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:: the physics of ultra-relativistic collisions of heavy nuclei
{PbPb,XeXe}@LHC, {AuAu,CuCu,96Zr40+Zr,96Ru44+Ru,UU}@RHIC, {PbPb,InIn,…}@SPS[fixed target], …

the main focus of these lectures
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:: and [less obviously]

p p

:: whenever ‘heavy-ion-like’ behaviour is involved

:: but also
:: light[er]-heavy ion collisions

{CuAu, dAu}@RHIC, {PbNe}@LHC [LHCb fixed target]

:: which [obviously] includes

:: proton-nucleus collisions
pPb@LHC, pAl@RHIC

the lightest of all ions
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:: and deep-inelastic scattering off nuclei

l

l

γ*

EIC@BNL, LHeC (?), FCC-eA (?) 

which is essential to know the initial conditions of a heavy-ion collision

:: the structure of the colliding nuclei at all relevant scales [nuclear PDFs]
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:: and, even less obviously, nuclei as EM field sources [ultra -peripheral collisions]

:: poor person’s DIS

ATLAS ::  Nature Physics 13 (2017) no.9, 852 ;1702.01625 [hep-ex]

γ

γ

γ

::   scattering [classically forbidden process]γγ ⟶ γγ



HEAVY ION PHYSICS [PURPOSE] 
explore and understand fundamental properties of matter at the most extreme temperature [~105 
higher than the Sun’s core] and density achievable in a laboratory 

make droplets of early Universe [～10-6 seconds after the Big Bang]
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higher than the Sun’s core] and density achievable in a laboratory 

understand QCD beyond ‘few-particles’ and ‘conventional-vacuum’ 

explore the QCD phase diagram
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Figure 2

(left) Lattice QCD calculations of the pressure p, energy density " and entropy density s of hot QCD matter in thermal
equilibrium at temperature T (18, 19) show a continuous crossover around T ⇠ 150 MeV, from a hadron resonance gas
(HRG) at lower temperatures to QGP at higher temperatures. Because QCD is asymptotically free, thermodynamic
quantities will reach the Stefan-Boltzmann limit (weakly coupled quarks and gluons; the non-interacting limit is marked in
the figure) at extremely high temperature. At the range shown, however, they are around 20% below their
Stefan-Boltzmann values, which is consistent with simple estimates for strongly coupled plasma based on holography (20).
The rise in "/T 4 and s/T 3 seen in the figure is a direct manifestation of the crossover from a hadron gas to QGP which
has more thermodynamic degrees of freedom because color is deconfined. Using experimental data to constrain "/T 4

remains an outstanding challenge: comparing hydrodynamic calculations to various experimental measurements gives us
information about " versus time but, although some information about T can be obtained by analyzing measurements of
photons, electrons and muons from heavy ion collisions (21), at present T cannot be determined with sufficient accuracy to
constrain "/T 4 well enough to see the rise in the number of degrees of freedom in QGP. (right) This sketch illustrates our
current understanding of the expected features of the phase diagram of QCD as a function of temperature and baryon
doping, the excess of quarks over antiquarks, parametrized by the chemical potential for baryon number µB . The lattice
calculations in the left panel were done with µB = 0, corresponding to the vertical axis of the phase diagram. The regions
of the phase diagram traversed by the expanding cooling droplets of QGP formed in heavy ion collisions with varying
energy p

sNN are sketched. The transition from QGP to hadrons is a crossover near the vertical axis; the thermodynamics
of this crossover is well understood from lattice QCD calculations that are quantitative and controlled in the yellow region.
At higher doping, the transition may become first order at a critical point. A central goal of the coming second phase of
the RHIC Beam Energy Scan (BES II) is to determine whether such a critical point exists in the region of the phase
diagram that can be explored using heavy ion collisions. At higher baryon density and lower temperature, cold dense
quark matter is expected to be a color superconductor. This form of matter may be found at the centers of neutron stars.
(Figs. from (19, 22))

length scales of QCD, meaning that it left no imprint in the microseconds-old universe
that survived so as to be visible in some way today. That is, we now understand that we
cannot use cosmological observations to “see” the primordial hot QCD matter that filled
the microseconds old universe, or the crossover transition at which ordinary protons and
neutrons first formed.

A central goal of ultrarelativistic heavy ion collisions, then, is to use these experiments
to recreate droplets of Big Bang matter in the laboratory -- where we can learn about
its material properties as well as about its phase diagram in ways that we will never be
able to do via observations made with telescopes or satellites. What can we learn from
such studies? What have we learned so far? One of the most important discoveries made

8 Busza, Rajagopal and van der Schee

Reaching for the horizon: The 2015 long range plan for  nuclear science
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HEAVY ION PHYSICS [PURPOSE] 
explore and understand fundamental properties of matter at the most extreme temperature 
[~105 higher than the Sun’s core] and density achievable in a laboratory 

understand QCD beyond ‘few-particles’ and ‘conventional-vacuum’ 

understand the Quark Gluon Plasma [QGP] 

the simplest form of complex quantum matter 

only strongly coupled system of SM fundamental dof 

how does complexity/complexity emerge from simple fundamental laws ?

12

 these remain open questions?



WHAT IS QGP

a system of very high energy density [Bjorken’s estimate] 

re-scattering in the final state is unavoidable and should drive system towards thermal equilibrium

13

ϵ0(τ0 = 1 𝖦𝖾𝖵/𝖿𝗆) = 1
πR2τ0

dE⊥
dη

η=0

≃ 20 𝖦𝖾𝖵/𝖿𝗆𝟥
Bjorken, Phys. Rev. D27 (1983) 140

ALICE, Phys. Rev. D27 (1983) 140

[  for a nucleon at rest]ϵ0 = 0.16 𝖦𝖾𝗏/𝖿𝗆𝟥



WHAT IS QGP

temperature/energy density acts as scale to free (anti-)quarks and gluons beyond nucleon radius 

QGP is a system of deconfined (anti-)quarks and gluons with chiral symmetry restored

14

Confinement - deconfinement
Deconfinement phase transition

Individual
nucleons plasma

Quark gluon

Density

When the nucleon density increases, they merge, enabling quarks and
gluons to hop freely from a nucleon to its neighbors

This phenomenon extends to the whole volume when the phase
transition ends

Note: if the transition was first–order, it would go through a mixed
phase containing a mixture of nucleons and plasma

CERN Summer School 2011 () QCD in Heavy Ion Collisions Cheile Grǎdiştei, Romania 23 / 70

For low temperature / density: quarks and gluons confined to hadrons

For high temperature / density: deconfined quarks and gluons

In between no sharp phase transition but continuous crossover

6 / 75

S. Floerchinger, ESHEP2015 



WHAT IS QGP
if QGP were a non-interacting gas of  massless bosons and  massless fermions, its pressure 
would be [Stefan–Boltzmann]  

at low temperatures  [non-interacting hadron gas]

NB NF

Mπ < T < Mρ

15

p(T) = π2

90 (Nb + 7
8 NF)T4

NB = [#𝗉𝗈𝗅𝖺𝗋𝗂𝗓𝖺𝗍𝗂𝗈𝗇𝗌] × [#𝖼𝗈𝗅𝗈𝗎𝗋𝗌] = 2 × 8
NF = [#𝗌𝗉𝗂𝗇𝗌] × [𝗉𝖺𝗋𝗍𝗂𝖼𝗅𝖾/𝖺𝗇𝗍𝗂 − 𝗉𝖺𝗋𝗍𝗂𝖼𝗅𝖾] × [#𝖼𝗈𝗅𝗈𝗎𝗋𝗌 × [#𝖿𝗅𝖺𝗏𝗈𝗎𝗋𝗌] = 2 × 2 × 3 × 3

NB = [#𝗉𝗂𝗈𝗇𝗌] = 3
NF = 0

 should expect a significant pressure increase at boundary between phases⟶



WHAT IS QGP

from first principles [lattice QCD :: solve QCD numerically on space-time lattice]

16

9

3p/T4

ε/T4

3s/4T3

 0

 4

 8

12

16

130 170 210 250 290 330 370

T [MeV]

HRG

non-int. limit

Tc

Figure 5: Spline fits to the trace anomaly for several values of the lattice spacing aT = 1/N⌧ and the result of our continuum
extrapolation (left). Note that the error bands shown here do not include the 2% scale error. The right hand panel shows
suitably normalized pressure, energy density, and entropy density as a function of the temperature. In this case the 2% scale
error is included in the error bands. The dark lines show the prediction of the HRG model. The horizontal line at 95⇡2/60
in the right panel corresponds to the ideal gas limit for the energy density and the vertical band marks the crossover region,
Tc = (154± 9) MeV.

Figure 6: The comparison of the HISQ/tree and stout results
for the trace anomaly, the pressure, and the entropy density.

fixing cn = cd = 0 gives an excellent parametrization of
all our numerical data and is in good agreement with the
HRG estimate, at least down to T = 100 MeV. Further-
more, this parametrization agrees with the N⌧ = 8 data
well beyond T = 400 MeV.

The values of the parameters in our ansatz for the pres-
sure, Eq. (16), are summarized in Table II. The results
of this ansatz for the speed of sound, energy density, and
specific heat are compared with our continuum extrapo-
lated error bands in Figs. 7 and 8.

V. SPECIFIC HEAT, THE SPEED OF SOUND
AND DECONFINEMENT

All thermodynamic quantities, for fixed light and
strange quark masses, depend on a single parameter—
the temperature. In Section IV, we derived the basic
thermodynamic observables (✏, p, s) from the contin-
uum extrapolated trace anomaly ⇥µµ(T ). We now dis-
cuss two closely related observables that involve second
order derivatives of the QCD partition function with re-
spect to the temperature, i.e., the specific heat,
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and the speed of sound,
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The quantity Td(✏/T 4)/dT can be calculated directly
from the trace anomaly and its derivative with respect
to temperature,

T
d✏/T 4

dT
= 3

⇥µµ

T 4
+ T

d⇥µµ
/T

4

dT
. (19)

These identities show that the estimates for the specific
heat and the speed of sound should be of a quality similar
to ✏/T

4 or p/T
4. In Figs. 7 and 8, we show the agree-

ment between the bootstrap error bands for these quan-
tities and the estimates obtained by taking second or-
der derivatives of the analytic parameterization for p/T 4

given in Eq. 16. The latter are shown as dark lines inside
the bootstrap error bands.

for non-interacting gas: ϵ = 3p = 3sT
4

at high-T it may appear that asymptotic freedom is approached 

however, equation of state for non-interacting gas is not 
satisfied  

for field theories with a gravity dual (  SYM, not QCD) 
where both the strong [ ] and weak  [ ] limits are 
calculable 

 

(ϵ ≠ 3p ≠ 3sT
4 )

𝒩 = 4
λ = ∞ λ = 0

sλ=∞
sλ=0

= ϵλ=∞
ϵλ=0

= pλ=∞
pλ=0

= 3
4

cross-over at Tc = (154 ± 9)𝖬𝖾𝖵 ≈ 1.7 ⋅ 1012K

 QGP is strongly coupled ?

HotQCD Coll., Phys. Rev. D90 (2014) 094503
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[beam axis view of collision]

initial spatial anisotropy

Ollitrault, Phys. Rev. D46 (1992) 229-245

pressure gradients

ϕ

final state soft particles preferably aligned along the collision plane

final state momentum anisotropy

 QGP manifests collectivity. It flows like a nearly perfect liquid. QGP is strongly coupled

a natural consequence of hydrodynamics



FLOW AND STRONG COUPLING
Shape analysis of strongly-interacting systems: the heavy ion case 5

2 fm/c 

4 fm/c 

8 fm/c 

6 fm/c 

0 fm/c 

Figure 2. Time evolution of spatial anisotropy two strongly-coupled systems. Left: A
degenerate Fermi gas of ultra-cold Li atoms released from an anisotropic trap. From [14].
Reprinted with permission from AAAS. Right: Hydrodynamical calculation of the evolution
of a Au+Au collision at

p
sNN = 130 GeV. Evolution on the right corresponds to an equation

of state (EoS) for an ideal massless gas. On the left, the EoS includes a first-order transition
between hadronic and QGP phases. From [12], reprinted with permission.

plasma is generated within a few fs, at temperatures of 105 � 106 K. The plasma expands
rapidly (⇠ ps), cooling as it does so, and returns to charge-confined degrees of freedom.
Plasma hydrodynamics and two-component “blast-wave” pictures [21] are used to describe
and understand the source evolution [17].

With huge changes in physical scales and “color charge” replacing “electric charge,”
the above describes the situation with RHIC collisions rather well, down to the blast-wave
parameterizations [22]. In both cases, too, the final-state anisotropy carries important physical
information. The anisotropic final-state geometry of a microexplosion is measured directly
by a scanning electron microscope; c.f. Figure 3. In a heavy ion experiment, it is the final-
state momenta that are directly measured, and azimuthally-sensitive two-particle intensity
interferometry must be used to measure the coordinate-space geometry.

Since the first proof-of-principle microexplosion experiments, there has been
considerable activity to extract the equation of state of the matter– the plasma state, phase
transitions, etc. The approach taken is essentially identical to the one we now propose at
RHIC: to measure the final-state anisotropy as the initial energy of the system is varied, and

Lisa et al., New J.Phys 13 (2011)
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degenerate Fermi gas of ultracold Li atoms 
released from anisotropic trap [exp. data]
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QGP [hydrodynamic simulation]

strongly coupled systems flow 

both systems are nearly perfect liquids with 
viscosity to entropy ratio close the ‘universal’ 
lower bound for theories with a gravity dual 

η
s

≥ 1
4π

Policastro, Son, Starinets, PRL 87, 081601 (2001)

Buchel, Liu,, PRL 93, 090602 (2004)
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strongly coupled systems flow 

both are nearly perfect liquids with viscosity to 
entropy ratio close the ‘universal’ lower bound for 
theories with a gravity dual 

 

Bayesian extraction from LHC data confirms 
extremely low 

η
s

≥ 1
4π

η/s

Policastro, Son, Starinets, PRL 87, 081601 (2001)

Buchel, Liu,, PRL 93, 090602 (2004)

LETTERS
https://doi.org/10.1038/s41567-019-0611-8

Department of Physics, Duke University, Durham, NC, USA. *e-mail: jonah.bernhard@gmail.com

Ultrarelativistic collisions of heavy atomic nuclei produce an 
extremely hot and dense phase of matter, known as quark–
gluon plasma (QGP), which behaves like a near-perfect fluid 
with the smallest specific shear viscosity—the ratio of the 
shear viscosity to the entropy density—of any known sub-
stance1. Due to its transience (lifetime!~!10−23!s) and micro-
scopic size (10−14!m), the QGP cannot be observed directly, 
but only through the particles it emits; however, its character-
istics can be inferred by matching the output of computational 
collision models to experimental observations. Previous work, 
using viscous relativistic hydrodynamics to simulate QGP, 
has achieved semiquantitative constraints on key physical 
properties, such as its specific shear and bulk viscosity, but 
with large, poorly defined uncertainties2–8. Here, we present 
the most precise estimates so far of QGP properties, includ-
ing their quantitative uncertainties. By applying established 
Bayesian parameter estimation methods9 to a dynamical colli-
sion model and a wide variety of experimental data, we extract 
estimates of the temperature-dependent specific shear and 
bulk viscosity simultaneously with related initial-condition 
properties. The method is extensible to other collision models 
and experimental data and may be used to characterize addi-
tional aspects of high-energy nuclear collisions.

In normal matter, quarks and gluons are bound by the strong 
force into composite particles known as hadrons, such as protons 
and neutrons. At extreme temperature and density, discrete had-
rons transform into a fluid-like medium of deconfined quarks 
and gluons called the QGP. Quantum chromodynamics (QCD), 
the theory of the strong interaction, predicts that this transforma-
tion is a smooth crossover10 located at pseudocritical temperature 
Tc = 156.5 ± 1.5 MeV. Such temperatures—about 2 × 1012 K, over 
100,000 times hotter than the core of the Sun—materialized in the 
early Universe, moments after the Big Bang (t ! 1

I
 s).

Currently, two particle accelerator facilities, the Relativistic 
Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), 
collide heavy nuclei with sufficient energy to create transient 
droplets of QGP. A single heavy-ion collision event can produce 
tens of thousands of particles, whose associated raw data are then 
reduced into observable quantities, such as particle multiplici-
ties and distributions of the magnitude of transverse momentum 
(pT ¼ ðp2x þ p2yÞ

1=2

I
). Another important measurement is the dis-

tribution of the azimuthal angle of transverse momentum, which 
often exhibits large azimuthal anisotropy. This is driven by spatial 
anisotropy in the initial collision geometry, which is converted to 
final-state momentum anisotropy by the hydrodynamic evolution 
of the medium. The observed momentum anisotropy, quantified by 
flow (Fourier) coefficients11,12 vn, is considered to be key evidence 
of collective flow in heavy-ion collisions13. (Similar behaviour has 
also been observed in ultracold quantum gases14 with comparable 

initial geometry, and is regarded as a general feature of strongly 
interacting systems.) The efficiency of the initial-state to final-state 
conversion depends strongly on the shear viscosity of the medium, 
typically expressed as the specific shear viscosity η/s, that is, the 
dimensionless ratio to the entropy density in natural units; larger 
η/s suppresses collective flow and reduces the vn. Previous work2–8 
has estimated η/s by matching the output of hydrodynamic model 
calculations to experimental observations of elliptic flow v2, trian-
gular flow v3 and other flow observables.

Computational collision models generally follow a multistage 
approach, mimicking the true stages of heavy-ion collisions15: 
after a brief pre-equilibrium stage of approximate duration 1 fm c–1 
(≈3.3 × 10−24 s, the time it takes light to travel 1 fm = 10−15 m) at the 
onset of the collision, the system equilibrates into QGP and begins 
to expand hydrodynamically. A viscous relativistic hydrodynamics 
model is used to calculate the spacetime evolution of the QGP and 
its transition to a hadron fluid at Tc, followed by a Boltzmann trans-
port model simulating the later reaction stages. The virtual particles 
that are output by the transport model are then used to compute 
observables analogously to experimental methods.

In this work, we apply Bayesian parameter estimation methods  
to determine fundamental properties of the QGP, including its 

Bayesian estimation of the specific shear and bulk 
viscosity of quark–gluon plasma
Jonah E. Bernhard! !*, J. Scott Moreland! ! and Steffen A. Bass! !

0 0.5 1.0 1.5 2.0 2.5
T/Tc
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Quark–gluon plasma
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Fig. 1 | Estimated temperature-dependent specific shear viscosity of the  
QGP compared with common fluids. The orange line and band show the  
posterior median and 90% credible region for the QGP ðη=sÞðTÞ

I
 estimated 

from Pb–Pb collision data at ffiffiffiffiffiffiffi
sNN

p ¼ 2:76
I

 and 5.02!TeV. The blue and 
green lines show ðη=sÞðTÞ

I
 for water and helium at different pressures 

relative to their critical pressures, as annotated, calculated from NIST 
data31. The tempera ture dependence is shown relative to each fluid’s critical 
temperature, T/Tc.

NATURE PHYSICS | VOL 15 | NOVEMBER 2019 | 1113–1117 | www.nature.com/naturephysics 1113

Bernhard, Moreland, Bass, Nature Physics 15, 1113-1117 (2019)
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SPS RHIC LHC FCC

√sNN  
[TeV] 0.017 0.2 2.76  

(5.5) 39

volume at freezout  
[fm3] 1200 2300 5000  

(6200) 11000

ε(τ=1fm/c)  
[GeV/fm3] 3-4 4-7 12-13 

(16-17) 35-40

lifetime 
[fm/c] 4 7 10  

(11) 13

all this can be estimated from the number of particles produced at mid-rapidity

factor of 1.8 from the most central collisions, large hNparti,
to the most peripheral, small hNparti. There appears to be a
smooth trend towards the value measured in minimum bias
p-Pb collisions [18]. The Pb-Pb data measured at

ffiffiffiffiffiffiffiffi
sNN

p ¼
2.76 TeV [4] are also shown, scaled by a factor 1.2, which
is calculated from the observed s0.155 dependence of the
results in the most central collisions and which describes
well the increase for all centralities. The proton-proton
result at the same energy [26] is scaled by a factor of 1.13
from the s0.103 dependence. The ratio between the data
measured at the two collision energies is consistent with
being independent of Npart, within the uncertainties, which
are largely uncorrelated. While, in general, the uncertainties
related to the tracklet measurement are correlated between
the two analyses, the subtraction of the background and the
centrality classification are, instead, uncorrelated, depend-
ing on the determination of the usable fraction of the
hadronic cross section and therefore on the run and detector
conditions [15].
Figure 3 shows a comparison of the data to some of the

models which were compared to the measurements at lower
energy. The curves shown are predictions of the models,
without any retuning of the parameters based on the new
data presented here.
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FIG. 2. The ð2=hNpartiÞhdNch=dηi for Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV in the centrality range 0%–80%, as a function
of hNparti in each centrality class. The error bars indicate the
point-to-point centrality-dependent uncertainties, whereas the
shaded band shows the correlated contributions. Also shown is
the result from nonsingle diffractive p-Pb collisions at the sameffiffiffiffiffiffiffiffi
sNN

p
[18]. Data from lower-energy (2.76 TeV) Pb-Pb and pp

collisions [4,26], scaled by a factor of 1.2 and 1.13, respectively,
are shown for comparison. The error bars for p-Pb at

ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV and lower-energy Pb-Pb and pp collisions indicate the
total uncertainty.
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FIG. 3. The ð2=hNpartiÞhdNch=dηi for Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV in the centrality range 0%–80%, as a function
of hNparti in each centrality class, compared to model predictions
[31–39].
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.
Measurements for inelastic pp and pp̄ collisions as a function offfiffiffi
s

p
are also shown [26–28] along with those from nonsingle

diffractive p-A and d-A collisions [29,30]. The s dependencies of
the AA and pp (pp̄) collision data are well described by the
functions s0.155NN (solid line) and s0.103NN (dashed line), respectively.
The shaded bands show the uncertainties on the extracted power-
law dependencies. The central Pb-Pb measurements from CMS
and ATLAS at 2.76 TeV have been shifted horizontally for clarity.
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in heavy ions √s given per nucleon pair
p
sNN =

Z

A
p
spp

:: for PbPb [LHC 14TeV] :: 82/208 x 14 = 5.5 TeV

QGP is short-lived

SPS RHIC LHC FCC

√sNN  
[TeV] 0.017 0.2 2.76  

(5.5) 39

volume at freezout  
[fm3] 1200 2300 5000  

(6200) 11000

ε(τ=1fm/c)  
[GeV/fm3] 3-4 4-7 12-13 

(16-17) 35-40

lifetime 
[fm/c] 4 7 10  

(11) 13

Table 2: Global properties measured in central Pb–Pb collisions (0–5% centrality class) at
p
sNN =

2.76 TeV and extrapolated to 5.5 and 39 TeV. The measurements at 2.76 TeV [9–14] are reported for
comparison only and without experimental uncertainties.

Quantity Pb–Pb 2.76 TeV Pb–Pb 5.5 TeV Pb–Pb 39 TeV
dNch/d⌘ at ⌘ = 0 1600 2000 3600
Total Nch 17000 23000 50000
dET/d⌘ at ⌘ = 0 1.8–2.0 TeV 2.3–2.6 TeV 5.2–5.8 TeV
Homogeneity volume 5000 fm3 6200 fm3 11000 fm3

Decoupling time 10 fm/c 11 fm/c 13 fm/c
" at ⌧ = 1 fm/c 12–13 GeV/fm3 16–17 GeV/fm3 35–40 GeV/fm3

Fig. 2: Left: space-time profile at freeze-out from hydrodynamical calculations for central Pb–Pb colli-
sions at

p
sNN = 5.5 TeV and 39 TeV. Right: time evolution of the QGP temperature as estimated on the

basis of the Bjorken relation and the Stefan-Boltzmann equation (see text for details).

multiplicity at FCC energy is of prime importance for the fluid dynamic expansion, since it constrains a
central characteristic of the initial conditions, namely the entropy density at initial time. More precisely,
for a general viscous dynamics, the second law of thermodynamics implies that the final multiplicity puts
an upper bound on the initial entropy. However, the QCD matter produced in heavy-ion collisions shows
very small dissipative properties at TeV energies and is thus expected to follow a close to isentropic
expansion: the initial entropy density is then fixed by the final event multiplicity. The

p
s-dependence

of fluid dynamic simulations of heavy-ion collisions thus results mainly from the increase in event mul-
tiplicity with

p
s. To illustrate the impact of the expected multiplicity increase from LHC to FCC, we

have run a simplified fluid dynamic simulation for a central Pb–Pb collision. The radial dependence of
the energy density in the initial conditions was chosen to be determined as the smooth nuclear transverse
overlap function of two Wood-Saxon profiles, neglecting any possible energy dependence and fluctu-
ations. Using a standard parametrisation of a realistic QCD equation of state and minimal dissipative
properties (shear viscosity to entropy density ratio ⌘/s = 1/4⇡), we show in Fig. 2 (left) results for the
freeze-out hypersurfaces of central Pb–Pb collisions at different collision energies. This figure quantifies
the naive expectation that the denser system created at higher collision energy has to expand to a larger
volume and for a longer time before reaching the freeze-out temperature at which decoupling to hadrons

10

RHIC

freezout

FCC, Eur.Phys.J.C 79 (2019) 6, 474
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time

colliding nuclei
need to how likely it is to find (anti-)quarks and gluons of given energy fraction [n(uclear)PDFs] 

can be constrained in electron-nucleus EIC/LHeC/FCC-eA 
also [to a lesser extent] in proton-nucleus LHC/RHIC 

geometry of collision [how head-on] is very important
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time

collision [out-of-equilibrium process]
many soft [small momentum exchange] collisions 

responsible for bulk low-momentum particle production 
will quickly hydrodynamize 

very few hard [large momentum exchange] collisons 
off-spring will slowly relax toward hydrodynamization, yet remain out-of-equilibrium 
while traversing hot soup

~ 0.1 fm/c 
[~10-25 s] 
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time

QGP
hot, dense, and coloured matter 
quarks and gluons are the relevant dof

~ 0.1 fm/c 
[~10-25 s] 

~1 fm/c  
[~10-24 s]
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time

hadronization
QGP expands and thus cools down 
once T～150 MeV back to hadronic matter

~ 0.1 fm/c 
[~10-25 s] 

~1 fm/c  
[~10-24 s]

~ 10 fm/c 
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time

hadrons
rescattering folllowed by 
free-streaming to detector

~ 0.1 fm/c 
[~10-25 s] 

~1 fm/c  
[~10-24 s]

~ 10 fm/c 
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time
~ 0.1 fm/c 
[~10-25 s] 

~1 fm/c  
[~10-24 s]

~ 10 fm/c 

colliding nuclei

collision

QGP
hadronization

hadrons

what we constrain elsewhere
what we want to understand 

how we get here? 
what it is? 
how it stops being?

all we have
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time

colliding nuclei
need to how likely it is to find (anti-)quarks and gluons of given energy fraction [n(uclear)PDFs] 

can be constrained in electron-nucleus EIC/LHeC/FCC-eA 
also [to a lesser extent] in proton-nucleus LHC/RHIC 

geometry of collision [how head-on] is very important



COLLISION GEOMETRY
impact parameter of collision defines initial geometry [size and shape of overlap]
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[transverse view]

[longitudinal view]
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higher energy density 
more particle production

cooler QGP 
lower energy density 
less particle production



COLLISION GEOMETRY [GLAUBER MODEL]
impact parameter cannot be measured, it has to be related to observables through modelling 

optical [analytical] Glauber model allows for the computation of the [average] number of 
participants and collisions for a given impact parameter

30

Glauber Modeling in Nuclear Collisions 8

Projectile B Target A

b zs

s-b

b
s

s-b

a) Side View b) Beam-line View

B

A

Figure 3: Schematic representation of the Optical Glauber Model geometry, with
transverse (a) and longitudinal (b) views.

2.3 Optical-limit Approximation

The Glauber Model views the collision of two nuclei in terms of the individual
interactions of the constituent nucleons (see, e.g., Ref. (27)). In the optical limit,
the overall phase shift of the incoming wave is taken as a sum over all possible
two-nucleon (complex) phase shifts, with the imaginary part of the phase shifts
related to the nucleon-nucleon scattering cross section through the optical theo-
rem(28,29). The model assumes that at sufficiently high energies, these nucleons
will carry sufficient momentum that they will be essentially undeflected as the
nuclei pass through each other. It is also assumed that the nucleons move inde-
pendently in the nucleus and that the size of the nucleus is large compared to the
extent of the nucleon-nucleon force. The hypothesis of independent linear tra-
jectories of the constituent nucleons makes it possible to develop simple analytic
expressions for the nucleus-nucleus interaction cross section and for the number
of interacting nucleons and the number of nucleon-nucleon collisions in terms of
the basic nucleon-nucleon cross section.

Consider Fig. 3. Two heavy-ions, “target” A and “projectile” B are shown
colliding at relativistic speeds with impact parameter b (for colliding beam ex-
periments the distinction between the target and projectile nuclei is a matter of
convenience). We focus on the two flux tubes located at a displacement s with
respect to the center of the target nucleus and a distance s − b from the center
of the projectile. During the collision these tubes overlap. The probability per
unit transverse area of a given nucleon being located in the target flux tube is
T̂A (s) =

∫

ρ̂A(s, zA)dzA, where ρ̂A (s, zA) is the probability per unit volume, nor-
malized to unity, for finding the nucleon at location (s, zA). A similar expression
follows for the projectile nucleon. The product T̂A (s) T̂B (s− b) d2s then gives
the joint probability per unit area of nucleons being located in the respective
overlapping target and projectile flux tubes of differential area d2s. Integrating

* nuclear density [e.g Woods-Saxon potential]

ρA(r) = ρ0

1 + er − R
a

ρ0 :: density at the centre
R
a

:: nuclear radius
:: skin depth

* nucleon-nucleon inelastic cross-section

σNN
𝗂𝗇𝖾𝗅 ( s)

* integrate over beam direction [nuclei are squeezed by Lorentz boost]

TA(s) = ∫
+∞

−∞
dz ρA( s2 + z2)

*overlap the two nuclei

TAB(b) = ∫ d2s TA(s) TB(s − b)

Ann.Rev.Nucl.Part.Sci.57:205-243,2007



COLLISION GEOMETRY [GLAUBER MODEL]
impact parameter cannot be measured, it has to be related to observables through modelling 

optical [analytical] Glauber model allows for the computation of the [average] number of 
participants and collisions for a given impact parameter
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Figure 3: Schematic representation of the Optical Glauber Model geometry, with
transverse (a) and longitudinal (b) views.

2.3 Optical-limit Approximation

The Glauber Model views the collision of two nuclei in terms of the individual
interactions of the constituent nucleons (see, e.g., Ref. (27)). In the optical limit,
the overall phase shift of the incoming wave is taken as a sum over all possible
two-nucleon (complex) phase shifts, with the imaginary part of the phase shifts
related to the nucleon-nucleon scattering cross section through the optical theo-
rem(28,29). The model assumes that at sufficiently high energies, these nucleons
will carry sufficient momentum that they will be essentially undeflected as the
nuclei pass through each other. It is also assumed that the nucleons move inde-
pendently in the nucleus and that the size of the nucleus is large compared to the
extent of the nucleon-nucleon force. The hypothesis of independent linear tra-
jectories of the constituent nucleons makes it possible to develop simple analytic
expressions for the nucleus-nucleus interaction cross section and for the number
of interacting nucleons and the number of nucleon-nucleon collisions in terms of
the basic nucleon-nucleon cross section.

Consider Fig. 3. Two heavy-ions, “target” A and “projectile” B are shown
colliding at relativistic speeds with impact parameter b (for colliding beam ex-
periments the distinction between the target and projectile nuclei is a matter of
convenience). We focus on the two flux tubes located at a displacement s with
respect to the center of the target nucleus and a distance s − b from the center
of the projectile. During the collision these tubes overlap. The probability per
unit transverse area of a given nucleon being located in the target flux tube is
T̂A (s) =

∫

ρ̂A(s, zA)dzA, where ρ̂A (s, zA) is the probability per unit volume, nor-
malized to unity, for finding the nucleon at location (s, zA). A similar expression
follows for the projectile nucleon. The product T̂A (s) T̂B (s− b) d2s then gives
the joint probability per unit area of nucleons being located in the respective
overlapping target and projectile flux tubes of differential area d2s. Integrating

*nuclear overlap

*probability for n interactions

P(n, b) = (AB
n ) [TAB(b) σNN

𝗂𝗇𝖾𝗅 ]n [1 − [TAB(b) σNN
𝗂𝗇𝖾𝗅 ]AB−n

TAB(b) = ∫ d2s TA(s) TB(s − b)

*number of binary nucleon-nucleon collisions

N𝖼𝗈𝗅𝗅(b) =
AB

∑
n=1

n P(n, b) = AB TAB(b) σNN
𝗂𝗇𝖾𝗅

*number of participant nucleons

N𝗉𝖺𝗋𝗍(b) = A∫ d2s TA(s){1 − [1 − TB(s − b) σNN
𝗂𝗇𝖾𝗅 ]B}

+B∫ d2s TB(s − b){1 − [1 − TA(s) σNN
𝗂𝗇𝖾𝗅 ]A}

Ann.Rev.Nucl.Part.Sci.57:205-243,2007
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Figure 5: (left) Total cross section, calculated in the optical approximation and
with a Glauber Monte Carlo, both with identical nuclear parameters, as a function
of σNN

inel, the nucleon-nucleon inelastic cross section. (right) Ncoll and Npart as a
function of impact parameter, calculated in the optical approximation (lines) and
with a Glauber Monte Carlo (symbols). The two are essentially identical out to
b = 2RA.

An illustration of a Glauber Monte Carlo event for a Au+Au collision with
impact parameter b = 6 fm is shown in Fig. 4. The average number of partic-
ipating nucleons and binary nucleon-nucleon collisions and other quantities are
then determined by simulating many nucleus-nucleus collisions.

2.5 Differences between Optical and Monte Carlo Approaches

It is not always remembered that the various integrals used to calculated physical
observables in the “Glauber Model” are predicated on a particular approximation
called the optical limit. This limit assumes that scattering amplitudes can be
described by an eikonal approach, where the incoming nucleons see the target as
a smooth density. This approach captures many features of the collision process,
but does not completely capture the physics of the total cross section. Thus,
it tends to lead to distortions in the estimation of Npart and Ncoll compared to
similar estimations using the Glauber Monte Carlo approach.

This can be seen by simply looking at the relevant integrals. The full (2A+2B+2)-
dimensional integral to calculate the total cross section is (15):

σAB =
∫

d2b
∫

d2sA
1 · · · d2sA

Ad2sB
1 · · · d2sB

B ×

T̂A(sA1 ) · · · T̂A(sAA)T̂B(sB1 ) · · · T̂B(sBB) × (11)
⎧

⎨

⎩

1 −
B
∏

j=1

A
∏

i=1

[1 − σ̂(b − sAi + sBj )]

⎫

⎬

⎭

where σ̂(s) is normalized such that
∫

d2sσ̂(s) = σNN
inel, while the optical limit

COLLISION GEOMETRY [GLAUBER MC]
to account for fluctuations, a ‘Glauber MC’ is used
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Figure 4: Glauber Monte Carlo event (Au+Au at
√

sNN = 200 GeV with impact
parameter b = 6 fm) viewed in the transverse plane (left panel) and along the

beam axis (right panel). The nucleons are drawn with a radius
√

σNN
inel/π/2.

Darker disks represent participating nucleons.

The optical form of the Glauber theory is based on continuous nucleon density
distributions. The theory does not locate nucleons at specific spatial coordinates,
as is the case for the Monte Carlo formulation that is discussed in the next section.
This difference between the optical and Monte Carlo approaches can lead to subtle
differences in calculated results, as will be discussed below.

2.4 Glauber Monte Carlo approach

The virtue of the Monte Carlo approach for the calculation of geometry related
quantities like ⟨Npart⟩ and ⟨Ncoll⟩ is its simplicity. Moreover, it is possible to
simulate experimentally observable quantities like the charged particle multi-
plicity and to apply similar centrality cuts as in the analysis of real data. In
the Monte Carlo ansatz the two colliding nuclei are assembled in the computer
by distributing the A nucleons of nucleus A and B nucleons of nucleons B in
three-dimensional coordinate system according to the respective nuclear density
distribution. A random impact parameter b is then drawn from the distribution
dσ/db = 2πb. A nucleus-nucleus collision is treated as a sequence of indepen-
dent binary nucleon-nucleon collisions, i.e., the nucleons travel on straight-line
trajectories and the inelastic nucleon-nucleon cross-section is assumed to be inde-
pendent of the number of collisions a nucleon underwent before. In the simplest
version of the Monte Carlo approach a nucleon-nucleon collision takes place if
their distance d in the plane orthogonal to the beam axis satisfies

d ≤
√

σNN
inel/π (10)

where σNN
inel is the total inelastic nucleon-nucleon cross-section. As an alterna-

tive to the black-disk nucleon-nucleon overlap function, e.g., a Gaussian overlap
function can be used (31).

+ distribute nucleons in nuclei by sampling Wood-Saxons distribution

• Distribution of nucleons in nuclei
– Based on nuclear density
– Typically Woods-Saxon distribution

• Nucleon-nucleon cross-section
– From pp measurements / extrapolations

36

Input to Glauber MC

Introduction to Heavy-Ion Physics – Jan Fiete Grosse-Oetringhaus

Figure: nucl-ex/0701025

� �aRr
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��
 

exp1
1)( 0UU Nuclear 

radius R

Skin 
depth a

Density in 
the center

U(r)/U(0) .vs. r
 + take nucleon-nucleon cross-section from pp measurents 

✓ Npart ~ number of nucleons 

✓ Ncoll ~ (number of nucleons)^(4/3) 

✓ soft [low pt] observables  ~ Npart 

✓ hard [high pt] observables  ~ Ncoll

https://tglaubermc.hepforge.org/
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Particle production and centrality in p–Pb ALICE Collaboration
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Fig. 7: (color online) Top: Scatter plot of number of participating nucleons versus impact parameter;
Bottom: Scatter plot of multiplicity versus the number of participating nucleons from the Glauber fit
for V0A. The quantities are calculated with a Glauber Monte Carlo of p–Pb (left) and Pb–Pb (right)
collisions.

where σsoft is the geometrical soft cross-section of 57 mb [29] related to the proton size and
σhard the energy dependent pQCD cross-section for 2→ 2 parton scatterings. Further, as in the
clan model, there is a Poissonian probability

P(nhard) =
⟨nhard⟩nhard

nhard!
e−⟨nhard⟩ (7)

for multiple hard collisions with an average number determined by bNN:

⟨nhard⟩= σhardTNN(bNN) . (8)

Hence, the biases on the multiplicity discussed above correspond to a bias on the number of hard
scatterings (nhard) and ⟨bNN⟩ in the event. The latter correlates fluctuations over large rapidity
ranges (long range correlations). As a consequence, for peripheral (central) collisions we expect
a lower (higher) than average number of hard scatterings per binary collision, corresponding to
a nuclear modification factor less than one (greater than one).

17

Npart [also Ncoll] tightly correlated with impact parameter

activity [multiplicity or calorimetric energy] computed from model[s] 
for particle production tightly correlated with Npart

:: centrality can be inferred from activity or, alternatively, from spectators 
[not so simple in proton-nucleus where large fluctuations fuzz the correlations]
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Glauber model determines  

further modelling for particle production relates  to  
and thus to  

centrality is then usually defined as percentile ranges of 
minimum-bias cross section 

N𝖼𝗈𝗅𝗅(b)

N𝖼𝗁 N𝖼𝗈𝗅𝗅
b
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3 Relating the Glauber Model to Experimental Data

Unfortunately, neither Npart nor Ncoll can be directly measured in a RHIC exper-
iment. Mean values of such quantities can be extracted for classes of (Nevt) mea-
sured events via a mapping procedure. Typically a measured distribution (e.g.,
dNevt/dNch) is mapped to the corresponding distribution obtained from phe-
nomenological Glauber calculations. This is done by defining “centrality classes”
in both the measured and calculated distributions and then connecting the mean
values from the same centrality class in the two distributions. The specifics of this
mapping procedure differ both between experiments as well as between collision
systems within a given experiment. Herein we briefly summarize the principles
and various implementations of centrality definition.

3.1 Methodology

Figure 8: A cartoon example of the correlation of the final state observable
Nch with Glauber calculated quantities (b, Npart). The plotted distribution and
various values are illustrative and not actual measurements (T. Ullrich, private
communication).

The basic assumption underlying centrality classes is that the impact param-
eter b is monotonically related to particle multiplicity, both at mid and forward
rapidity. For large b events (“peripheral”) we expect low multiplicity at mid-
rapidity, and a large number of spectator nucleons at beam rapidity, whereas
for small b events (“central”) we expect large multiplicity at mid-rapidity and a
small number of spectator nucleons at beam rapidity (Figure 8). In the simplest
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alternatively, measure directly energy deposited by spectators in ZDCs 

35

:: Monotonic relation between   and  impact parameter  breaks down in peripheral collisionsE𝖹𝖣𝖢 b

How to measure the impact parameter of a collision?

23

b

“spectator”  
  nucleons

“spectator”  
  nucleons

One possibility) measure the energy deposited in the ZDC by the non-interacting nucleons 
→ Glauber MC simulations allows to estimate the b (or collision centrality) starting from spectator energy

Zero-degree 
calorimeter 

(ZDC)

ALICE, Phys. Rev. C 88 (2013) 044909

LHCb, CERN-LHCb-DP-2021-002

The Glauber model is a “thought” experiment!  
→ b is not a parameter of the collision known a-priori by experimentalist 

at ~ 0 degree w.r.t. 
to beam direction

Zero-degree 
calorimeter 

(ZDC)

[Adapted by Alba Soto-Ontoso from Gian Michele Innocenti]
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Figure 3. Charged-particle RAA measured in six different centrality ranges at
√
sNN = 5.02TeV

compared to results at
√
sNN = 2.76TeV from CMS [11] (all centrality bins), ALICE [9] (in the

0–5% and 5–10% centrality ranges), and ATLAS [10] (in the 0–5% centrality range). The yellow
boxes represents the systematic uncertainty of the 5.02TeV CMS points.
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CENTRALITY DEPENDENCE OF OBSERVABLES
high-  particle suppression [wrt to pp] smaller for peripheral collisions [smaller and cooler QGP] 

 if PbPb is just incoherent superposition of pp collisions 

pT

RAA = 1
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Figure 3. Charged-particle RAA measured in six different centrality ranges at
√
sNN = 5.02TeV

compared to results at
√
sNN = 2.76TeV from CMS [11] (all centrality bins), ALICE [9] (in the

0–5% and 5–10% centrality ranges), and ATLAS [10] (in the 0–5% centrality range). The yellow
boxes represents the systematic uncertainty of the 5.02TeV CMS points.
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nuclei are not a simple superposition of nucleons 

parton distributions in a bound nucleon are different than those of a free proton/neutron 

several independent sets available: nCTEQ, nDS/DSSZ, nTuJu, EKS/EPS/EPPS, HKM/HKN, KA/KSASG, 
nNNPDF
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*PDF of a bound proton [neutron obtained by isospin symmetry]
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Fig. 1 Prototype of the EPPS21 fit functions RA
i (x,Q2

0). The
solid green line corresponds to a2 = 2, the dashed purple line
to a2 = 0, and the brown dotted-dashed line to a2 = �3.

the parameters ai, bi, ci are expressed in terms of ya, ye
and y0 which correspond to the values of the function
at x = xa, x = xe and x = 0. The parametrization is
illustrated in Fig. 1, where the variation induced by the
parameter a2 is also demonstrated.

For the gluons and valence quarks the y0 parameters
are determined separately for each nucleus by imposing
the sum rules,

Z
1

0

dxf
p/A
uV

(x,Q2

0
) = 2 , (6)

Z
1

0

dxf
p/A
dV

(x,Q2

0
) = 1 , (7)

Z
1

0

dxx

X

i

f
p/A
i (x,Q2

0
) = 1 . (8)

The rest of the A dependence is encoded into the height
parameters yi as,

yi(A) = 1 +
h
yi(Aref)� 1

i✓
A

Aref

◆�i

, (9)

where Aref = 12, following our earlier analyses [26,27,
28,29,1]. In other words the nuclear e↵ect – the distance
from unity – is assumed to scale as a power law. For
strange quarks the small-x exponent �y0 is modified by

�y0 �! �y0y0✓(1� y0) , (10)

so that the A dependence becomes weaker as y0 ! 0.
This is to keep the strange-quark PDFs from becoming
overly negative which easily leads to negative charm-
production cross sections in neutrino-nucleus DIS.

The values of the strong coupling and heavy-quark
pole masses are taken to be the same as in the CT18ANLO
analysis [23]: the charm mass is set to mc = 1.3GeV,

the bottom-quark mass to mb = 4.75GeV, and the
strong coupling is fixed to ↵s(MZ) = 0.118, where MZ

is the Z boson mass. At higher scales Q
2
> Q

2

0
the

nuclear PDFs are obtained through solving the 2-loop
[30,31] DGLAP evolution equations [32,33,34,35] for
which we use the method introduced in Ref. [36].

In the course of the analysis we also noticed that
the DIS data for Li-6 and He-3 are not optimally repro-
duced by the monotonic power-law ansatz of Eq. (9).
Therefore we have introduced extra parameters, f3 and
f6, and replace the nuclear modifications R

p/3
i (x,Q2

0
)

and R
p/6
i (x,Q2

0
) by

R
p/3
i (x,Q2

0
) �! 1 + f3

h
R

p/3
i (x,Q2

0
)� 1

i
, (11)

R
p/6
i (x,Q2

0
) �! 1 + f6

h
R

p/6
i (x,Q2

0
)� 1

i
, (12)

for all parton flavours i. The e↵ect is larger for He-3
and keeping f3 = 1 would lead to a completely in-
correct EMC slope in the case of JLab He-3 data. In
total the EPPS21 fit involves Nparam = 24 free param-
eters, see Table 1 ahead. Out of these 24 only 5 control
the A dependence of the parametrization and freeing
more — e.g. letting the A dependence of the gluon an-
tishadowing peak to vary independently of the valence
quarks — easily destabilizes the fit. Thus, there is more
parametrization dependence e.g. in the gluon distribu-
tions of small nuclei in contrast to the case of heavy
nuclei where the LHC data now provide strong con-
straints. To better control the A dependence, e.g. pO
runs at the LHC would be most welcome [37].

As in EPPS16, the deuteron is still taken to be free
from nuclear e↵ects, R

A
i (x,Q

2) = 1. In principle, as
done e.g. in Ref. [21], one could include NMC data [38]
on F

D

2
/F

p

2
to constrain the deuteron nuclear e↵ects si-

multaneously with the other nuclear data. The nuclear
e↵ects in deuteron are expected to be below 2% [39].
However, these deuteron data are already included in
the CT18 fit [23] of the free proton PDFs (our base-
line) neglecting the deuteron nuclear corrections [40].
Using CT18 for deuteron (with no additional correc-
tions) thus e↵ectively accounts also for the deuteron
nuclear e↵ects. As a result, including these NMC data
in our analysis here would thus be inconsistent, leading
also to some double counting. The way the deuteron
is now handled is admittedly a bit unsatisfactory and
once more underscores the fact that the era of fitting
the free-proton and nuclear PDFs separately starts to
come to its end.

2.2 Negativity features

The parametrization of R
p/A
i (x,Q2) is not restricted

to be strictly positive definite at the parametrization

2

has already been considered within the NNPDF frame-
work: In the NNPDF4.0 [19] analysis of the free-proton
PDFs the nuclear-PDF uncertainties were considered
as correlated uncertainties following Ref. [20]. In the
nNNPDF2.0 analysis [10], on the other hand, the un-
certainties from the free-proton PDFs were propagated
into nuclear PDFs.1 In the present work, we will now
carry out the latter within a Hessian prescription. Even-
tually, in a complete analysis, both the free- and bound-
proton PDFs should be fitted simultaneously and the
first steps towards this direction have also recently been
taken [21,22].

2 Nuclear PDFs and proton baseline

2.1 Parametrization of nuclear modifications

We write the bound-proton PDF f
p/A
i (x,Q2) as a prod-

uct of the nuclear modification R
p/A
i (x,Q2) and the free

proton PDF f
p

i (x,Q
2),

f
p/A
i (x,Q2) = R

p/A
i (x,Q2)fp

i (x,Q
2) . (1)

Here A denotes the mass number of the nucleus and
i indexes the parton flavour. Our proton baseline here
is the recent set CT18ANLO [23]. The CT18A di↵ers
from the default CT18 in that it includes also the AT-
LAS 7TeV data on W±- and Z-boson production [24].
The inclusion of these data was found to impact pri-
marily the strange-quark PDF and to worsen the de-
scription of the neutrino-iron dimuon data [25] in which
the strange-quark PDF plays a central role. By adopt-
ing the version “A” our strange-quark baseline PDF is
thus less sensitive to the data on heavy nuclei.

The PDFs of a bound neutron f
n/A
i (x,Q2) follow

from the bound-proton PDFs by virtue of the approxi-
mate isospin symmetry,

f
n/A
u (x,Q2) = f

p/A
d (x,Q2),

f
n/A
d (x,Q2) = f

p/A
u (x,Q2),

f
n/A
u (x,Q2) = f

p/A

d
(x,Q2), (2)

f
n/A

d
(x,Q2) = f

p/A
u (x,Q2),

f
n/A
i (x,Q2) = f

p/A
i (x,Q2) for other flavours.

The full nuclear PDFs that enter the cross-section cal-
culations are always linear combinations that depend
on the number of protons Z and number of neutrons
N = A� Z,

f
A
i (x,Q2) = Zf

p/A
i (x,Q2) +Nf

n/A
i (x,Q2) . (3)

1After the preprint of the present article was submitted, also
an updated nNNPDF analysis appeared [11].

We define the nuclear modifications of the full nuclear
PDFs by

R
A
i (x,Q

2) =
Zf

p/A
i (x,Q2) +Nf

n/A
i (x,Q2)

Zf
p

i (x,Q
2) +Nf

n

i (x,Q
2)

. (4)

As in our earlier fits, we prefer to parametrize the
nuclear modifications Rp/A

i (x,Q2

0
) instead of the abso-

lute PDFs f
p/A
i (x,Q2

0
). The two options are of course

fully equivalent but since most of the observables in the
analysis are normalized to measurements involving ei-
ther the free proton or deuteron (whose nuclear e↵ects
we neglect – see the last paragraph of this subsection),
the relative di↵erences with respect to the free proton
PDF are what truly matter.

The nuclear modifications are parametrized at the
charm pole-mass threshold Q0 = mcharm = 1.3GeV.
The value of mcharm is set here by the value adopted in
the CT18A analysis [23] to retain a full consistency with
the baseline proton PDFs. Coming up with a decent
functional form for the parametrization and deciding
which parameters can be free is among the biggest chal-
lenges in the entire global analysis of nuclear PDFs. On
one hand the parametrization should be flexible enough
in regions where there are data constraints. On the
other hand, the outcome of the fit should be physically
feasible. For example, it is reasonable to expect that
the nuclear e↵ects are broadly larger in heavy nuclei
like lead than what they are in a light nucleus like car-
bon. Coming up with the functional form finally used
in the present analysis is a combination of experience
from a entire chain of global fits we have performed
in the past [26,27,28,29,1], and trial and error. Our
parametrization is a piecewise-smooth function defined
as,

R
A
i (x,Q

2

0
) = (5)

8
>>><

>>>:

a0 + a1

�
x� xa

�h
e
�xa2/xa � e

�a2

i
, x  xa

b0x
b1
�
1� x

�b2
e
xb3 , xa  x  xe

c0 + c1 (c2 � x) (1� x)��
, xe  x  1.

In comparison to EPPS16, we have made some ad-
justments to the parametrization. First, the small-x
part involves the additional factor e�xa2/xa�e

�a2 , which
increases the flexibility at small x [27]. Second, at in-
termediate values of x we use a functional form that is
often used to parametrize the absolute PDF. The first
derivatives are taken to be zero at the matching points
xa and xe corresponding to the locations of the antic-
ipated antishadowing maximum and EMC minimum.
This fixes four parameters. Apart from the new small-x
parameter a2 and the large-x parameter c0, the rest of
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modifications less important at higher momentum scales [more important for soft processes that 
for hard] 

uncertainties very large at low and high Bjorken-x
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Fig. 7 The EPPS21 nuclear modifications of bound protons in carbon (two leftmost columns) in lead (two rightmost columns)
at the initial scale Q2 = 1.69GeV2 and at Q2 = 10GeV2. The central results are shown by thick black curves, and the nuclear
error sets by green dotted curves. The blue bands correspond to the nuclear uncertainties and the purple ones to the full
uncertainty (nuclear and baseline errors added in quadrature).
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constraining data is sparse
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Fig. 2 The data included in the EPPS21 laid schematically on the (x,Q2) plane.

E772 [56] and E866 [57] data sets in the form of nu-
clear ratios,

d
2
�
pA

dx2

�
d
2
�
pD

dx2

,
d
2
�
pA

dMdx1

�
d
2
�
pBe

dMdx1

, (15)

where M is the invariant mass of the produced lepton
pair and x1,2 = (M/

p
s)e±y, where y is the rapidity

of the lepton pair. The di↵erential cross sections are
calculated “on fly” with no precomputed grids.

3.3 Dijet production

In the EPPS16 analysis, we used the first CMS 5TeV
single-di↵erential dijet pPb data [58] in the form of a
forward-to-backward ratio. Now, a double-di↵erential
analysis [3] of the same data sample has become avail-
able and this is what we use in the present analysis. We
have already scrutinized these data in Ref. [5] where
they were found to put dramatically strong constraints
on the nuclear modification of the gluon PDFs in the
shadowing and antishadowing regions. The observable
we fit is a double ratio,

R
norm.
pPb

�
⌘dijet, p

ave

T

�
= (16)

1

d�pPb/dp
ave

T

d
2
�
pPb

d⌘dijetdp
ave

T

�
1

d�pp/dp
ave

T

d
2
�
pp

d⌘dijetdp
ave

T

,

where ⌘dijet and p
ave

T
are the average pseudorapidity

and average transverse momentum of the two jets that
make up the dijet,

⌘dijet =
1

2

⇣
⌘
leading + ⌘

subleading

⌘
, (17)

p
ave

T
=

1

2

⇣
p
leading

T
+ p

subleading

T

⌘
. (18)

By self-normalizing the spectra separately in pp and
pPb collisions, a major part of the experimental system-
atic uncertainties cancel and the measurement is there-
fore very precise. Without the self-normalization, the
systematic uncertainties in typical jet measurement can
reach tens of percents. In Ref. [5] the ratio of Eq. (16)
was also found to be very insensitive to the choice of
the baseline proton PDFs as well as to the factoriza-
tion/renormalization scale variations around the cen-
tral choice µ = p

ave

T
. The NLO look-up tables (see

Sect. 4.4) are constructed by using the public NLO-
jet++ [59] code. For more details on the implementa-
tion of the dijet cross sections, see Ref. [5].

3.4 W± and Z production

In the EPPS16 fit, we already included the 5TeV W±

and Z production data from CMS and ATLAS [60,

  428 Page 10 of 119 Eur. Phys. J. C           (2022) 82:428 

Fig. 2 The kinematic coverage of the NNPDF4.0 dataset in the (x, Q2)
plane

computed with a version of Vrap [160] that we modified to
account for the isoscalarity of the deuteron target. Nuclear
effects are taken into account by means of the procedure dis-
cussed in Ref. [19] and further summarized in Sect. 2.3.

2.2.4 Inclusive collider electroweak gauge boson
production

The new datasets we consider for inclusive W and Z boson
production and decay are from the ATLAS and LHCb exper-
iments.

We include the ATLAS measurements of the W and Z
differential cross-section at

√
s = 7 TeV [54] in the central

and forward rapidity regions. As mentioned above, these data
were already included in NNPDF3.1, but only the subset cor-
responding to the central region. The measurements cover,
respectively, the pseudo-rapidity range |ηℓ| < 2.5 (for W
bosons) and the rapidity range of the lepton pair |yℓℓ| < 3.6
(for the Z boson). In the latter case, the invariant mass of the

lepton pair is 46 ≤ mℓℓ ≤ 150 GeV. The measurements cor-
respond to an integrated luminosity of 4.6 fb−1. We consider
the combination of measurements in the electron and muon
decays.

We consider the ATLAS measurements of the double and
triple differential DY lepton pair production cross-section at√
s = 8 TeV [79,80]. The differential variables are the invari-

ant mass and rapidity of the lepton pair, mℓℓ and yℓℓ, and, in
addition to these for the latter case, the cosine of the Collins-
Soper angle cos θ∗. The measurements cover two separate
invariant mass ranges, respectively 116 ≤ mℓℓ ≤ 1500 GeV
and 46 ≤ mℓℓ ≤ 200 GeV, in the same central rapidity range
|yℓℓ| < 2.4. The same data sample corresponding to an inte-
grated luminosity of 20.2 fb−1 is used in the two cases, which
therefore overlap in the interval 116 ≤ mℓℓ ≤ 200 GeV. The
two analyses are consistent in this region, however because
the one in [79] is optimized to high invariant masses, we
remove the overlapping bins from the dataset in [80]. In both
cases we consider the measurements in which the electron
and muon decay channels have been combined; for the triple
differential distribution, we consider the measurement inte-
grated over cos θ∗ in order to reduce sensitivity to the value
of the Weinberg angle sin2 θW .

We include the ATLAS measurement of the W production
cross-section and decay at

√
s = 8 TeV [81]. The data are dif-

ferential in the pseudo-rapidity of the decay muon ηµ, which
is accessed in the central pseudo-rapidity range |ηµ| < 2.4
by analyzing a data sample corresponding to an integrated
luminosity of 20.2 fb−1. As for the companion ATLAS mea-
surement at

√
s = 7 TeV [54], we consider the separate W+

and W− differential distributions rather than their asymme-
try.

We consider the ATLAS measurement of the total W and
Z cross-section and decay into leptons at

√
s = 13 TeV [83].

The measurement corresponds to an integrated luminosity of
81 pb−1.

We include the LHCb measurement of theW cross-section
at

√
s = 8 TeV [82]. The data are differential in the pseudo-

rapidity of the decay electron ηe, which is accessed in the
forward range 2.00 < |ηe| < 4.25. The data sample corre-
sponds to an integrated luminosity of 2 fb−1. In this case, we
cannot consider the separate W+ and W− differential dis-
tributions, because we find that the correlated experimental
uncertainties lead to a covariance matrix that is not positive
definite. Therefore, in this case we make use of the asymme-
try measurement, which is not affected by this problem since
most of the correlations cancel out.

Finally, we include the LHCb measurement of the Z cross-
section at

√
s = 13 TeV [84]. The data are differential in

the Z boson rapidity yZ [84], with 2.00 < |yZ | < 4.50,
and it covers the Z -peak lepton pair invariant mass range
60 ≤ mℓℓ ≤ 120 GeV. The data sample corresponds to an

123

data used in EPPS21 nPDF fit

data used in NNPDF4.0 PDF fit



INITIAL CONDITIONS
full initial conditions for the collisions require further modelling [distribution of energy density]
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3

where ta are the generators of SU(Nc) in the fundamental
representation (The cell index j is omitted here). The
N2

c −1 equations (4) are highly non-linear and for Nc = 3
are solved iteratively.
The total energy density on the lattice at τ = 0 is given

by

ε(τ = 0) =
2

g2a4
(Nc − Re trU!) +

1

g2a4
trE2

η , (5)

where the first term is the longitudinal magnetic energy,
with the plaquette given by U j

!
= Ux

j Uy
j+x̂ U

x†
j+ŷ U

y†
j .

The explicit lattice expression for the longitudinal elec-
tric field in the second term can be found in Refs. [32, 34].
We note that the boost-invariant CYM framework ne-
glects fluctuations in the rapidity direction. Anisotropic
flow at mid-rapdity is dominated by fluctuations in the
transverse plane but fluctuations in rapidity could have
an effect on the dissipative evolution; the framework to
describe these effects has been developed [35] and will
be addressed in future work. Other rapidity dependent
initial conditions are discussed in Ref. [36].
In Fig. 1 we show the event-by-event fluctuation in

the initial energy per unit rapidity. The mean was ad-
justed to reproduce particle multiplicities after hydro-
dynamic evolution. This and all following results are for
Au+Au collisions at RHIC energies (

√
s = 200AGeV) at

midrapidity. The best fit is given by a negative binomial
(NBD) distribution, as predicted in the Glasma flux tube
framework [37]; our result adds further confirmation to a
previous non-perturbative study [38]. The fact that the
Glasma NBD distribution fits p+p multiplicity distribu-
tions over RHIC and LHC energies [24] lends confidence
that our picture includes fluctuations properly.
We now show the energy density distribution in the

transverse plane in Fig. 2. We compare to the MC-KLN
model and to an MC-Glauber model that was tuned to
reproduce experimental data [4, 8]. In the latter, for ev-
ery participant nucleon, a Gaussian distributed energy
density is added. Its parameters are the same for ev-
ery nucleon in every event, with the width chosen to be
0.4 fm to best describe anisotropic flow data. We will
also present results for a model where the same Gaus-
sians are assigned to each binary collision. The resulting
initial energy densities differ significantly. In particular,
fluctuations in the IP-Glasma occur on the length-scale
Q−1

s (x⊥), leading to finer structures in the initial energy
density relative to the other models. As noted in [25],
this feature of CGC physics is missing in the MC-KLN
model.
We next determine the participant ellipticity ε2 and

triangularity ε3 of all models. Final flow of hadrons vn is
to good approximation proportional to the respective εn
[39], which makes these eccentricities a good indicator of
what to expect for vn. We define

εn =

√

⟨rn cos(nφ)⟩2 + ⟨rn sin(nφ)⟩2
⟨rn⟩

, (6)

FIG. 2. (Color online) Initial energy density (arbitrary units)
in the transverse plane in three different heavy-ion collision
events: from top to bottom, IP-Glasma, MC-KLN and MC-
Glauber [8] models.

where ⟨·⟩ is the energy density weighted average. The re-
sults from averages over ∼ 600 events for each point plot-
ted are shown in Fig. 3. The ellipticity is largest in the
MC-KLN model and smallest in the MC-Glauber model
with participant scaling of the energy density (Npart).
The result of the present calculation lies in between,
agreeing well with the MC-Glauber model using binary
collision scaling (Nbinary). We note however that this
agreement is accidental; binary collision scaling of eccen-
tricities, as shown explicitly in a previous work applying
average CYM initial conditions [40], does not imply bi-
nary collision scaling of multiplicities.
The triangularities are very similar, with the MC-KLN

result being below the other models for most impact pa-
rameters. Again, the present calculation is closest to the
MC-Glauber model with binary collision scaling. There
is no parameter dependence of eccentricities and trian-
gularities in the IP-Glasma results shown in Fig. 3. It
is reassuring that both are close to those from the MC-
Glauber model because the latter is tuned to reproduce
data even though it does not have dynamical QCD fluc-
tuations.
We have checked that our results for ε2, ε3 are insensi-

IP-Glasma
encodes the physics of gluon saturation and long-range correlations [over a scale , where the 
saturation scale  is such that states with momenta below it are fully occupied] 
computed directly from classic YM equations [CGC-Glasma] 
includes event-by-event fluctuations for position of nucleons

1/Qs
Qs

MC-KLM

encodes the physics of gluon saturation [over a scale , where the saturation scale  is such that 
states with momenta below it are fully occupied] through an approximate model 
includes event-by-event fluctuations for position of nucleons

1/Qs Qs

MC-Glauber

includes event-by-event fluctuations for position of nucleons 
nucleons with gaussian shape 
calculation of energy density requires additional assumptions and fit to data 

Phys.Rev.Lett. 108 (2012) 252301
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time

collision [out-of-equilibrium process]
many soft [small momentum exchange] collisions 

responsible for bulk low-momentum particle production 
will quickly hydrodynamize 

very few hard [large momentum exchange] collisons 
off-spring will slowly relax toward hydrodynamization, yet remain out-of-equilibrium 
while traversing hot soup

~ 0.1 fm/c 
[~10-25 s] 



TOWARDS EQUILIBRATION
kinetic theory provides a bridge between the very far from equilibrium initial stages and a system 
that  can be described by hydrodynamics [hydrodynamization]
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takes a more straight trajectory towards equilibrium. It
should be noted that for these values of λ the assumption of
p ≫ m is not satisfied and large next-to-leading-order
corrections are to be expected.
Approach to hydrodynamics.—We expect that late-time

evolution should be described by relativistic hydrodynam-
ics. Under flow with translational invariance along trans-
verse directions and boost invariance, the hydrodynamical
relations read, to second order in gradients [29],

∂τϵ ¼ −
4

3

ϵ
τ
þ Φ

τ
; ð15Þ

∂τΦ ¼ − Φ
τΠ

þ 4η
3τΠτ

− 4

3τ
Φ − λ1

2τΠη2
Φ2; ð16Þ

with longitudinal and transverse pressure PL ¼ 1
3 ϵ − Φ and

PT ¼ 1
3 ϵþ

1
2Φ. The first-order hydrodynamics corresponds

to setting Φ ¼ 4η=3τ in Eq. (15). At weak coupling, the
transport coefficients η, τΠ, and λ1 are known [30,31],
leaving zero free parameters to fit, aside from the timewhen
the hydrodynamics is initialized. We initialize the first-
order hydrodynamics at the latest time we have in our
simulation and integrate Eq. (15) backwards in time. For
the second-order hydrodynamics, integrating backwards is
highly unstable; we initialize the energy density at some
arbitrary earlier time and integrate forwards in time.
In Fig. 3 we examine the validity of the hydrodynamical

expansion at small λ ¼ 1 and at realistic intermediate λ ¼
10 (αs ≈ 0.3) values of coupling. In both cases we see that
the evolution of the components of the energy-momentum
tensor asymptotes to their hydrodynamical values. In case
of λ ¼ 1, the hydrodynamical behavior is reached only
at a rather late time, Qsτ ∼ 2000. We have checked that
including second-order terms before this time does not
make the convergence significantly better; before this time,
the evolution differs qualitatively from the hydrodynamical
prediction. However, rather remarkably, for λ ¼ 10 even
first-order hydrodynamics gives a very good description of
the data all the way to very early times, Qsτ ∼ 10
(corresponding to τ ∼ 1 fm=c for Qs ¼ 2.0 GeV) where
the ratio of the pressures is still as large as PT=PL ≈ 5. In
addition, including the second-order terms significantly
improves the convergence. Indeed, we find that initializing
the second-order hydrodynamics at Qsτ ¼ 1 leads to only
10% relative error in the energy density at late times.
Discussion and conclusion.—The parametric estimate of

Baier et al. [10] for the time when the hydrodynamic
behavior sets in is Qsτ ∼ λ−13=5. This arises from equating
the age of the system (τ) with the time scale (τQ) it takes to
affect appreciably the scale Qs in a thermal bath whose
temperature depends on this time TðτÞ∼λ−1=4QsðQsτÞ−1=4,
according to conservation of comoving energy density. In
[10] it was assumed that the rate for affecting the scale Qs is
Landau-Pomeranchuk-Migdal suppressed [32], giving
τQ ∼ ðQs=TÞ1=2=λ2T. A self-consistent solution of these
equations gives the aforementioned estimate of [10]. Arnold

and Lenaghan [33] noted that as the scattering rate in thermal
plasma is τQ ∼ 1=λ2T, there can be no process that would
make the estimate faster than Qsτ ∼ λ−7=3. We have exam-
ined the validity of these scaling estimates by plotting the
difference of the energy density obtained from the simulation
and the first-order hydrodynamic estimate, and we find that
both of these estimates describe the data poorly. However, if
we assume that the approach is governed by the hydrody-
namical relaxation time τQ ∼ τΠ ∼ η=sT, we get an estimate
τ ∼ λ1=3ðη=sÞ4=3=Qs. Figure 4 displays the deviation of the
hydrodynamics as a function of rescaled time. In particular,
for intermediate couplings λ ¼ 5; 10, the overlap of the
different curves indicates correct scaling. Note that this
estimate is parametrically the same as the estimate of Arnold
and Lenaghan because, parametrically, η=s ∼ λ−2. However,
there are large corrections beyond the parametric estimate in
η=s; because of these, it is important to use the full numerical
result instead of the simpler parametric estimate. We believe,
though, in the absence of plasma instabilities, that the correct
scaling at sufficiently small λ is that of [10]. This estimate
is, however, based on a large-scale separation of
TðτhydroÞ=Qs ∼ λ2=5. Numerically this ratio is not very large,
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FIG. 3 (color online). Longitudinal pressure PL, energy density
ϵ, and transverse pressure PT from a simulation with ξ ¼ 10.0
and λ ¼ 1 (top panel) and λ ¼ 10 (bottom panel). The compo-
nents of Tμ

ν have been scaled by τ4=3 so that the ideal hydro-
dynamics corresponds to horizontal lines. The scale on the x axis
with fm/c corresponds to Qs ¼ 2.0 GeV ≈ 10=fm. The simula-
tions with ξ ¼ 4 are also displayed with thin dotted lines.
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solve Boltzmann equation

Introduction Initial state Pre-equilibrium Hydrodynamics Hadronisation Hadronic re-scattering Summary

Weak coupling scenario

Equilibration in kinetic theory

Kurkela, Nucl. Phys. A 956 (2016) 136 Kurkela, Zhu, Phys. Rev. Lett. 115 (2015) no.18, 182301

I region f ⌧ 1/↵s described by effective kinetic theory

I solve Boltzmann transport equation

�(@t + v ·rx)f (x, p, t) = C“1$2” [f ] + C2$2[f ]

I C“1$2” : splitting/merging rate in presence of multiple scattering
I C2$2: elastic scattering rate

I hydrodynamisation on timescales . 1 fm/c

Korinna Zapp (Lund University) Heavy Ion Physics ESHEP 2023 25 / 45

splitting/merging rate in the 
presence of multiple scattering

elastic scattering rate

system becomes hydrodynamical on a time scale ,  
well before it is isotropic ( )

τ ≲ 1 𝖿𝗆/𝖼
PL ≠ PT

in theories with a gravity dual (e.g,  SYM), hydrodynamic behaviour is reached very fast ( )𝒩 = 4 τ ∼ 1/T
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time

QGP
hot, dense, and coloured matter 
quarks and gluons are the relevant dof

~ 0.1 fm/c 
[~10-25 s] 

~1 fm/c  
[~10-24 s]



HYDRODYNAMICS

effective theory description of long-distance [low momentum], long-time, strongly coupled dynamics in terms of 
macroscopic quantities 

 behaviour of averaged macroscopic properties of system – applicable to very generic set of theories 

microscopic details of theory course-grained into  

equation of state 

transport coefficients 

relaxation times 

valid for distances large compared with mean free path and times long compared to inverse scattering rate, and for 
sufficiently smooth systems  

incredibly successful in heavy-ion collisions
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IDEAL RELATIVISTIC HYDRODYNAMICS
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:: energy momentum tensor for fluid in global thermal equilibrium

p = p(✏)

✏ = ✏(x)uµ = uµ(x)

velocity field metric

:: thermodynamical equation of state

energy densitypressure

:: ideal fluid ➞ local thermal equilibrium

:: energy-momentum conservation ➞ hydrodynamical evolution equations

rµT
µ⌫ = 0 =) uµ@µ✏+ (✏+ p)rµu

µ = 0

(✏+ p)uµrµu
⌫ + (g⌫µ + u⌫uµ)@µp = 0

Tµ⌫ = ✏uµu⌫ + p (gµ⌫ + uµu⌫)



VISCOUS RELATIVISTIC HYDRODYNAMICS

46

:: more general energy momentum tensor

shear stress [transverse and traceless]bulk viscous pressure

:: can be organized as a derivative [gradient] expansion

Tµ⌫ = ✏uµu⌫ + (p+ ⇡bulk)(g
µ⌫ + uµu⌫) + ⇡µ⌫

deviations from ideal hydro

Viscous relativistic fluid dynamics

Write now more general (with �µ⌫ = gµ⌫ + uµu⌫)

Tµ⌫ = ✏uµu⌫ + (p+ ⇡bulk)�
µ⌫ + ⇡µ⌫

where ⇡µ⌫ is transverse uµ⇡
µ⌫ = 0 and traceless ⇡µ

µ = 0.

The bulk viscous pressure ⇡bulk and shear stress ⇡µ⌫ parametrize deviations
from ideal fluid dynamics

Viscous fluid dynamics can be organized as a derivative expansion

⇡bulk =� ⇣rµu
µ + . . . ,

⇡µ⌫ =� 2⌘
⇣

1
2�

µ↵�⌫� + 1
2�

µ��⌫↵ � 1
3�

µ⌫�↵�
⌘
r↵u� + . . .

First order depends on bulk viscosity ⇣ = ⇣(✏) and shear viscosity ⌘ = ⌘(✏).

At second order relaxation times ⌧shear(✏) and ⌧bulk(✏) as well as other
terms.
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Viscous relativistic fluid dynamics

Write now more general (with �µ⌫ = gµ⌫ + uµu⌫)

Tµ⌫ = ✏uµu⌫ + (p+ ⇡bulk)�
µ⌫ + ⇡µ⌫

where ⇡µ⌫ is transverse uµ⇡
µ⌫ = 0 and traceless ⇡µ

µ = 0.

The bulk viscous pressure ⇡bulk and shear stress ⇡µ⌫ parametrize deviations
from ideal fluid dynamics

Viscous fluid dynamics can be organized as a derivative expansion

⇡bulk =� ⇣rµu
µ + . . . ,

⇡µ⌫ =� 2⌘
⇣

1
2�

µ↵�⌫� + 1
2�

µ��⌫↵ � 1
3�

µ⌫�↵�
⌘
r↵u� + . . .

First order depends on bulk viscosity ⇣ = ⇣(✏) and shear viscosity ⌘ = ⌘(✏).

At second order relaxation times ⌧shear(✏) and ⌧bulk(✏) as well as other
terms.
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:: at first order, dependence on bulk viscosity [ζ =ζ(ε)] and shear viscosity [η=η(ε)]

:: at higher orders, further coefficients… 

:: increasingly complicated evolution equations [to be solved numerically]
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time

hadronization
convert fluid into particles 

run hydrodynamics until interactions stop 
particle spectra computed from integral over surface of last 
scattering [Cooper-Frye prescription] 
alternatively, compute quark and anti-quark distributions 
and form hadrons by coalescence 
several other proposals 

out-of-equilibrium [eg, jets] components to hadronize in the 
usual way [Lund strings, Colour clusters, …] 

~ 0.1 fm/c 
[~10-25 s] 

~1 fm/c  
[~10-24 s]

~ 10 fm/c 
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time

hadrons
hadron rescattering in hydro 

need to supplement hydro with hadronic phase 
Boltzmann transport after-burner 

requires a lot of additional input [cross-sections and 
ressonances]

~ 0.1 fm/c 
[~10-25 s] 

~1 fm/c  
[~10-24 s]

~ 10 fm/c 


