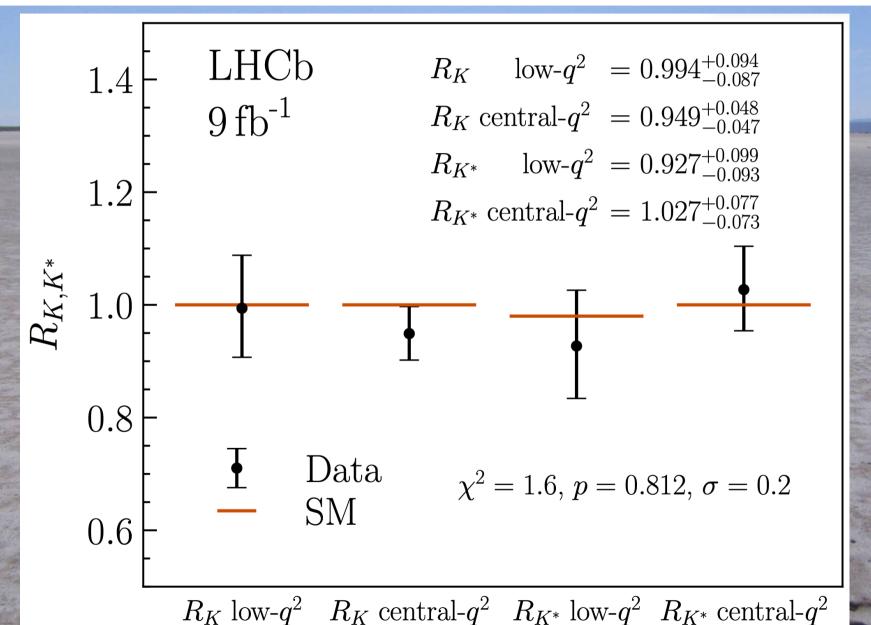


Higgstorical Summary

 Speculation Hypothesis Time to Theory repeat? Search Discovery • Building-block

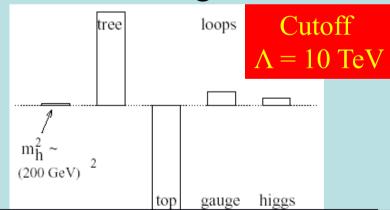

Everything about Higgs is Puzzling

$$\mathcal{L} = yH\psi\overline{\psi} + \mu^2|H|^2 - \lambda|H|^4 - V_0 + \dots$$

- Pattern of Yukawa couplings y:
 - Flavour problem
- Magnitude of mass term μ:
 - Naturalness/hierarchy problem
- Magnitude of quartic coupling λ:
 - Stability of electroweak vacuum
- Cosmological constant term V_0 :
 - Dark energy

Higher-dimensional interactions?

Sic Transit Gloria R_K Anomaliae

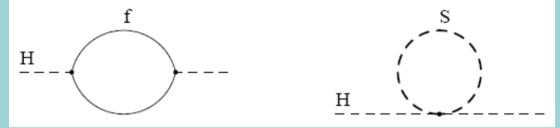

Theoretical worries about the Higgs boson

Elementary Higgs or Composite?

Higgs field:

$$v = <0|H|0> \neq 0$$

- Quantum loop problems
- M_h, v, other masses have quadratic divergences



Cut-off $\Lambda \sim 1$ TeV with Supersymmetry?

- Fermion-antifermion condensate?
- Just like π in QCD, Cooper pairs in BCS superconductivity
- Need new 'technicolour' force
 - Heavy scalar resonance?
- (Problems with precision electroweak data)
- Pseudo-Nambu-Goldstone boson?

Loop Corrections to Higgs Mass²

Consider generic fermion and boson loops:

Each is quadratically divergent: $\int_{-\infty}^{\infty} d^4k/k^2$

$$\Delta m_H^2 = -\frac{y_f^2}{16\pi^2} [2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f) + \dots]$$

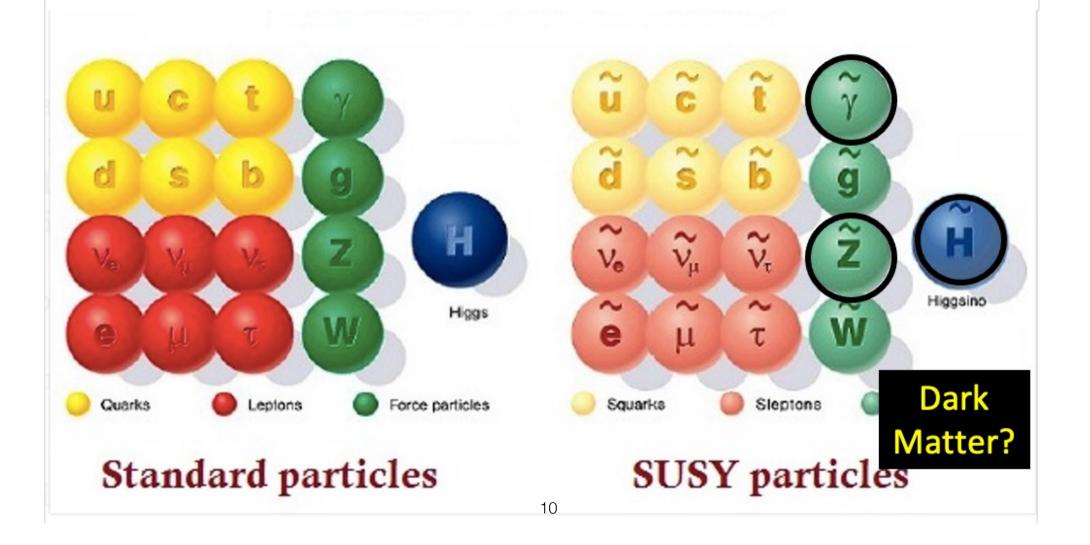
$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda^2 - 2m_S^2 \ln(\Lambda/m_S) + \dots]$$

Leading divergence cancelled if

$$\lambda_S = y_f^2 \times 2$$

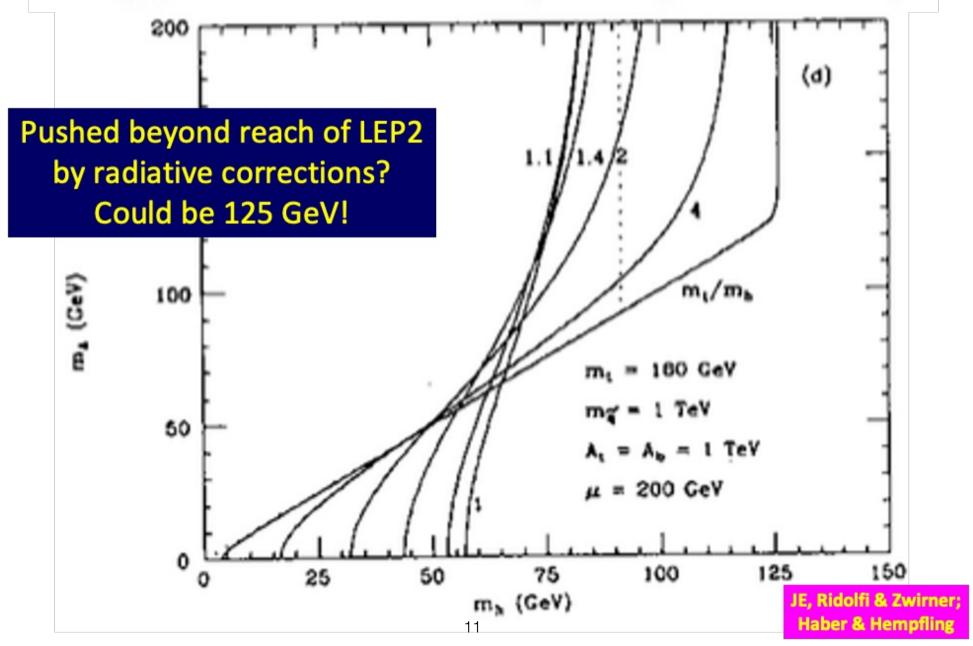
 $\lambda_S = y_f^2 \times 2$ Supersymmetry!

What lies beyond the Standard Model?


Supersymmetry

Stabilize electroweak vacuum

New motivations from LHC


- Successful prediction for Higgs mass
 - Should be < 130 GeV in simple models</p>
- Successful predictions for couplings
 - Should be within few % of SM values
- Naturalness, GUTs, string, dark matter, $g_{\mu} 2$, ...

Minimal Supersymmetric Extension of the Standard Model

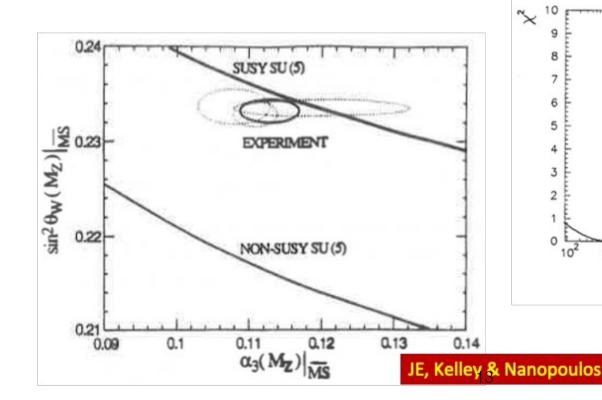
1990/1

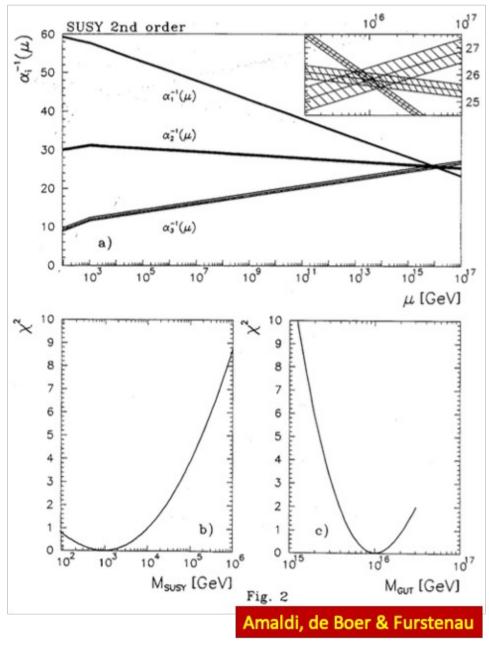
Higgs Mass in Supersymmetry

Grand Unification

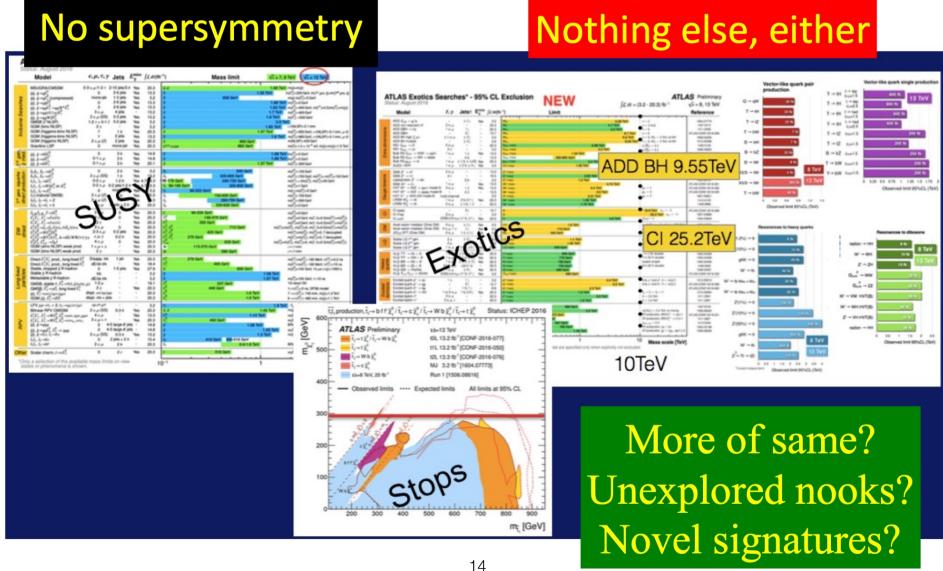
At one-loop order without/with supersymmetry:

$$b_{i} = \begin{pmatrix} 0 \\ -\frac{22}{3} \\ -11 \end{pmatrix} + N_{g} \begin{pmatrix} \frac{4}{3} \\ \frac{4}{3} \\ \frac{4}{3} \end{pmatrix} + N_{H} \begin{pmatrix} \frac{1}{10} \\ \frac{1}{6} \\ 0 \end{pmatrix} b_{i} = \begin{pmatrix} 0 \\ -6 \\ -9 \end{pmatrix} + N_{g} \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} + N_{H} \begin{pmatrix} \frac{3}{10} \\ 1/2 \\ 0 \end{pmatrix}$$


• At two-loop order without/with supersymmetry:

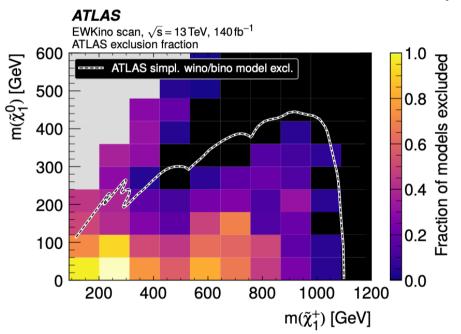

$$b_{ij} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\frac{136}{3} & 0 \\ 0 & 0 & -102 \end{pmatrix} + N_g \begin{pmatrix} \frac{19}{15} & \frac{3}{5} & \frac{44}{15} \\ \frac{1}{5} & \frac{49}{3} & 4 \\ \frac{4}{30} & \frac{3}{2} & \frac{76}{3} \end{pmatrix} + N_H \begin{pmatrix} \frac{9}{50} & \frac{9}{10} & 0 \\ \frac{3}{10} & \frac{13}{6} & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ b_{ij} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -24 & 0 \\ 0 & 0 & -54 \end{pmatrix} + N_g \begin{pmatrix} \frac{38}{15} & \frac{6}{5} & \frac{88}{15} \\ \frac{2}{5} & 14 & 8 \\ \frac{11}{5} & 3 & \frac{68}{3} \end{pmatrix} + N_H \begin{pmatrix} \frac{9}{50} & \frac{9}{10} & 0 \\ \frac{3}{10} & \frac{7}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

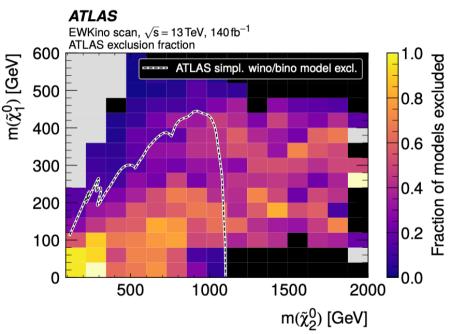
At three-loop order ...


1991

TEP Data Consistent with Supersymmetric Grand Unification

Nothing (yet) at the LHC

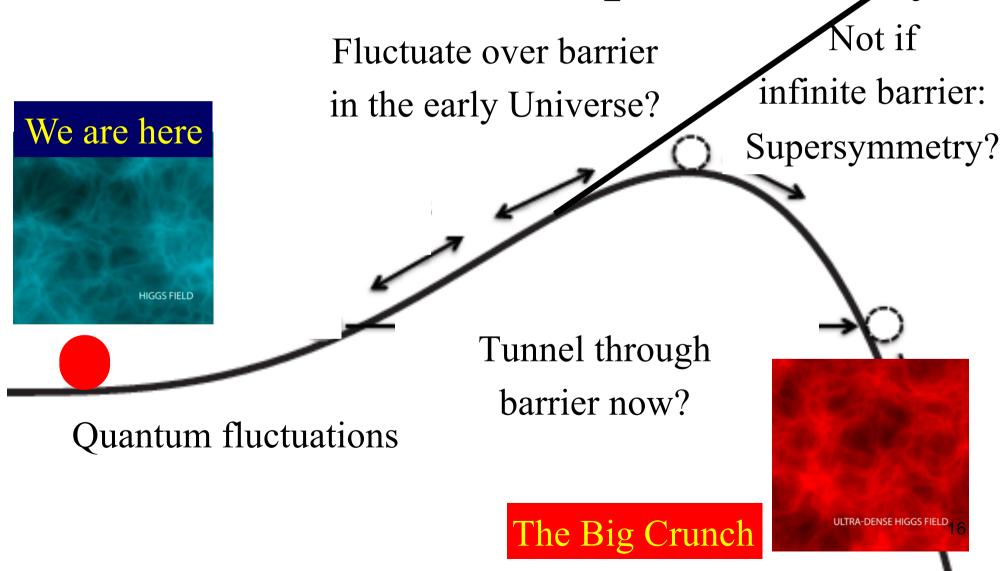


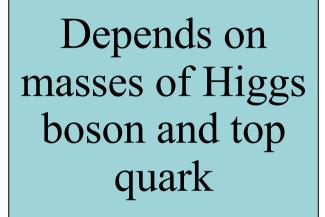

Survey of SUSY searches in pMSSM

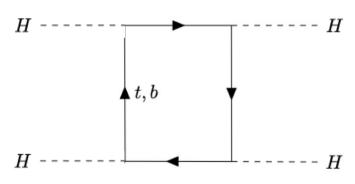
Lines = chargino/neutralino exclusions in searches with simplifying assumptions on spectrum and decay modes

Black = < 10% of pMSSM models excluded

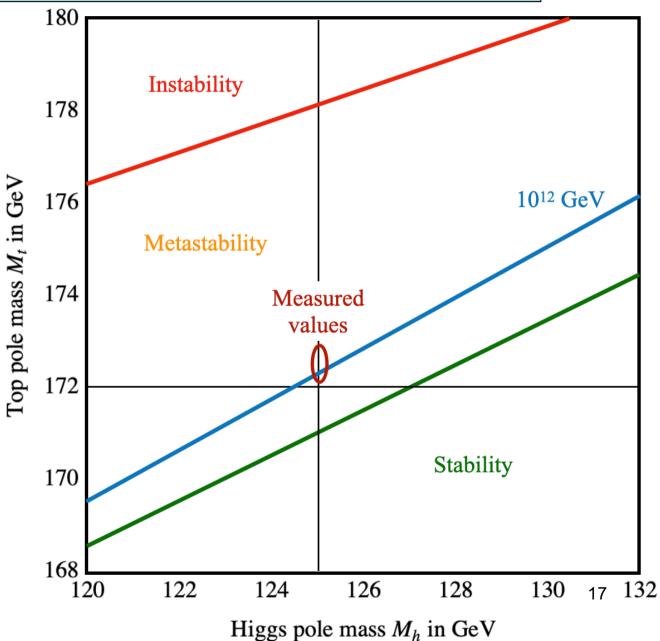
Cream = > 90% of pMSSM models excluded




Many low-mass pMSSM models consistent with constraints


"Not dead yet"

Will the Universe Collapse? Should it have Collapsed already?



Is "Empty Space" Unstable?

$$16\pi^2 \frac{d\lambda}{dt} = 12(\lambda^2 + h_t^2 \lambda - h_t^4) + \mathcal{O}(g^4, g^2\lambda)$$
$$t = \log(Q^2)$$

Is "Empty Space" Unstable?

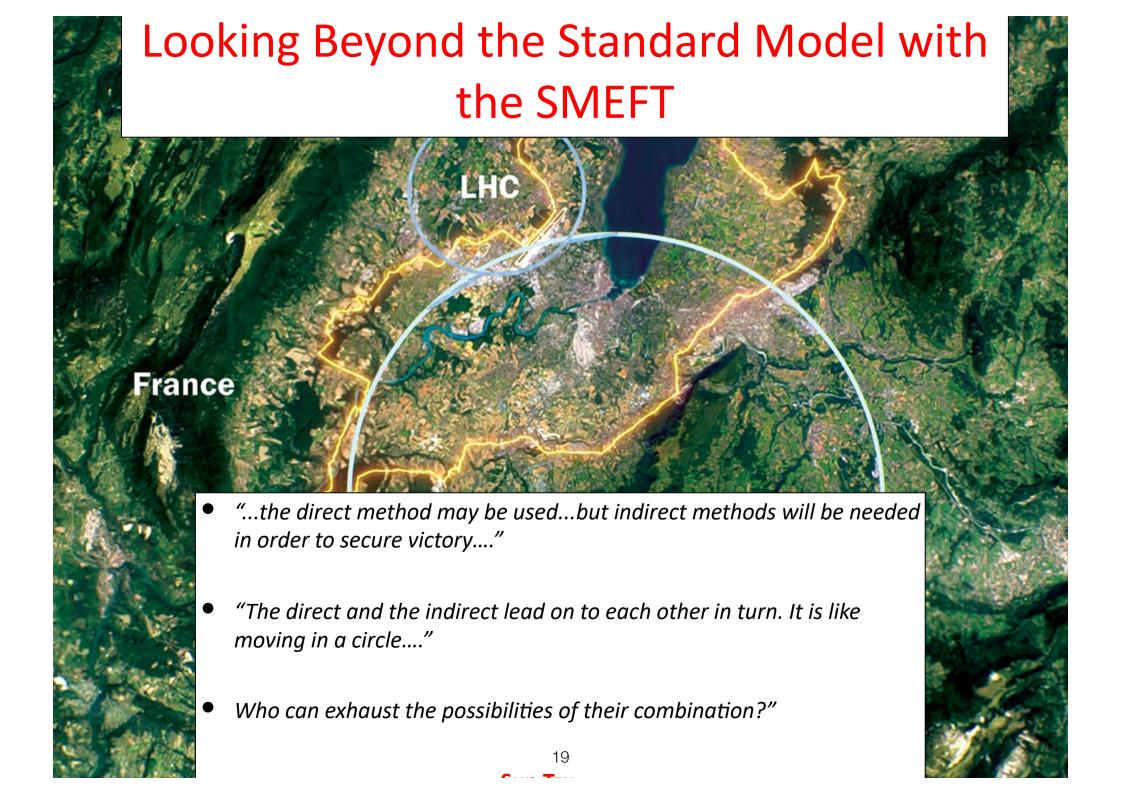
 Dependence of instability scale on masses of Higgs boson and top quark, and strong coupling:

$$Log_{10} \frac{\Lambda}{GeV} = 10.5 - 1.3 \left(\frac{m_t}{GeV} - 172.6 \right) + 1.1 \left(\frac{m_H}{GeV} - 125.1 \right) + 0.6 \left(\frac{\alpha_s(m_Z) - 0.1179}{0.0009} \right)$$

• New CMS value of m_t : CMS Collaboration, April 2022

Buttazzo et al, arXiv:1307.3536 Franceschini et al. 2203.17197

$$m_t = 171.77 \pm 0.38 \,\text{GeV}$$

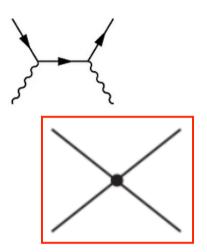

Particle Data Group values:

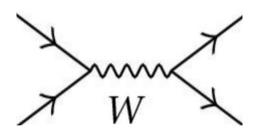
$$m_H = 125.25 \pm 0.17 \,\text{GeV}, \quad \alpha_s(m_Z) = 0.1179 \pm 0.0009$$

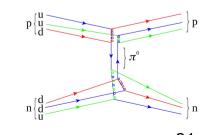
Instability scale:

$$Log_{10} \frac{\Lambda}{GeV} = 11.7 \pm 0.8$$

ullet Dominant uncertainties those in $lpha_{s}$ and m_{t}




A Note on Units and Dimensional Analysis


- Use "natural" units: Planck's constant, velocity of light = 1
- Count mass dimensions: [M] = 1 = [E] = [p] = $[\partial]$
- Consistent with Lorentz invariance: $E^2 = p^2 + m^2$
- Quantum mechanics: [x] = [t] = -1
- Action $A = \int \mathcal{L}d^4x$ has [A] = 0, so $[\mathcal{L}] = 4$ $\mathcal{L} \ni \partial\phi\partial\phi, \psi\partial\psi, F_{\mu\nu}F^{\mu\nu}$
- So $[\phi] = 1$, $[\psi] = 3/2$, $[A_{\mu}] = 1$

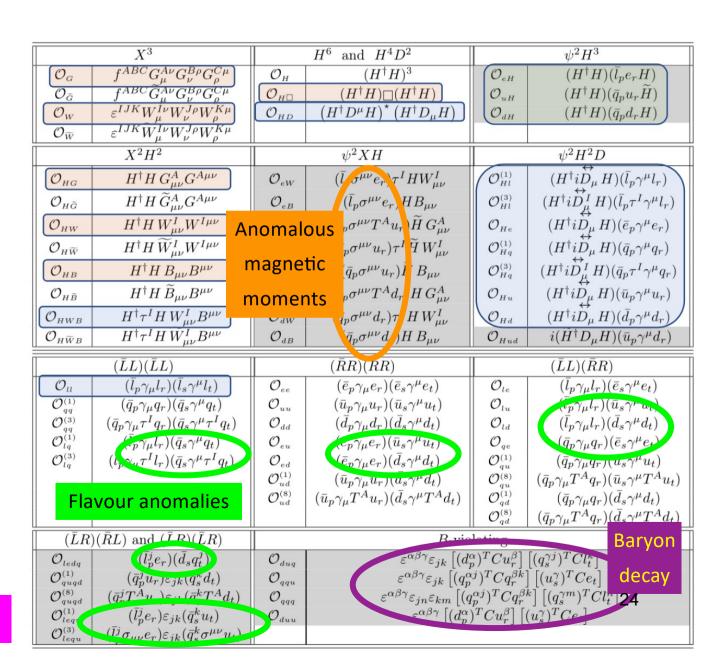
Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force
- Dimension-6 operators: form = S, P, V, A, T?
 - Due to exchanges of massive particles?
- V-A → massive vector bosons → gauge theory
- Yukawa's meson theory of the strong N-N force
 - Due to exchanges of mesons? → pions
- Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

Standard Model Effective Field Theory a more powerful way to analyze the data

- Assume the Standard Model Lagrangian is correct (quantum numbers of particles) but incomplete
- Look for additional interactions between SM particles due to exchanges of heavier particles
- Analyze Higgs data together with electroweak precision data and top data
- Most efficient way to extract largest amount of information from LHC and other experiments
- Model-independent way to look for physics beyond the Standard Model (BSM)

Summary of Analysis Framework

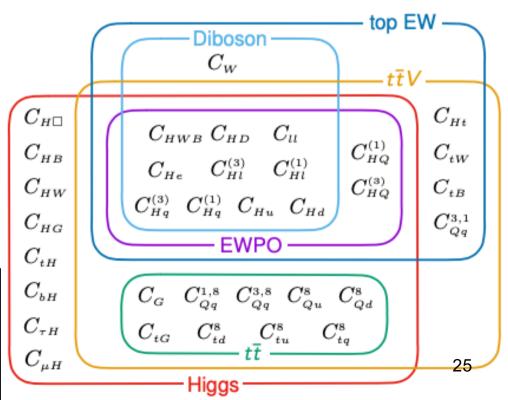

• Include all leading dimension-6 operators?

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

- Simplify by assuming flavour SU(3)⁵ or SU(2)² X SU(3)³ symmetry for fermions
- Work to linear order in operator coefficients, i.e. $\mathcal{O}(1/\Lambda^2)$
- Use G_F , M_7 , α as input parameters

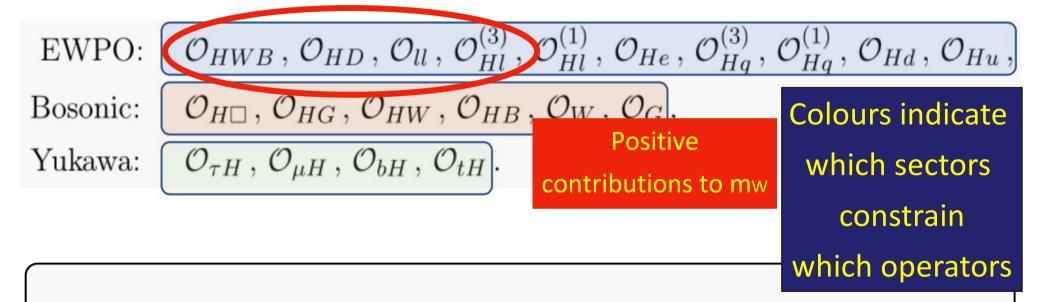
Dimension-6 SMEFT Operators

- Including 2- and 4fermion operators
- Different colours for different data sectors
- Grey cells violate
 SU(3)⁵ symmetry
- Important when including top observables


Global SMEFT Fit

to Top, Higgs, Diboson, Electroweak Data

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

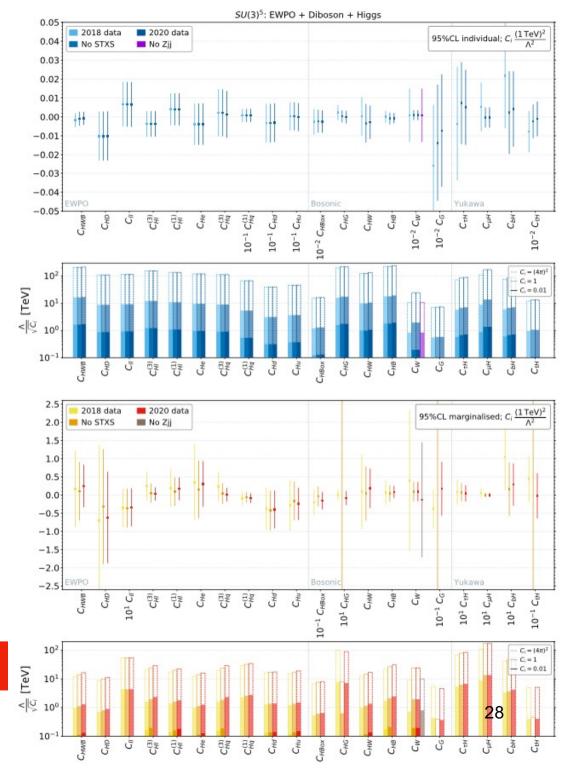

- Global fit to dimension-6 operators using precision electroweak data, W⁺W⁻ at LEP, top, Higgs and diboson data from LHC Runs 1, 2
- Search for BSM
- Constraints on BSM
 - At tree level
 - At loop level

341 measurements included in global analysis

Operators included in Global Fit

• 20 operators in flavour-universal SU(3)⁵ fit

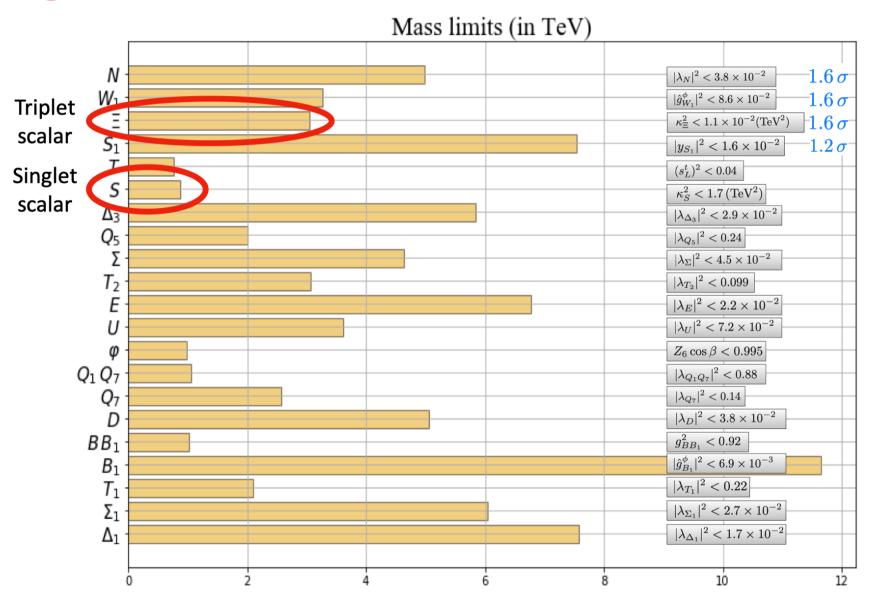

```
EWPO: \mathcal{O}_{HWB}, \mathcal{O}_{HD}, \mathcal{O}_{ll}, \mathcal{O}_{Hl}^{(3)}, \mathcal{O}_{Hl}^{(1)}, \mathcal{O}_{He}, \mathcal{O}_{Hq}^{(3)}, \mathcal{O}_{Hq}^{(1)}, \mathcal{O}_{Hd}, \mathcal{O}_{Hu}, \mathcal{O}_{hu},
```


Data included in Global Fit

EW precision observables			D-£					
Precision electroweak measurem	LHC Run 2 Higgs	Tevat	ron & Run 1 top	$n_{ m obs}$	Ref.			
Γ_Z , $\sigma_{\text{had.}}^0$, R_{ℓ}^0 , A_{FB}^{ℓ} , $A_{\ell}(\text{SLD})$, $A_{\ell}(\text{SLD})$	ATLAS combination of		on combination of differential tt forward-backward asymmetry,	4	[7]			
Combination of CDF and D0 W	including ratios of bra Signal strengths coars	ATLA	n_{obs}	Ref.				
LHC run 1 W boson mass meast	CMS LHC combination	$\frac{d\sigma}{dm_{t\bar{t}}}$	CMS $t\bar{t}$ differential distributions in the dilepton channel.		6	[36,		
Diboson LEP & LHC	Production: ggF , VB	ATLA <u>dσ</u>	$\frac{d\sigma}{dm_{ti}}$			231]		
W ⁺ W [−] angular distribution me	Decay: $\gamma \gamma$, ZZ , W^+W	amer	CMS $t\bar{t}$ differential distributions in the ℓ +jets channel.		10	[37]		
W^+W^- total cross section meas	CMS stage 1.0 STXS	$\frac{d\sigma}{dm_{t\bar{t}}}$	$\frac{d\sigma}{dm_{tf}}$					
final states for 8 energies	13 parameter fit 7 pa	CMS	ATLAS measurement of differential $t\bar{t}$ charge asymmetry, $A_C(r)$	$n_{t\bar{t}}$).	5	[38]		
W^+W^- total cross section meas	CMS stage 1.0 STXS	dilepte			1 1	[39]		
qqqq final states for 7 energies	CMS stage 1.1 STXS	dilepto	CLAA I PET		4 4	[40] [41]		
W^+W^- total cross section mea	CMS differential cross	$ATLA$ $A_C(m$	Chib 622 differential distributions.		414	[41]		
& qqqq final states for 8 energies	tion in the $WW^* \to \ell$	5 5	[42]					
ATLAS W+W- differential cre	$\frac{d\sigma}{dn_{jet}}$ $\frac{d\sigma}{dp_H^T}$	CMS t $\frac{d\sigma}{dm_{i\bar{i}}dy}$	010	[]				
$p_T > 120$ GeV overflow bin	ATLAS $H \to Z\gamma$ sign.	ATLA						
ATLAS W ⁺ W ⁻ fiducial differen	ATLAS $H \rightarrow \mu^{+}\mu^{-}$ si	TLAS $H \to \mu^+\mu^-$ si decay. CMS measurement of t-channel single-top and anti-top cross sections						
$\frac{d\sigma}{dp_{\ell_1}^T}$		ATLA f_0, f_L	$\sigma_t, \sigma_{\bar{t}}, \sigma_{t+\bar{t}} \& R_t.$					
	l aross costion in the #	CMS	CMS measurement of the t -channel single-top and anti-top cross	sections.	1 1 1 1	[44]		
ATLAS $W^{\pm}Z$ fiducial differential cross section in the ℓ^+			$\sigma_t \sigma_{\bar{t}} \sigma_{t+\bar{t}} R_t.$		*1.4	[47]		
$\frac{d\sigma}{dp_Z^T}$		ATLA CMS 1			4 4	[45]		
CMS $W^{\pm}Z$ normalised fiducial d	ifferential cross section	ATLA	$\frac{d\sigma}{dp_{t+\bar{t}}^T} \mid \frac{d\sigma}{d y_{t+\bar{t}} }$					
channel, $\frac{1}{\sigma} \frac{d\sigma}{dp_Z^T}$		$\frac{d\sigma}{dp_t^T}$	ATLAS tW cross section measurement. 341 m	easur	remei	nts		
ATLAS Zjj fiducial differential c	ross section in the $\ell^+\ell^-$	CMS :	CMS tZ cross section measurement.			l l		
THC D . TH		CMS	CMS tW cross section measurement. ATLAS tZ cross section measurement.	clude	d in			
LHC Run 1 Higgs		$\frac{d\sigma}{dp_{t+\bar{t}}^T}$	CD (C + Z / Z + C+ C-)	cidac	ч			
ATLAS and CMS LHC Run 1 co				•		_		
Production: ggF , VBF , ZH , WH & ttH			$ \sigma_{t+\bar{t}} R_t$. S s-channel single-top cross section measurement.	oal an	alysis			
Decay: $\gamma \gamma$, ZZ , W^+W^- , $\tau^+\tau^-$ & $b\bar{b}$			W cross section measurement.		37			
ATLAS inclusive $Z\gamma$ signal stren	gth measurement		S tW cross section measurement in the single lepton channel	1	[34]			
		ATLA	S tW cross section measuremen JE, Madigan, Mimasu, Sanz	& You, arX	iv:2012.02	779		

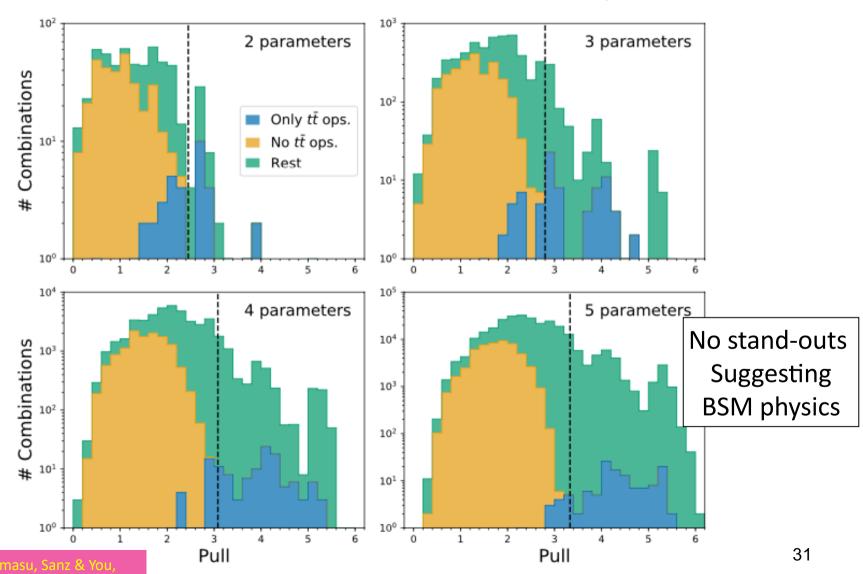
Dimension-6 Constraints with Flavour-Universal SU(3)⁵ Symmetry

- Individual operator coefficients
- Marginalised over all other operator coefficients

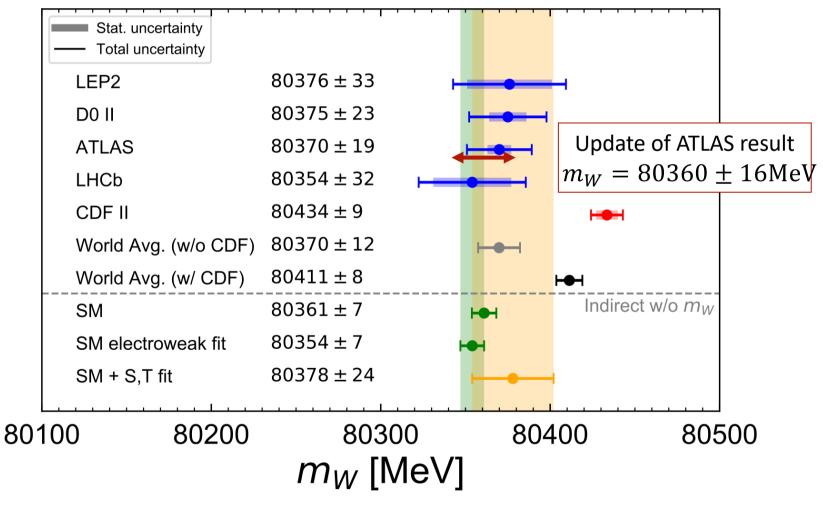

No significant deviations from SM

Single-Field Extensions of the Standard Model

Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
S_1	0	1	1	1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
9	0	Spin ze	ero 2	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
[I]	0	1	3	0	Σ_1	$rac{1}{2}$	1	3	-1
z_1	0	1	3	1	$oxed{U}$	$\frac{1}{2}$	3	1	$\frac{2}{3}$
\mathcal{B}	1	1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
B_1	1	loctor	1	1	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
W	1	Vector	3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
W_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
N	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
$oldsymbol{E}$	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$
T	$\frac{1}{2}$	3	1	$\frac{2}{3}$	TB	$\frac{1}{2}$	3	2	$\frac{1}{6}$


Single-Field Extensions of the Standard Model

Model-Independent BSM Survey


Switch on random subsets of 2, 3, 4 or 5 operators

arXiv:2012.02779

CDF Measurement of mw

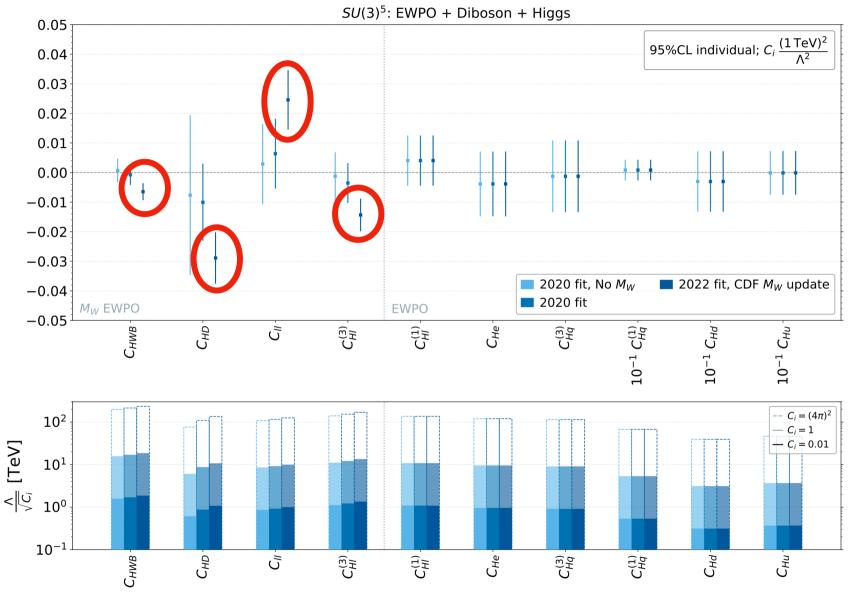
compared with other measurements

Tension: 7- σ discrepancy with Standard Model?

SMEFT Operators that can Contribute to W Mass

Relevant SMEFT operators

$$\mathcal{O}_{HWB} \equiv H^{\dagger} \tau^{I} H W_{\mu\nu}^{I} B^{\mu\nu}, \quad \mathcal{O}_{HD} \equiv \left(H^{\dagger} D^{\mu} H \right)^{\star} \left(H^{\dagger} D_{\mu} H \right)$$
$$\mathcal{O}_{\ell\ell} \equiv \left(\bar{\ell}_{p} \gamma_{\mu} \ell_{r} \right) \left(\bar{\ell}_{s} \gamma^{\mu} \ell_{t} \right), \quad \mathcal{O}_{H\ell}^{(3)} \equiv \left(H^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu}^{I} H \right) \left(\bar{\ell}_{p} \tau^{I} \gamma^{\mu} \ell_{r} \right)$$


Contributions to W mass

$$\frac{\delta m_W^2}{m_W^2} = -\frac{\sin 2\theta_w}{\cos 2\theta_w} \frac{v^2}{4\Lambda^2} \left(\frac{\cos \theta_w}{\sin \theta_w} C_{HD} + \frac{\sin \theta_w}{\cos \theta_w} \left(4C_{Hl}^{(3)} - 2C_{ll} \right) + 4C_{HWB} \right)$$

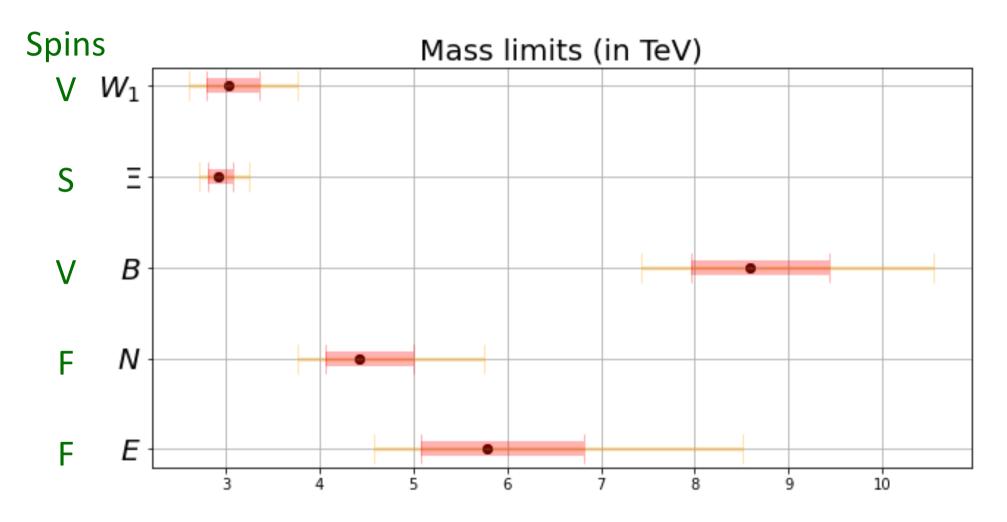
Contributions to S and T oblique parameters

$$\frac{v^2}{\Lambda^2}C_{HWB} = \frac{g_1g_2}{16\pi}S$$
 , $\frac{v^2}{\Lambda^2}C_{HD} = -\frac{g_1g_2}{2\pi(g_1^2 + g_2^2)}T$

SMEFT Fit with the Mass of the W Boson

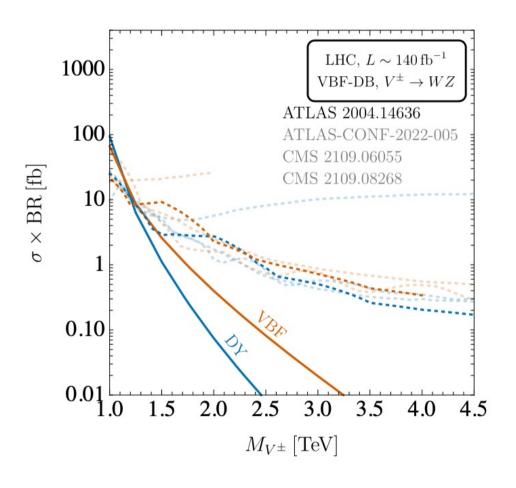
Non-zero coefficients for any of four operators can fit W mass

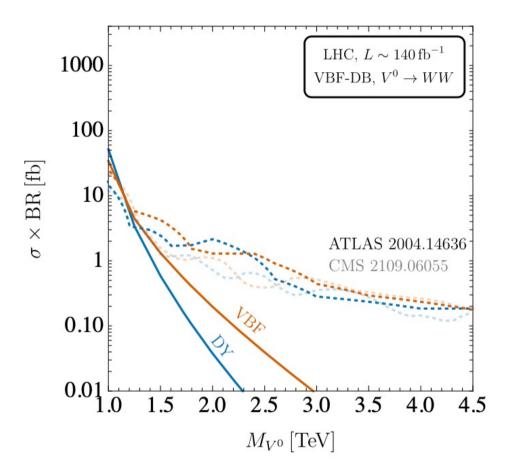
Single-Field Extensions of the Standard Model

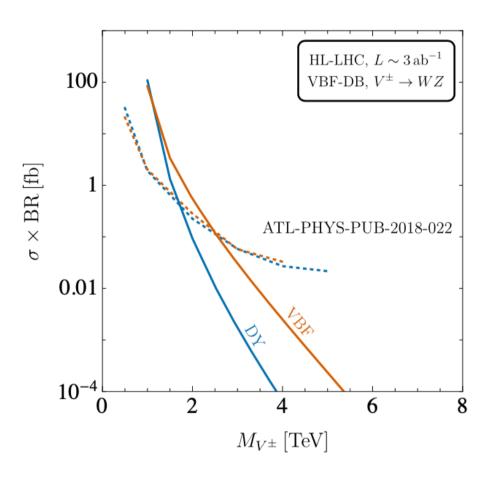

	Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
	S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
	S_1	0	1	1	1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
	φ	0	Spin ze	ero <mark>2</mark>	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
\	[1]	0	1	3	0	Σ_1	$rac{1}{2}$	1	3	-1
	2 1	0	1	3	1	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
	B	1	1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
	B_1	1	Vector -	1	1	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
	W	1	Vector	3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
	W_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
	N	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
	E	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$
	T	$\frac{1}{2}$	3	1	$\frac{2}{3}$	TB	$\frac{1}{2}$	3	2	$\frac{1}{6}$

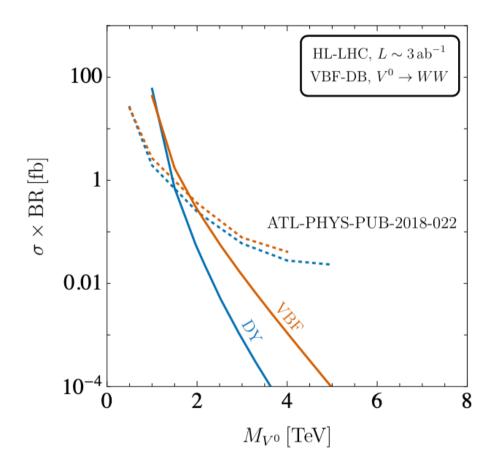
Single-Field Models that can Contribute to W Mass

Model	C_{HD}	C_{ll}	$C_{H^{\prime\prime}}^{(3)}$	$C_{Hl}^{(1)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
S_1		X							
Σ	Wrong	sign	*	$\frac{3}{16}$			$\frac{y_{ au}}{4}$		
Σ_1	VVIOLIB	JIBIT	*	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$		
N			$-\frac{1}{4}$	$rac{1}{4}$					
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{ au}}{2}$		
B_1	X	D: 1				$-\frac{1}{2}$	$-\frac{y_{ au}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
B	-2	Righ	nt sign				$-y_{ au}$	$-y_t$	$-y_b$
Ξ	-2					$\frac{1}{2}$	$y_{ au}$	y_t	y_b
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
W	X					$-\frac{1}{2}$	$-y_{ au}$	$-y_t$	$-y_b$


Operators contributing to mw


Models Fitting the Mass of the W Boson


68 and 95% CL ranges of masses assuming unit couplings, mass range proportional to coupling


LHC Search for Triplet Vector Boson

HL-LHC Search for Triplet Vector Boson

Searching for Models Fitting the Mass of the W Boson

- W: Isotriplet vector boson, mass ~ 3 TeV x coupling, electroweak production, accessible at LHC?
- B: Singlet vector boson, mass ~ 8 TeV x coupling, phenomenology depends on fermion couplings, too heavy for LHC?
- Ξ: Isotriplet scalar boson, mass ~ 3 TeV x coupling, detectable in LHC searches for heavy Higgs bosons?
- N: Isosinglet neutral fermion, mass ~ 4 TeV x coupling, similar to (right-handed) singlet neutrino
- E: Isosinglet charged fermion, mass ~ 6 TeV x coupling, similar to (right-handed) singlet electron

CMS Measurement of M_W

 $m_W=80360.2\pm 9.9 MeV$

LEP combination

Phys. Rep. 532 (2013) 119

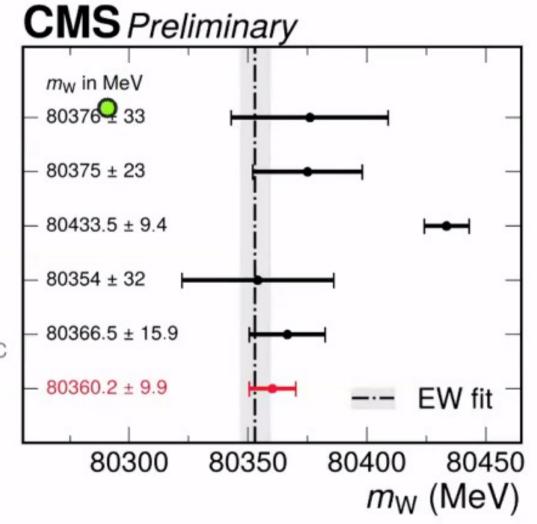
D0

PRL 108 (2012) 151804

CDF

Science 376 (2022) 6589

LHCb


JHEP 01 (2022) 036

ATLAS

arxiv:2403.15085, subm. to EPJC

CMS

This Work

Requiem for another anomaly?

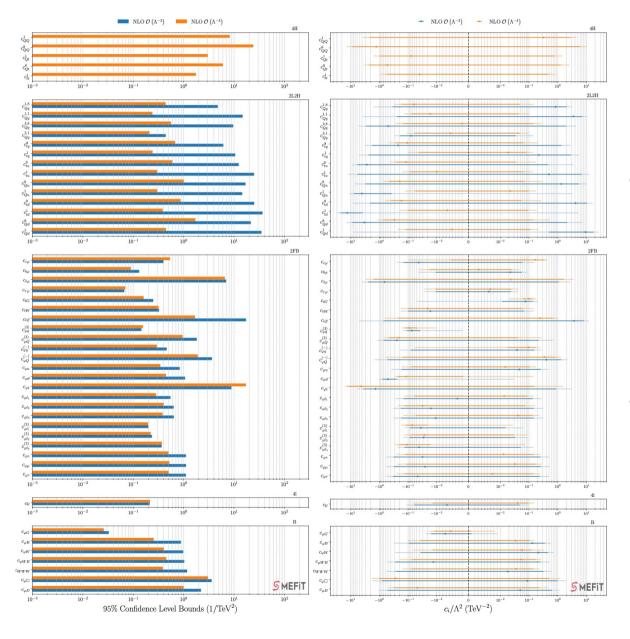
Beyond Dimension-6:

Dimension-8 Operators

• Most analyses focus on dimension-6:

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

Dimension-8 contributions scaled by quartic power of new physics scale:


$$\Delta \mathcal{L}(\text{dim-8}) = \sum_{j} \frac{\tilde{c}_{j}}{\tilde{\Lambda}^{4}} \mathcal{O}_{j} = \sum_{j} \frac{\text{sign}(\tilde{c}_{j})}{\Lambda_{j}^{4}} \mathcal{O}_{j}$$

- Study corrections to dimension-6 analysis
- Or study processes without dimension-6 contributions,

e.g., light-by-light scattering,
$$gg \rightarrow \gamma \gamma, Z\gamma$$
, ...

Neutral triple-gauge couplings (nTGCs): $\gamma \gamma^* Z$, γZZ *

SMEFiT Analysis

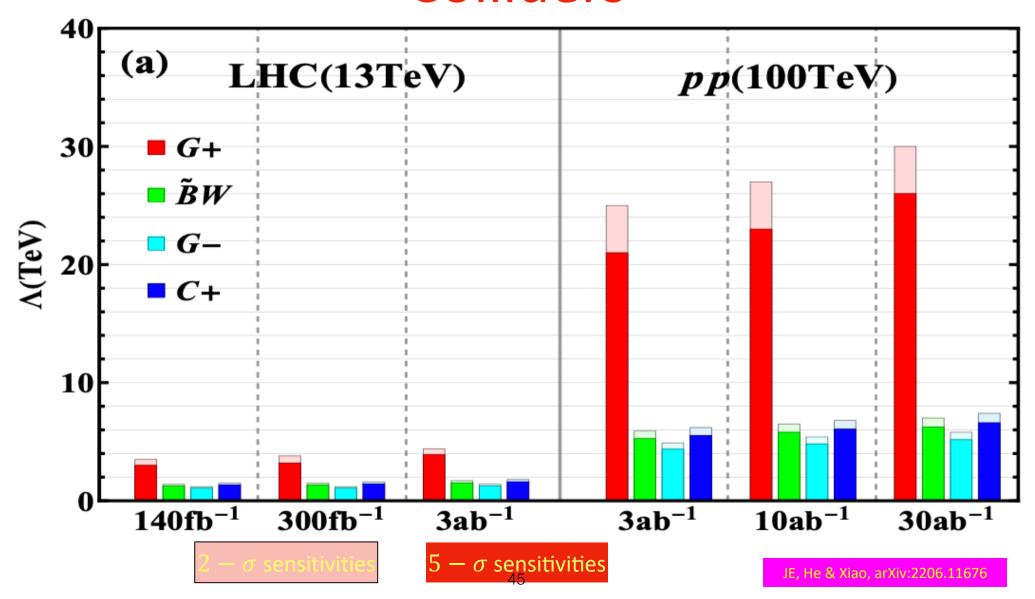
- Includes linear dimension-8 as well as quadratic dimension-6
- No significant evidence for nonzero operator coefficients
- Experiments, please enter the game!

Dimension-8 Operators Contributing to On-Shell nTGCs

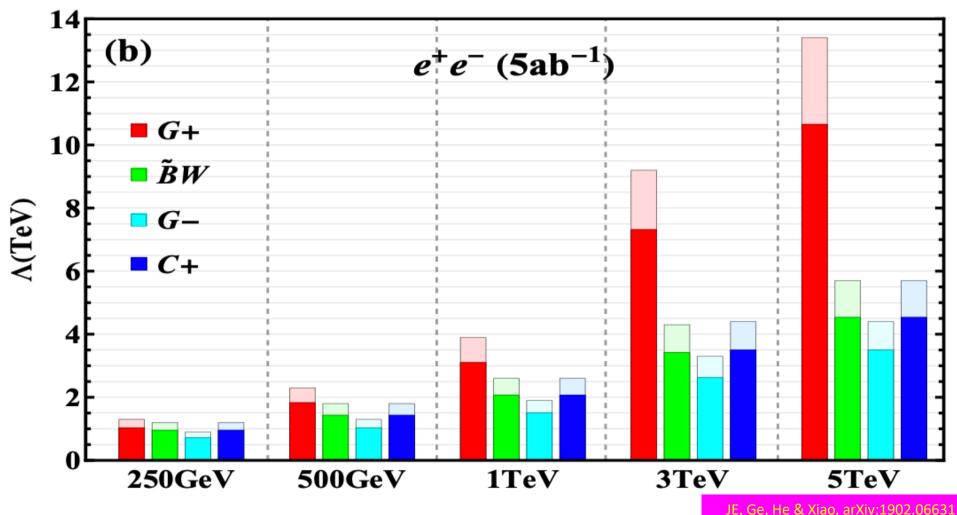
$$g\mathcal{O}_{G+} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} + D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}),$$

$$g\mathcal{O}_{G-} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} - D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}),$$

$$\mathcal{O}_{\widetilde{B}W} = iH^{\dagger}\widetilde{B}_{\mu\nu}W^{\mu\rho}\{D_{\rho}, D^{\nu}\}H + \text{h.c.},$$


$$\mathcal{O}_{C+} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}[D_{\rho}(\overline{\psi_{L}}T^{a}\gamma^{\nu}\psi_{L}) + D^{\nu}(\overline{\psi_{L}}T^{a}\gamma_{\rho}\psi_{L})]$$

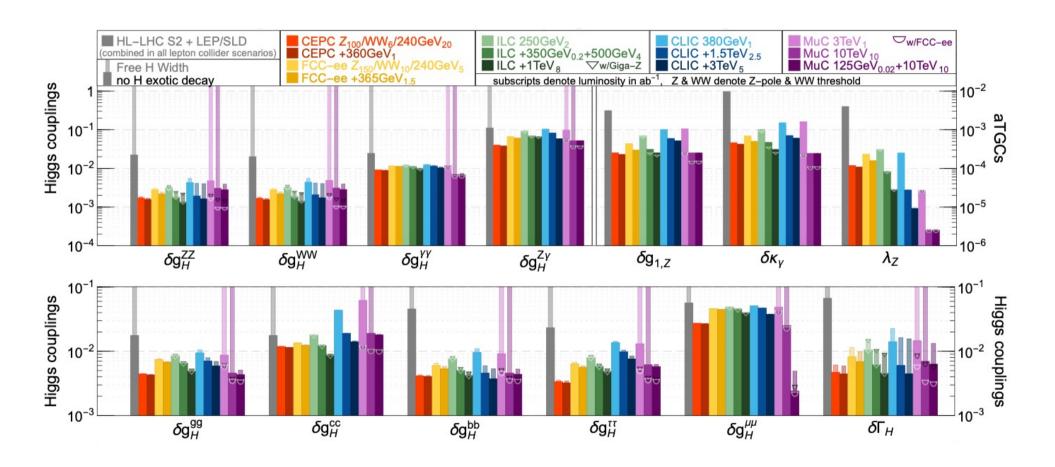
$$\mathcal{O}_{C-} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}[D_{\rho}(\overline{\psi_{L}}T^{a}\gamma^{\nu}\psi_{L}) - D^{\nu}(\overline{\psi_{L}}T^{a}\gamma_{\rho}\psi_{L})]$$


- $\mathcal{O}_{C+,C-}$ related to $\mathcal{O}_{G+,G-,BW}$ by equations of motion:
- nTGCs generated:

$$\begin{split} &\Gamma_{Z\gamma Z^*(G+)}^{\alpha\beta\mu}(q_1,q_2,q_3) \; = \; -\frac{v(q_3^2-M_Z^2)}{M_Z[\Lambda_{G+}^4]} \Big(q_3^2 \, q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + 2q_2^\alpha q_{3\nu} q_{2\sigma} \epsilon^{\beta\mu\nu\sigma} \Big), \\ &\Gamma_{Z\gamma\gamma^*(G+)}^{\alpha\beta\mu}(q_1,q_2,q_3) \; = \; -\frac{s_W v \, q_3^2}{c_W M_Z[\Lambda_{G+}^4]} \Big(q_3^2 \, q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + 2q_2^\alpha q_{3\nu} q_{2\sigma} \epsilon^{\beta\mu\nu\sigma} \Big), \\ &\Gamma_{Z\gamma Z^*(\widetilde{B}W)}^{\alpha\beta\mu}(q_1,q_2,q_3) \; = \; \frac{v \, M_Z(q_3^2-M_Z^2)}{[\Lambda_{\widetilde{B}W}^4]} \epsilon^{\alpha\beta\mu\nu} q_{2\nu} \, , \\ &\Gamma_{Z\gamma\gamma^*(G-)}^{\alpha\beta\mu}(q_1,q_2,q_3) \; = \; -\frac{s_W v \, M_Z}{c_W[\Lambda_{G-1}^4]} \epsilon^{\alpha\beta\mu\nu} q_{2\nu} q_3^2 \, . \end{split}$$

Operator Sensitivities of pp Colliders

Operator Sensitivities of e^+e^- Colliders



 $2-\sigma$ sensitivities

 $5 - \sigma$ sensitivities

JE, He & Xiao, arXiv:1902.0663 JE, He & Xiao, arXiv:2008.04298 JE, He & Xiao, arXiv:2206.11676

Future SMEFT Prospects

Quo Vadis SMEFT?

- Powerful framework for global analyses of LHC and other data
- Systematic way to search for BSM physics
- Can be used in principle to identify "interesting" BSM scenarios
- Dimension-6 operators are a first approximation
- Important to check lesser importance of dimension-8, convergence towards ultraviolet-complete model
- Interesting direct windows on dimension-8 operators