Cosmology a Peebles

Neil Turok
University of Edinburgh and Perimeter Institute

October 6 and 7, 2024

Lecture 1: overview of standard cosmology
Lecture 2: a minimal SM/LCDM cosmology






the universe is an amazing natural
laboratory for fundamental physics
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There are many profound puzzles and paradoxes:

Why is there an apparent arrow of time?

How could the universe have emerged from a single point?
Why are we heading towards a strange “vacuous” future?
Why is the universe so incredibly simple on large scales?

With recent data, we may be on the brink of new understanding ...
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Statistically, a Gaussian random field, like a quantum field in its vacuum
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FLRW metric: homogeneous and isotropic 3-space
ds? = —dt* + a(t)?y;dxtdx!; a(ty) =1

proper time comoving coordinates: for a maximally symmetric space
. . > 0 sphere
Purely kinematical effects RB) = 6K J =0torus

< 0 hyperboloid

—

1. Redshifting of wavelengths and momenta
e.g. photons

A oc a(t) = Zobs~tem _ Gobs 4 Zem redshift ey < 1/(1+ Z)
Aem Aem

likewise the de Broglie wavelength and momentum of massive particles

2. Distances: objects which comove with expansion obey
dx<a(t) = % = g = H(t): recession velocity d « distance d Hubble’s Law



Friedmann-Lemaitre-Roberston-Walker Dynamics

Newtonian derivation

Einstein’s derivation:  G,, = R, —3 g, R = 8nGT,

uv v 3 uv
—-p 0 0 O
. . . 0
V_ .
where, for a perfect fluid at rest in comoving coords, T, 0 P(p)st

o]

Equation of state



(oo equation is a constraint: 3 2 3a—’€2 = 8nGp Friedmann
(involves only first time derivatives)
Conservation of energy-momentum VHTMV =0=>p= —3%(P+p)

Types of energy: (dE=-P dV)
1. cosmological constant T,
2. matter (nonrelativistic) P
3. Radiation (relativistic) P

v="—"MNg=>P=—p, p=const >0

0= P X Cl_3 (approx.) conformal symmetry

=2 p (or, more fundamentally, T, = 0)
= p X a*

i.e., energy per photon E,, x 17" «< a™*

. 2
So Friedmann reads (%)” = 228(ps~ S+pm+p) = HF (Qp + 25 + 21 4 22
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FLRW metric: homogeneous and isotropic 3-space

ds? = —dt* + a(t)?y;;dx'dx’; a(ty) =1

proper time comoving symmetric space
Friedmann equation > 0 sphere
2 R(S) = 6K - =0torus
a 8T[G K < 0 hyperboloid
(5) — —3 Ptot~ 72
= H5(Qp + 254+ S+ 2
0 \**A a3 a’
Lambda space matter  radiation
curvature

(Qp+ Q4+ Q0+ Q. = 1)



radiation History of the universe:
pr < a™*

“adiabatic” evolution

matter

Pm X a7 Lambda

pp % a’

Arm eq AAm eq
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Today,
Hy = 100h km st Mpc?t; h = 0.7 £ 0.05; 1pc=3.26 light years
Hubble time: Hj'= 9.78x10°h~1 years

Hubble radius: Hy'c = 2998 h~1 Mpc

Critical density: p, = >-H§ = 2.8x10""h? Mg Mpc?3

Radiation density p, o = Z—To (142 (4)4/3Nv) = (1, = 8.5x107°h7*

11
0.68 for 3 light v's

(reheating of photons due to eT annihilation



Recent tension...

Hubble Constant Over Time
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Late, ladder
Cepheids + TRGB (CCHP) + Miras + SBF [ family 1 (15) ]

Early
Planck + ACT + SPT + WMAP + BAO+BBN [ family 2 (25) ]

Time delay + Standard sirens + Masers (no NGC4258) [ family 3 (13) ]

Intermediate, times
Chronometers (Pantheon+) + Age [ family 4 ( 4) ]

Figure 8

Summary of the Hy values from the four families. For each family we take the weighted mean and
weighted uncertainty of the representative (independent) determinations indicated in the text by
the corresponding code [number of the family.letter|, as the central value and its error. As
estimates of the “unknown unknown” systematics we take the ( )
conservative range of only the independent representative measurements, (and the scatter of all
relevant determinations a la ( ), in the legend the number in brackets after the
family denotes the number of independent measurements used for this scatter determination) from
each family and display it as an additional thinner upper (lower) error bar. To be conservative the
CCHP TRGB determination is included in the first family.

Review: Verde et al. arXiv:2311.133905 (2023)
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Exact solution for LCDM model (neglecting radiation and spatial curvature)

1/3
a(t) = (524) 7 (sinh 3moa}?e)"” = to = 2Hg '=sinh ™! (y/ax/(-02))

(recommended exercise!)

Age of Universe in units of H™

- Q... (including Q,)




Q.. (including Q,)




COBE/FIRAS (today)

Planck SZ clusters (H14)
Planck SZ clusters (DM15)
SPT SZ clusters

QSO absorbers

QSO absorbers (T, corrected)
= 0.88 Gyr)

HFLS3 (¢

Ccos

Redshift z

Riechers et al.

Nature 602, 58 (2022)
“Microwave background
temperature at a redshift of
6.34 from H,0 absorption”
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SUPERNOVA HUBBLE DIAGRAM

Supernova Distances (Gigaparsecs)

Accelerating Universe

Favored by the
Dark Energy Survey
supernova data | g, A " . ‘

(35% matter,
65% dark energy)

Non-accelerating Universe
(100% matter)
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Cosmological perturbations (“Newtonian” derivation)  (recommended exercise!)

lpa GM _ATG o const
2 T 3 | PAT
17"—>T+5T‘=>T‘57‘+ 6 —%ré‘rp/\ Sk
d — _GM 8rnG i ory —_ v oér __ rér , Ok
2. 2T ="z 3PA"=>dt7 = 7T Trr T
Fractional matter ST . a a const a a tdt
density perturbation O =—3— =0 + (— ——)5 === 0 =AZ + const— =7
a a aa a a a
decaying 0 growing
mode mode

(recommended exercise!)

5’m X ;‘Qm\/QA T -Q"ma_3 foa . 3~ a, a << ( )1/3

a3(QpA+Qma=3)2

143( )1/3 a>>( )1/3

Newtonian potential a=2 V*® = 4G p,,65,, = CID~const, a” respectlvely



Detecting Lambda with the ISW effect

R.G. Crittenden and NT
Phys. Rev. Lett. 76, 575 (1996)

Giannantonio et al
arXiv:1209.2125 (2012)

— — — . ACDM theory

. _ best ampl. fit

Seraille et al. 0
arXiv:2401.06221 (2024) |




“seeing” the dark matter with gravitational lensing




2304.05196, 2304.05202

ACT collaboration arXiv: 2304.05203,
Projected Dark Matter Mass Density
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LCDM provides a remarkably good
fit to the large-scale universe, with
just 5 fundamental physics parameters

the energy content

1.pp = (2.3 meV)* (+ 1%)
2. ppm/pp = 5.36 (£ 1%)
3.ng/n, = 6x1071° (+ 1%)
the perturbations

k ns_l

2\ — [ dk
(q)>—f714c1> X.

4. amplitude Agp~ 7.6 + 0.1x1071°
5. “tilt” n,—1 = —0.041 + 0.0056

many parameters so far consistent with zero:
tensor and “isocurvature” perturbations,
spatial curvature k, non-Gaussianity...




LCDM is an amazingly successful fit

Sachs-Wolfe plateau

Coulson, Crittenden, NT (1994))

- - , no free parameters!
Polarization ]

Temperature
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acoustic peaks (sound waves in plasma) ESA Planck satellite



