Shifting Gears...
CNN & GNNs



Why is image data special?

Given image data for e.g. classification, could we not just apply an NN?

“Is there a diver in this image?”

Well, since a typical image has 10M pixels, the first layer (size 1000?) would
have about 10 billion parameters!

And even if we could train this, it wouldn’t perform well:
If the diver was in another position or size, then the network wouldn’t work.

Images represent data in a very special structure, that needs consideration.
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Image convolution

The trick lies in using a convolution, which consists of filters/ kernels
(convolved feature), which is applied to the image as a matrix convolution,
followed by an aggregation (not shown) and a pooling of pixels:

1,‘1 1| 1,!L 0|0

0,1/1/1|0 4 -

ool1l1[2 12|20 30| 0

- 8 1121 210

0|0|1|1|0 5P

S [ A 12| ;; 142
I Convolved e
mage Feature

max pooling
20 30
112| 37

average pooling

The filters contain learnable parameters, which adjust so that they match the
task (“Is there a diver?”). The aggregation consists of adding all the “images”
resulting from the convolutions, and values are then typically max pooled.




For color images,

the process is the same, just with three convolutions:

In colors...?

o lo o o] o0 o|lo|o|o]|o o |l o o
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145 | 146 | 149 | 153 | 188 156 | 1% | 159 | 162 | 1638 D 155 | 155% 158 | 162 | 167
145 | 143 | 143 | 148 | 138 [ - 155 | 133 | 153 | 138 | 168 o 134 | 152 | 132 | 137 | 167
Input Channel #1 [Red) Input Channel #2 (Green) Input Chahnel #3 (Blue)
11 )1 1 0|0
ol P L 1]-1) -1
I [T 1]|]0]|-1

Kernel Channel %1

I
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Kernel Channel #2
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Kernel Channel £3
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|
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LeNet (1998)
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LeNet (1998)

Typical (simple) CNN structure with dimensions and actions annotated.
Try to work out the number of parameters in this model...

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution e /—M
SR SRR P
(5;;5) k:;?el Max-Pooling (S;_tdS) k:;?e' Max-Pooling (with
valid padding (2x2) validpadding (2x2) ..».‘ dropout
A
7 - Y

INPUT nlchannels nl channels n2 channels n2 channels - . 9
(28 x 28 x 1) {24 x 24 x nl) (12x12xnl) (8 x8xn2) (4x4xn2) ,‘) 4 OUTPUT
A Comprehensive Guide to CNNs, by Sumit Saha (2018) n3 units
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https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Interactive CNN

This network has 1024 nodes on the bottom layer (corresponding to pixels), six 5x5 (stride 1)
convolutional filters in the first hidden layer, followed by sixteen 5x5 (stride 1) convolutional
filters in the second hidden layer, then three fully-connected layers, with 120 nodes in the
first, 100 nodes in the second, and 10 nodes in the third. The convolutional layers are each
followed by downsampling layer that does 2x2 max pooling (with stride 2).

Adam Harley: Interactive number CNN 2



https://adamharley.com/nn_vis/cnn/2d.html

Electron efiergy with CNN
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The input variables

The variables are both scalar and cell based.
The scalars can be seen in table on the right.

We consider the cell energies in the LAr
calorimeter as pixels in four images. The cells
contain two (used) types of information:

e Energy (primary variable)

* Time of cell energy

Coally wr Layw 3
2450 = 0 A21%.:0 04

—— \ . T T
/e A reoy
ST T e
iy ; -
S S ) \
r] =C & / S
& " /
7o/ o <
/ s ,"\V"'\‘l. ! \ ]'Ol»
/ 4 ( \J‘I VV'\' I'J'ho-
S /s R R\f-'\.a\\/-\ JEITS
— A A \' i
—~—— i
& 7 1
175
<¢ 6‘“0}: \'
“ixq
‘:Qvl"u"
7. 3evm Qyiare colls in
l ’ Lyer 2
- ':".'
B —
T N & .
aa ._,);Q:’lxm,.,,,\ 1200
. \
Sripecellsir Layw 1l
P e NS
-, -

- Cqrad = 0.01301

Ivpe

Encogy

Gecmetric

Niee

Name

Yweow

n
,.l “surr

-
L [N

W Take

|.|.~|.-:

L
Tiaks

Upwries R

Drsenztuon
rergy deaoslt o laver T of FCALL
g ecll ndex of Sluster of byer 2.

Ratio ol enerpy belwer o Lver Dand Foin |y <

L8 (erd of kyer )

Ratio of coppy between Lagee 1 2l 2 00 (he
ECAL

Lrestimaied fom tacking foe the paride forly
t)

Ratiobetween exenergy o he cack scimillators
avd B withinn 1.4 < o] <

Suen ob B enerey cepessivd e the bile-pep.
Useudomapidity of the particle,

Utfference between ¢, as extrapalated by trazks
ing, use for KCAL mamentum estimation and 4
vl the ECAL dustes,

Redalive i pu'n:i fom sl e ol o ol L:j,'n Zin
the ECAL®

Utfference batwaen i, as extrapoated by tracking,
e rar BOAL moarentom sstimation ars g ot dke
EUAL duswr lenly

telative cosltiaon of g withie call 'n fager 2 in
ECAL, 2{lercvm = Wonarriow WOVGES — 1, #p.0y i8
0 al the barvoenber of the cluster aod i, 500 18
i of the mast energetic cel of the claser.
Relative pocition m & m a cell mod(21 +
¢. /12 - x/I2

Average protoncpratar eteracton per bamch
crosalng,

? of tracks azzigred jonly o)

Number of reconstracted verboes.

65



The network architecture

There are many ways to combine the input variables, and we have considered
the following architectures, where the dashed lines are the considerations.

‘\'Y.H‘I\'

|

‘>
‘\.\(‘.Il.”

|

TrackNet ScalarNet

‘\ﬁl 15 "".'.l""“l.‘.'

l

Merge

l

Upscale

|

CNNnet

First, let us consider each part...
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Feature wlse Linear Modulation
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(FiLM: Feature wise Linear Modulation
of the CNN output layers based

on the scalar input variables.)

Before the convolutions are
pooled, they are weighted
(linearly) by the “context”.
In this way, the best filters in
the given case are given the
most weight.
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Electron Energy Regression
Results (v1)



The results in 1D - MC

Integrating the previous plot into 1D considering the RE distribution, we see a
general sharpening. The improvement in relative elQR (relQR) is about 22%.

12000-
10000+
|
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| l
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(| I
. I I |
4000 X U1
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26.063% impravement in € QRIS
2000 1 ATLAS elQR75: 0.0318
[ De=pCalo elQR75: 0.027
O y | II . | Y 1
096 098 1.00 1.02 1.04
Epre d/ E truth

Naively, we would of course love to see a similar number in data!
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Result in Zee - MC

On the Zee peak, we evaluate the improvement by fitting with a BW®CB fit,
considering the CB width (sigmaCB) as the performance parameter. We get:
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Results on Zee - data (v1)

The result we get is a much more modest improvement:

(1-
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= 9.4+ ).9%.

Though perhaps a little disappointing, this is not surprising, as we can not
expect the MC to mimic data perfectly in the very large space considered.
Also, models trained on Zee do not generalise well to all energies (EG, 6.8%).
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Electron Energy Regression
Training in data



labels” in data, by assuming the true Z mass:

Using such labels, we train in data and get...

Training in data

Using Zee events with invariant masses 86-97 GeV, one can get “approximate
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Electron Energy Regression
Training in data and MC



Training in data and MC

Once we have labels in data, there is nothing keeping us from combining the
loss functions of MC and data (they even have the same form), and thus
training simultaneously in data and MC:

L(y,7) = L(Y(zee, MC)+ T (Zee, MC)) T LY (Zee, Data)r ¥ (Zee, Data))

This allows the model to both use the “strength” of MC, but also learn the
differences between MC and real data.

120001
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. 4000
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Result in data (v2)

The result in data is rather encouraging, and greater than the sum of the
improvements from training separately in MC (9.4%) and data (5.9%).
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Graph NNs



Motivation for GNNs

Let us consider images in a more abstract sense:
e They consist of (typically 3-4, RGB or CMYK) numbers in a matrix structure.
e The distance between neighbouring cells is constant.
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Motivation for GNNs

Let us consider images in a more abstract sense:
e They consist of (typically 3-4, RGB or CMYK) numbers in a matrix structure.
e The distance between neighbouring cells is constant.

What if the data was not an image, but we wanted to use a CNN anyway?
This problem is not uncommon... (https://arxiv.org/pdf/2101.11589.pdf)
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Example of non-CNN data

Take the example of weather stations:
e There are about 280 weather stations distributed non-uniformly throughout

Denmark.

e Each station provides say:
[temperature, wind speed, wind direction, humidity, latitude, longitude]

What would an “image” of this data look like? And would a CNN work on it?
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Example of non-CNN data

Take the example of weather stations:

e There are about 280 weather stations distributed non-uniformly throughout
Denmark.

e Each station provides say:
[temperature, wind speed, wind direction, humidity, latitude, longitude]

What would an “image” of this data look like? And would a CNN work on it?

Nedborstationer “ m

By forcing problems with irregular geometry into images,
we're shaping the problem to the tool, and not the tool to the problem!

Is there a different Machine Learning paradigm
that has no underlying assumption on the geometry of the data?

& ke . -
- . a . ': s -
Yes!
tal: ca. 280 stk
Graph Neural Networks
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What is a Graph?



Graph Definition

A graph G is defined as a combined pair G = {V, E} consisting of:
e Nodes: A set V, that typically contain input features (also called vertices)
e Edges: A set E of pair nodes, thus connecting the nodes (also called links)

In plain words:
You got a list of points (nodes) that are somehow connected (with edges).

A ¢

S / Undirected: oy

Ci\" C‘Lo*g Directed: g ¢
o\ N 5 /

\
\

2 | )T \/B\
™y \" ) 15
C\’
n\\.!3 \u ', Weighted: \’
Z1\ \ ,,:
l\ H \’

Multigraph:
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Geometrical data

Unlike e.g. images, graphs have no underlying assumption on the geometry of
the data. This structure has to be specified by the user using the edges.

Many of the techniques in Machine Learning that you have been introduced to
are also available for graphs (convolution, LSTM, Attention, Auto-Encoder, etc.)
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Graph Convolution

The graph convolution proceeds much like for CNNs/images, as the output is
another graph, possibly of different dimensionality. There are many different

types of convolutions, edgeconv (https:/ /arxiv.org/abs/1801.07829) considered below:

n
By = ) Floigy; = )
1=1

The “tilde” denotes the updated node
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Graph Convolution

The graph convolution proceeds much like for CNNs/images, as the output is
another graph, possibly of different dimensionality. There are many different
types of convolutions, edgeconv (https:/ /arxiv.org/abs/1801.07829) considered below:

— Zf(xjﬁxj = .’,UZ)
1—=1

[-1,5] [2,2]

2,8,-1,5]
[1.1]

The “tilde” denotes the updated node, and
so if we applied the edgeconv operator with
f(xX)=1* x+ 0 to node D, we would obtain:

53D:f(CUD,ZBD—CUC)+f(fED,$D—SUE)
F([L,4],[1,4] = [1,1]) + f([1, 4], [1,4] — [2,2])
([1,4],[0,3]) + f([1,4],[-1,2])
([1,4,0,3]) + f([1,4,—1,2]) (by concatenation)
[1 4,0,3]+1-[1,4,—1,2]

, 9]

[1.4]

[3,-2]

f
i
1
=2,
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Graph Convolution

The graph convolution proceeds much like for CNNs/images, as the output is
another graph, possibly of different dimensionality. There are many different
types of convolutions, edgeconv (https:/ /arxiv.org/abs/1801.07829) considered below:

— Zf(xjﬁxj = .’,UZ)
1—=1

[-1,5] [2,2]

2,8,-1,5]
[1.1]

The “tilde” denotes the updated node, and
so if we applied the edgeconv operator with
f(xX)=1* x+ 0 to node D, we would obtain:

Ip = f(:UD,:UD —x¢c)+ f(xp,xp — xR)
FOLAL L4 — [1, 1)) + £([1, 4] [1,4] — [2,2)
= F(1,41,0,3]) + £([1,4],[~1,2)
f([1,4,0,3]) + f([1,4,—1,2]) (by concatenation)

[1.4]

However...
This only shows the start of a Graph Neural Network, not how to continue!
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Example of Application

The graph examples/solutions are starting to enter the scene in many places:
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Notes on Transformers
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make Large Language Models work

better.

Transformers

Transformers were developed to

The problem was the ability to

“remember” what was important in

earlier text...

...where to put the attention!

However, a powerful attention
mechanism is useful everywhere.

Qutpul
Probabinties

Agcl & Mam

P errim)
.
-LAdd & Norm Muti-Heag
Fosc Allertion
Foreard Nx
- [ pa—
\e—
N A & Norm
x A & Noe 1
Add & Norm Mascked
hutti-Head Mufi-Hean
Allenlicn Sotanton
At _t
\ J ——
Pcsitional o A Positiona
Encoding N Encoding
Input Cutput
Embaddng Embaddre
Inputs Cutputs

[snilted rght)

Figure 1: The Transtformer - model architecture.
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Transformers

Transformers consist of a “Multi-Head Attention”, which again consists of
(repeated) “Scaled Dot-Product Attention” between a Query (Q), Key (K), and
Value (V).

Q, K, and V are simply three vectors from linear transformations of the input.

Ct.'(m?

Probatiities

I
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ENCOCNG
Output
Embecaing

i

Qutputs
(chwftod nght)

A

.

f




Scaled Dot-Product Attention

3. Apply the attention to the values:

Attention weichts

~

™~

g

A

Vo.lues

- U

2. Enhance the important relevances:
Higher scores get heighten,
arnd lower scores are depressed

SER

P

!

Soptmo\x(

1. Get the raw attention matrix:

L -

N
D)=

Query keys
(111 x =
11D Bl

S<ores

Stefes
T T

~
-

S

Are

You
\

e
How B Are  You

How (G Yeu
How (deel EED

~

I

J

I shows how relevont is o word

to the cthers
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Scaled Dot-Product Attention

3. Apply the attention to the values:
Attention weights Values

o ™

a1 g

. QK*
Attention(Q), K, V) = SoftMax %
Vg

ERA NP RS S E Scale

1. Get the raw attention matrix:

— a
aueny keys Seeres How [EED Are Yoo MatMU'
SEEEB M 1 1)) dre pow (SN Weu I_
(111 x aa = - (You Hew (SN DD |
C[ILID 4\ \ IT shows how relavont is o word Q K V

S<ores to the others
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GNN as a Transformer

As it happens, one can obtain a transformer with a very specific GNN:
e For each node, define three features: K, Q, and V.

e Define a message function fe4o.e ON each edee:
g

m’L ) (& (& ’l y; y;

e Define an aggregation function (weighted sum) around each node:
J

e The node update is then just an NN to get the next K’, Q’, and V.

This 1s a Transformertr!
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IceCube

IceCube counting house in the setting sun, sitting on top of 5160 Digital Optical Modules 1450-2450m below the surface.
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Amundsen-Scott
South Pale
Station

Antarctica

Elffel Tower 324 m

e

Labo.ratory
Digital Optical Module

DOM
5160 optical sensors
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IceCube GNN model
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Details of GNN reconstruction

%ﬁ ’t1i

In this example:
Npulses =7
each with (x,y,z,t)
Nfeatures =4

t2
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Details of GNN reconstruction

%f*hi

In this example:

Npulses =7 tZ

each with (x,y,z,t)
Nfeatures =4

H() Output:

() (loglOE, O zenith, q)azimuth,
Xthvertex, eVent type)




Details of GNN reconstruction

%ﬁ*’qi

In this example:

Npulses =7 tZ

each with (x,y,z,t)
Nfeatures =4

+

U1 = [z1 Y1 21 t1]

Uy = [x2 Y2 22 t2]

U7 = [x7 Y7 27 t7]
Input:
N = Npulses X Nreatures

The input features of a node are combined with that of N (=2) nearby nodes
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Details of GNN reconstruction

%ﬁ*’qi

In this example:

Npulses =7 tZ

each with (x,y,z,t)
Nfeatures =4

EC(/EI: 1727 173)

U, = [371 Y1 21 t1] — [911 .- 'glNl]

Uy = |2 Y2 22 t2] [g21 - - - g2, ]
EC(@Z;,1‘)’5,176)E
U7 = [x7 Y7 27 7] 971 - - 97N, ]
Input: Convolution(s):
N = Npulses X Nfeatures N = Npulses X N1

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown).
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Details of GNN reconstruction

%ﬁ*’qi

In this example:

Npulses =7 tZ

each with (x,y,z,t)
Nfeatures =4

' Nall = Nfeatures + Nl

— EC(Vy, Vs, U-
U1 = [x1y1 21 t1] 20, T Ty, (911 - - 91, ] [z1y121t1 911 --- 91N, ]
Ug = [952 Y2 22 t2] [921 - -92N1] [xz Y2 22 t2 go1 - . -gle]
EC(174,1‘)},,176)E
U7 = [377 Y7 27 t?] [971 . -97N1] [337 yr z7tr g7t - - . g7N1]
Input: Convolution(s): Concatenation:
N = Npulses X Nifeatures N = Npulses x N1 N = Npulses X Nan

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown). All the features are then combined (concatenated) into

long vectors,
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Details of GNN reconstruction

%

In this example:
Npulses =7
each with (x,y,z,t)
Nfeatures =4

\

*1

t

171 = [xl Y1 21 tl] M} [911 - -glNl]

Uy = (T2 Y2 22 2] 921 - - - g2n,]
f EC(#, s, T)
U7 = [x7 Y7 27 t7] 971+ - - 97N, ]
Input: Convolution(s):

N = Npulses X Nreatures

N = Npulses x N1

"
o)
.....
e
"

Nall = Nfeatures + Nl

_) [hll 50 G tha”]
— [hgl ce tha”]

[z1y1 21t 911 - AN, | —>
[x2y2 22 ta go1 ... gon, | —>

000000000
0000000000000
000000000

[z7y7 27t7 971 - - . 97Ny ) —>

Concatenation: MLP1:
N = Npulses X Nai Nan — Nmany — Nan

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown). All the features are then combined (concatenated) into
long vectors, which are again put through an NN (MLP1) function with a large hidden layer.

q [h?l . e h7Nall]
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Details of GNN reconstruction

Vtrue % T | S Vreco
* 9,[6 ....... * [21 ? ZNall]
In this example: \ 5[7 11 -+ Ny, ]
Npulses =7 t2 ()H( [/\ /\ ]
each with (x,y,z,t) d 180 VN
Nfeatures:4 = [\/1 ° \/Nall]

sum(X), max (),
Nall = Nfeatures + Nl mean(,u) min \/)

v = [z1y1 21 1] M’ 911 - - - g1n, ] [z1y1 21t 911 - AN, | —>

Uy = [T2 Y2 22 t2] (921 - - - g2, | [z2y2 22 t2 g21- . gorvy | —>
EC(vy, Us, Us)

P —

— [hgl ce tha”

U7 = [$7 Y7 27 t?] [971 .. -97N1] [337 y7 z7tr g71 - .. g?Nl] — — [h71 co h7Na”]

000000000
0000000000000
000000000

Input: Convolution(s): Concatenation: MLP1: Aggregation:
N = Npulses X Nfeatures N = Npulses x N1 N = Npulses X Nai Nan — Nmany — Nan N =4 x Nan

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown). All the features are then combined (concatenated) into
long vectors, which are again put through an NN (MLP1) function with a large hidden layer. The outputs are aggregated
in four ways: Min, Max, Sum & Mean, breaking the variation with number of nodes.
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Details of GNN reconstruction

%*ﬁi

| Vreco
P e Ty T
e [21 XN ll]
In this example: 9\ t7 / [,ul L ]
Niputses = 7 £ H() Output: <«—| MLP2 ( <
each with (x,y,z,t) (?[ (log10E, Ozenith, Pazimuth, \ [/\1 AN all]
Nfeatures = 4 : ; B : XthVerteX' event type) [\/1 e \/Nall ]
sum(X), max (),
Nall = Nfeatures + Nl mean(,u) min(\/)
- 7?1.172,173 o
Vg = [371 Y1 z1 t1] M [911 .- 'glNl] [331 y121t1 g11--- 91N1] —>|o S o> [hll .- thau]
Uy = [96‘2 Y2 z2 t2] [921 .- ~92N1] [xz Y2 22 t2 go1 - . .ggNl] —_— § § § — [h21 - tha”]
. EC(174’U57176) g g g
. —_—> o o © .
O o O
Uy = [377 Yr z7 t?] [971 .- -g7N1] [5137 yr 27ty g7t - - . g7N1] —>|° o °l — [h71 . h?Na”]
(o]
Input: Convolution(s): Concatenation: MLP1: Aggregation:
N = Npulses X Nfeatures N = Npulses x N1 N = Npulses X Nan Nan — Nmany — Nan N =4 x Nan

The input features of a node are combined with that of N (=2) nearby nodes through an NN (MLPO) function, yielding an
(abstract) vector for each node. This can be repeated (not shown). All the features from all the convolutions are then
combined (concatenated) into long vectors, which are again put through an NN (MLP1) function with a large hidden
layer. The outputs are aggregated in four ways: Min, Max, Sum & Mean, breaking the variation with number of nodes.

These are then fed into a final NN (MLP2), which outputs the estimated type(s) and parameters of the event. 105



Further specifics of DynEdge

In DynEdge, there are several “enlargements” compared to the previous
illustration of the GNN architecture. These are essentially:

e We use 6 input features: x, y, z, t, charge, and Quantum Efficiency.

e We convolute each node with the nearest 8 nodes (not two).

e We do 4 (not 1) convolutions, each with 192 inputs and outputs.

e The concatenation is of all convolution layers and the original input.

e In the results to be shown, we have trained separate GNNs for each output.

The repeated convolutions allows all signal parts to be connected.
The EdgeConv convolution operator ensures permutation invariance.

The number of model parameters is about 750.000 for the angular regressions,
while the energy only requires 150.000. In principle one can go down to 70.000
parameters, but there is no reason for this - it is already a “small” ML model.
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What can GNN predict?

GNNSs are capable to make three sorts of predictions:
e Node prediction (is this node signal or noise?)

Obtained simply from an MLP on the convoluted node features.
e Edge prediction (is this edge important or not?)
Obtained from an MLP on (concatenated) pairs of node features.
e Graph prediction (is this graph an X or not? What is the Y of this graph?)
Obtained through an MLP on a summary of the graph nodes.
Here, there are several options of dimensionality and aggregation.

SevdenkelEne ' layers . [h° LayerZ = 1:{h ') (e} ' ! .
Node feat. Embedding » (W o ) Aegy] T W ey ' ht » Node Predichions
Embedding ., ¢ a R ) hy—e{h> | .
Edge foat » gl @ o oLy MLP
- Sl d - - hi —> Ceraph Predicton
s : @ O | [ P VE
Graph ¢; P J ' ’ \ A | =eesesesisieiciccecicicisissccacasasaeas
< | el ol | hy :
& - - \ e : ~ e artd L1 MIF
) @ 7 gl ' Loncatay i) — Edge Predictions
J\ J
'y g Y
Input Layer L. x GNN Layer Prediction Layer
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GNN paper (https:/ /arxiv.org/abs/2209.03042).

GraphNet

The GNN model is outlined below, which is also the figure for our IceCube

State Graph 2

EdgeConv

State Graph 3

EdgeConv %

EdgeConv

Graph Convolutions Classic NN
Input Graph
C@ s?a't‘l’;?(':s [.5] (110297 MLP | > Prediction
[n,6] [1,n_outputs]
State Graph 1
EdgeConv v [, 256] [n. 1030] MLP @%

Node Aggregation

[n, 256]

[n, 256] [n,h] Lk-nn, - [n,256]
* z; :Zmlp(acj,:cj—xi)—>
i

State Graph 4

EdgeConv

for j in range(num_nodes):

;

[n, 256]

Convolution
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Dreaming
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Imagine 1B Z-decays in data+MC

ATLAS and CMS each has about 1B Zee and Zup decays in data+MC in total.

Each Z has 100+ features, and the resulting performance can be measured
accurately in both data and MC (the Z mass peak).

Such a dataset could become a standard reference in ML for testing new
architectures, training schemes, parallelisation methods, etc.

It could also be the training ground for [~ z=esiermesire
solving the problem of domain shifts, |
thereby helping 1000s of particle
physicists... and many more ML users
in other science fields in the future.

Evarie'1.1C

Applying what is learned to the
Z — tt decay, and then in turn to
H — 1t decay to improve the

di-Higgs searches. C T e o i "
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GratheT

Graph Neural N

— —

@Jw trino T@Im@up% EVv

GraphNet is our attempt at putting GNN models for IceCube (and others) using
the “DynEdge” architecture build in PyTorch Geometric into an easily available
software package.

https://github.com/graphnet-team/graphnet

We are writing our results up in an IceCube paper (responded to several rounds
of feedback and comments).

The IceCube challenge was also made into a Kaggle competition - .
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Seeing the Universe in v light

(’g Cosmic Alert
" A S Z

X-ray observatorfe.g

Cosmic Event
(Gamma Ray Burst,
Supernova, Blazar)

IceCube Detector

Optical Telescopes
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Seeing the Universe
with neutrinos
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...that can be observed by

IceCube v-Telescope...
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Graph Neural Networks



o.o.o » raph "" I N

A N - Despite having a very complicated
' geometry and a great variation in
: ’ number of signal inputs, new ML
i ~methods - Graph Neural Networks -
g ~ are capable| ing this... very
| “well! .

\..in real t1me _usihg .
Graph Neural Networks



“Once you have worked-on «

experimental particle physics,

you are a jediin all other fleldﬁ ‘
[Fellow PPh.D. student]




Bonus slides
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Connection between NNs

The different NN architectures are related, as some paradigms reduces to others.
This is illustrated below.

Linearly Grid

MLP + 1-pixel
Qed/ adj Jacencv QVBWHCV

Cellular
Automata

Connected

4 = reduces to
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Scaled Dot-Product Attention

The “interesting” attention mechanism from transformers that is relevant for
typical particle physics analysis is summarised in this single term:

T
SoftMax QK V
Vi
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