heavy ion physics [lecture II]

Guilherme Milhano [LIP & IST, Lisbon] gmilhano@lip.pt

ESHEP2024, *Peebles – UK*, *4-5 Oct 2024*

OUTLINE

- lecture | [yesterday]
 - general introduction
 - what is Quark Gluon Plasma
 - the states of a Heavy Collision

- lecture II [today]
 - how do we know what we know about Quark Gluon Plasma
 - how do we get to know more
 - focus on two classes of observables: particle correlations and jet properties

MEASURING FLOW

out of event plane

:: quantify effect by measuring particle distribution in azimuth

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left[1 + 2\sum_{n} v_n \cos(n(\phi - \psi)) \right]$$

event plane angle: direction of maximum particle density

• pressure gradients larger in reaction plane

• larger fluid velocity along reaction plane

• more particles fly in this direction

 $\therefore v_2(p_t, y)$ measures ellipticity of momentum distribution

:: odd-coefficients [v₃, ...] vanish by $\phi \rightarrow \phi + \pi$ symmetry

MEASURING FLOW

Momentum distribution remembers shape of collision

- strong centrality dependence
 - small for central [small spatial asymmetry]
 - maximum for mid-central
 - smaller for very peripheral [small QGP]
- conversion of spatial asymmetry into momentum asymmetry is a key property of hydrodynamics

ENGINEERING THE SHAPE

MASS DEPENDENCE OF FLOW

- heavier particles flow less
- hydrodynamics does an excellent jobs
 - mass ordering due to common fluid velocity

FLOW AND FLUID PROPERTIES

physics

- flow sensitive to fluid viscosity
 - [recall slide with global Bayesian extraction from yesterday]
 - ideal fluids flow more perturbations propagate with no attenuation [note that an ideal gas has ∞ viscosity]
 - QGP is a nearly ideal fluid

 $p = (+)^{2}$

HIGHER FLOW HARMONICS

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left[1 + 2\sum_{n} v_n \cos(n(\phi - \psi)) \right]$$

• higher flow harmonics are non-zero

• flow is anisotropic

- importantly odd harmonics like v_3 are not zero as they should from the $\phi \rightarrow \phi + \pi$ symmetry of the definition
 - what is going on?

ANISOTROPY FROM EVENT-BY-EVENT FLUCTUATIONS

- symmetry argument for vanishing odd harmonics only holds for event-averaged geometry
 - each event has a shape that cannot be described by eccentricity ε_2 alone
 - flow of average geometry is not the same as average of flow of all events

Phys.Rev.C 81 (2010) 054905

fluctuations generate odd-harmonics

ODD-HARMONICS

- dominance of fluctuations implies centrality independence
 - same holds for also measured higher harmonics

PARTICLE CORRELATIONS

• determination of event plane is not always easy, particularly so when multiplicity is low

• same flow information [and more] can be obtained from particle-pair correlations

$$C(\phi_1, \phi_2) = \frac{\left\langle \frac{dN}{d\phi_1} \frac{dN}{d\phi_2} \right\rangle_{\text{events}}}{\left\langle \frac{dN}{d\phi_1} \right\rangle_{\text{events}} \left\langle \frac{dN}{d\phi_2} \right\rangle_{\text{events}}} = 1 +$$

 $-2\sum v_n^2\cos(n(\phi_1-\phi_2))$ n

PARTICLE CORRELATIONS PROTON-PROTON

$$C(\phi_1, \phi_2) = \frac{\langle \frac{dN}{d\phi_1} \frac{dN}{d\phi_2} \rangle_{\text{events}}}{\langle \frac{dN}{d\phi_1} \rangle_{\text{events}} \langle \frac{dN}{d\phi_2} \rangle_{\text{events}}} = 1 + 2\sum_n v_n^2 \cos(n(\phi_1 - \phi_2))$$

jet peak

• there is a slight complication ...

• there is a slight complication ...

High-multiplicity pPb High-multiplicity pp

superSONIC for p+p, $\sqrt{s}=5.02$ TeV, 0-1%

Central PbPb

superSONIC for p+Pb, $\sqrt{s}=5.02$ TeV, 0-5%

superSONIC for Pb+Pb, $\sqrt{s}=5.02$ TeV, 0-5%

small systems also flow !

• and a slightly bigger complication ...

flow also in γPb collisions [ultra-peripheral HIC]

• and oddly ...

flow in *e*⁺*e*⁻ collisions [high multiplicity]

• unsurprisingly similar message from particle correlations

AN ATTEMPT AT AN EXPLANATION WITH MANY OPEN QUESTIONS

- in high-multiplicity pA and pp, correlations can be partly explained either as being remnants of
- or, by QGP being created in this systems and then explanation is analogous to AA

 - search for other evidence of QGP in these systems
 - [OO@LHC during Run 3]
- initial state correlations could possibly explain γA case [?????]
- all this obviously implausible in e^+e^- . origin of correlations has to be something else [?????]

correlations in the initial state [CGC-Glasma] or by dynamics [recombination and shoving] of Lund strings prior to hadronization. Nicely, these effects cannot explain the magnitude of correlations in AA

• hydrodynamics is a gradient expansion. In pp the gradients are huge and thus hydro should not be applicable. That hydro appears to work well in high-multiplicity pp is [at least for me] very puzzling

• explore smaller [then PbPb] nuclear systems to determine how small a droplet of QGP can be

THE SPEED OF SOUND IN QGP

• the geometry of ultra-central collisions is essentially fixed [$b \simeq 0$] but multiplicity can vary by 10-15%

- the speed of sound is given by

$$c_s^2(T_{\rm eff}) = \frac{d \ln \langle p_T \rangle}{d \ln N_{\rm ch}}$$

• variation is due to quantum fluctuations and $\langle p_T \rangle$ increases as multiplicity increases if QGP is fluid

Entropy density (s), # of charged particles (N_{ch})

THE SPEED OF SOUND IN QGP

extracted value in agreement with lattice QCD calculation, but precise value very dependent on definition of centrality class

TOWARDS MORE DETAILED PROBING OF QGP

• all observables discussed so far are related to global [bulk] QGP properties

• need further **probes** sensitive to diverse space, momentum and time scales of QGP

HOW TO PROBE ANYTHING

so far we haven't invoked the best way of probing anything

HOW TO PROBE ANYTHING

scatter something off it

cannot [easily] understand a frog from scattering it off another frog

Abstruse Goose

HOW TO PROBE ANYTHING scatter something you understand off it

deep inelastic scattering is the golden process for proton/nucleus structure determination

dial $Q^2 = -(\mathbf{k}' - \mathbf{k})^2$ to probe distances $\lambda = 1/Q$

QGP too short-lived (~ 30 ys) for external probes to be of any use • to mimic DIS paradigm need multi-scale probes produced concurrently with QGP

k

TIMELINE OF A HEAVY ION COLLISION

 $\sim 0.1 \text{ fm/c}$ [~10⁻²⁵ s]

collision [out-of-equilibrium process]

- many soft [small momentum exchange] collisions • responsible for bulk low-momentum particle production
 - will quickly hydrodynamize
- very few hard [large momentum exchange] collisions remain out-of-equilibrium while traversing hot soup

time

• off-spring will slowly relax toward hydrodynamization, yet

:: a jet is **defined** by a set of rules and parameters [a jet algorithm] specifying how to combine constituents and when to stop ::

jet definition [in elementary collisions]

jet definition [in elementary collisions]

:: a jet is **defined** by a set of rules and parameters [a jet algorithm] specifying which particles are to be grouped together and when to stop, and how to combine properties of constituents into jet properties [a recombination scheme] ::

e.g., generalized k_{T} family of sequential recombination jet algorithms

- 1. compute all distances d_{ij} and d_{iB}
- 2. find the minimum of the d_{ij} and d_{iB}
- 3. if it is a d_{ij}, recombine i and j into a single new particle and return to 1
- 4. otherwise, if it is a d_{iB}, declare i to be a jet, and remove it from the list of particles. return to 1
- 5. stop when no particles left

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2}, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2,$$

$$d_{iB} = p_{ti}^{2p},$$

p = 1 :: k_T algorithm :: ordered in transverse momentum
p = 0 :: Cambridge/Aachen algorithm :: ordered in angle
p = -1 :: anti-k_T algorithm :: anti-ordered in transverse momentum
p = 1/2 :: т algorithm :: ordered in inverse time

jet definition [in elementary collisions]

:: a jet is **defined** by a set of rules and parameters [a jet algorithm] specifying how to combine constituents and when to stop ::

experimentally measurable collimated spray of hadrons

jet definition [in elementary collisions]

:: a jet is defined by a set of rules and parameters [a jet algorithm] specifying how to combine constituents and when to stop ::

experimental jet

experimentally measurable collimated spray of hadrons

jet diversity

 $k_T R=0.4$ jets are **different** from anti- $k_T R=0.4$,

- also, anti- $k_T R = 0.2$ are **not** the inner R=0.2 core of anti- $k_T R = 0.4$ jets, etc.
- reinterpreted [reclustered] with a different algorithm to benefit simultaneously from experimental robustness and direct theoretical interpretation
 - however, C/A reclustering of anti-kt R=0.4 jet is not C/A R=0.4 jet
- jet diversity is a tool rather than a hindrance :: grooming/substructure methods

jets reconstructed with a given algorithm [typically anti-k_T for experimental robustness] can be

jets in heavy ion collisions

 defined by same jet algorithm[s] as in elementary collisions with essential background subtraction

jet algorithm background subtraction

jets in heavy ion collisions

 defined by same jet algorithm[s] as in elementary collisions with essential background subtraction

what is in a heavy ion jet?

A JET IN QGP :: HARD PRODUCTION

kinematical domain

all will be easy [denial]

A JET IN QGP :: PARTON SHOWER

shower constituents exchange [soft] 4-momentum and colour with QGP :: shower modified into interleaved vacuum+induced shower :: modified coherence properties :: single parton intuition and results do not carry through trivially :: multi-scale problem :: some shower constituents decorrelate :: response of QGP to jet becomes correlated with jet direction

Mehtar-Tani, Milhano, Tywoniuk :: Int.J.Mod.Phys. A28 (2013) Mehtar-Tani, Tywoniuk, Salgado :: many Blaizot, Dominguez, Iancu, Mehtar-Tani :: JHEP 1406 (2014) Apolinário, Armesto, Milhano, Salgado :: JHEP 1502 (2015)

this is tough [anger]

A JET IN QGP :: HADRONIZATION

very little known about QGP induced modifications of already ill-understood hadronization in vacuum

if you let me do away with this, I will produce some results [bargaining]

jet-QGP interaction modifies color connections in the jet and thus hadronization pattern [in any reasonable effective model] can learn about hadronization modifications at an EIC

A JET IN QGP :: JET RECONSTRUCTION

how can I know?

uncorrelated QGP background needs to be subtracted :: jet-correlated QGP response should not :: do experimental and phenomenological procedures do the same [and the right] thing? ::

this is probably hopeless [depression]

A JET IN QGP :: OBSERVABLES

keeping in mind all the caveats compute something that has been/you want to be measured and understand what it might be sensitive to and how it can help removing the caveats

work with what you have to eventually have more [acceptance]

THE FIVE STAGES OF HEAVY ION JET PHENOMENOLOGY

denial :: anger :: bargaining :: depression :: acceptance

the theoretical, phenomenological, and experimental challenges posed by the complexity of jets in heavy ion collisions are the best shot we have at furthering our understanding of the QGP

PARTON ENERGY LOSS

- first step in understanding modifications of jets is to tackle energy loss of a single parton
- take a QGP as discrete set of non-interacting [screened] and recoilless scattering centres expanding or not [here not]
- interaction between parton and QGP on timescale much shorter than characteristic QGP time scales [compute for fixed configuration and average over ensemble later on]
- momentum exchange purely transverse medium gauge field written as

$$A_{\rm med}^{-}(q) = 2\pi\,\delta(q^{+})\,\int_{0}^{\infty}dx^{+}\,e^{iq^{-}x^{+}}A_{\rm med}^{-}(\boldsymbol{q},x^{+})$$

• assuming gaussian distribution, medium properties enter via 2-point correlator

$$\langle A_{\text{med}}^{a,-}(\boldsymbol{q},t)A_{\text{med}}^{*\,b,-}(\boldsymbol{q}',t')\rangle = \delta^{ab}\,n(t)\,\delta(t-t')\,(2\pi)^2\delta^{(2)}(\boldsymbol{q}-\boldsymbol{q}')\,\gamma(\boldsymbol{q}^2)$$

PARTON ENERGY LOSS

- parton can exchange 4-momentum with QGP
 - transfer to QGP results in [elastic] energy loss
 - radiation is the leading mechanism for parton energy loss

• transfer from QGP results in energy gain which can stimulate radiation :: medium induced

 $\hat{q} \simeq \frac{\mu}{2}$

transport coefficient [average momentum squared transfer per unit length]

SINGLE EMISSION [BDMPS-Z]

:: Brownian motion [accumulated transverse momentum] $\langle k_{\perp}^2 \rangle \sim \hat{q}L$

:: coherence time [time it takes for a gluon decohere from its emitter]

$$t_{coh} \sim \frac{\omega}{k_{\perp}^2} \sim \sqrt{\frac{\omega}{\hat{q}}} \rightarrow \text{number of constraints}$$

$$k_{\perp}^2 \sim \hat{q} t_{coh}$$

:: radiated gluon energy distribution

$$\omega \frac{dI_{med}}{d\omega dz} \sim \frac{1}{N_{coh}} \omega \frac{dI_1}{d\omega dz} \sim \alpha_s \sqrt{\frac{\hat{q}}{\omega}}$$

characteristic [maximum] gluon energy

$$\hat{q} \simeq \frac{\mu^2}{\lambda}$$

herent scatterings

$$N_{coh} \sim \frac{t_{coh}}{\lambda}$$

👝 non-abelian IPM

:: average energy loss

 $\Delta E = \int_0^L dz \int_0^{\omega_c} \omega d\omega \frac{dI_{med}}{d\omega dz} \sim \alpha_s \omega_c \sim \alpha_s \hat{q} L^2$

BEYOND BACK THE ENVELOPE [PATH-INTEGRAL]

:: eikonal [straight line] parton trajectory resumming multiple exchanges $r(\xi)$ 0000 ···· 0000

$$W_{\alpha_f \alpha_i}(x_{f+}, x_{i+}; \mathbf{r}(\xi)) = \mathcal{P} \exp\left\{ ig \int_{x_{i+}}^{x_{f+}} d\xi A_-(\xi, \mathbf{r}) \right\}$$

:: off-eikonal [transverse motion] parton trajectory resumming multiple exchanges

:: observables computed from medium averages of G correlators

$$\frac{p_+}{2} \int_{x_{i+}}^{x_{f+}} d\xi \left(\frac{d\mathbf{r}}{d\xi}\right)^2 \bigg\} W_{\alpha_f \alpha_i}(x_{f+}, x_{i+}; \mathbf{r}(\xi))$$

GLUON RADIATION WITH FULL RESUMMATION OF MEDIUM INTERACTIONS

Yukawa

$$V(\boldsymbol{q}) = \frac{8\pi\mu^2}{(\boldsymbol{q}^2 + \mu^2)^2}$$

HTL

$$\frac{1}{2}n V(\boldsymbol{q}) = \frac{g_s^2 N_c m_D^2 T}{\boldsymbol{q}^2 (\boldsymbol{q}^2 + m_D^2)}$$

Andres, Apolinário, Dominguez :: 2002.01517 [hep-ph]

Andres, Dominguez, Martinez :: 2011.06522 [hep-ph]

 $_{q,B}~~(t',oldsymbol{q};t,oldsymbol{p})\mathcal{P}(\infty,oldsymbol{k};t',oldsymbol{q})$

$$\mathcal{K}(t', \boldsymbol{z}; t, \boldsymbol{y}) \equiv \int_{\boldsymbol{pq}} e^{i(\boldsymbol{q} \cdot \boldsymbol{z} - \boldsymbol{p} \cdot \boldsymbol{y})} \widetilde{\mathcal{K}}(t', \boldsymbol{q}; t, \boldsymbol{p})$$
$$= \int_{\boldsymbol{r}(t) = \boldsymbol{y}}^{\boldsymbol{r}(t') = \boldsymbol{z}} \mathcal{D}\boldsymbol{r} \exp\left[\int_{t}^{t'} ds \left(\frac{i\omega}{2} \dot{\boldsymbol{r}}^2 - \frac{1}{2}n(s)\sigma(\boldsymbol{r})\right)\right]$$

$$\mathcal{P}(t'', \boldsymbol{k}; t', \boldsymbol{q}) \equiv \int d^2 \boldsymbol{z} \, e^{-i(\boldsymbol{k}-\boldsymbol{q})\cdot\boldsymbol{z}} \, \exp\left\{-\frac{1}{2} \int_{t'}^{t''} \, ds \, n(s) \, \sigma(\boldsymbol{z})\right\}$$

$$\sigma(\boldsymbol{q}) = -V(\boldsymbol{q}) + (2\pi)^2 \delta^{(2)}(\boldsymbol{q}) \int_{\boldsymbol{l}} V(\boldsymbol{l})$$

THE NEXT STEP: COHERENT EMISSION

- - qqbar antenna [radiation much softer than both emitters] as a TH lab

total colour charge

large angle radiation suppressed :: angular ordering

• bona fide description of parton branching requires understanding of emitters interference pattern

• transverse separation at formation time

$$_{-}\sim heta_{qar{q}}\, au_{f}\sim rac{ heta_{qar{q}}}{ heta^{2}\omega}$$

$$_{\perp} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\omega \theta}$$

for $\lambda_{\perp} > r_{\perp}$ emitted gluon cannot resolve emitters, thus emitted coherently from

MEDIUM ANTENNAS

• new medium induced colour decorrelation scale

$$\Lambda_{med} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\sqrt{\hat{q}L}}$$

• such that decorrelation driven by timescale

$$\tau_d \sim \left(\frac{1}{\hat{q}\theta_{q\bar{q}}^2}\right)^{1/3}$$

Mehtar-Tani, Salgado, Tywoniuk :: 1009.2965 [hep-ph]

many, many papers thereafter...

[DE]COHERENCE OF MULTIPLE EMISSIONS

• colour decoherence opens up phase space fc emission

• large angle radiation [anti-angular orderin]

$$dN_{q,\gamma^*}^{\text{tot}} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{\sin\theta \ d\theta}{1 - \cos\theta} \left[\Theta(\cos\theta - \cos\theta_{q\bar{q}}) - \Delta_n\right]$$

• geometrical separation [in soft limit]

Φ 10

Mehtar-Tani, Salgado, Tywoniuk :: 1009.2965 [hep-ph]

many, many papers thereafter...

• qqbar colour coherence survival probability

$$_{ed} = 1 - \exp\left\{-\frac{1}{12}\hat{q}\theta_{q\bar{q}}^{2}t^{3}\right\} = 1 - \exp\left\{-\frac{1}{12}\frac{r_{\perp}^{2}}{\Lambda_{med}^{2}}\right\}$$

ale før decoherence
$$d \sim \left(\frac{\hat{q}\theta_{q\bar{q}}^2}{\hat{q}\theta_{q\bar{q}}^2}\right)^{-1}$$

FROM ANTENNAS TO JETS Mediun-induced radiation (not collinear) Glynan A-0 Here Determon Med-inchuled radiation HW

Salgado

lessons from observables

JETS AND HADRONS LOSE ENERGY WHEN TRAVERSING QGP

• R_{AA} only measures suppression :: it does not quantify energy loss in a model independent way

• both jets and hadrons (which belong to jets) are suppressed, but differently

$$R_{AA} = \left. \frac{\sigma_{AA}^{\text{eff}}}{\sigma_{pp}^{\text{eff}}} \right|_{p_{T}} \qquad \qquad \sigma_{pp}^{\text{eff}} = \sigma_{pp}$$
$$\sigma_{AA}^{\text{eff}} = \sigma_{AA} / \langle N_{\text{coll}} \rangle$$

essentially measures fraction of jets that lost little or no energy

- in steeply falling spectrum large energy losses translate into very small effects
- RAA provides quantitative handle on energy loss only within some model framework
- 10^{3}
- it compares jets [hadrons] that were detected with same p_T, not born alike

SUPPRESSION IS NOT THE SAME AS ENERGY LOSS

- the standard approach to assess QGP effects on jets [quenching] compares a given observable in AA and pp collisions for jets with the same reconstructed pt
 - e.g., a jet shape

$$p(r) = \frac{1}{\delta r} \frac{\sum_{\text{jets}} \sum_{\substack{r_a < r < r_b}} (p_T^{\text{trk}} / p_T^{\text{jet}})}{\sum_{\text{jets}} \sum_{\substack{0 < r < r_f}} (p_T^{\text{trk}} / p_T^{\text{jet}})}$$

comparison between AA and pp at same reconstructed jet pt confounds QGP-induced shape modification with binmigration [survivor bias] effects

- here the comparison is between jets that were born different
- again, some model framework that must be invoked for assessment of what was modified in a jet

BETTER CAN DE DONE

- divide jet samples sorted in pt [from highest] in quantiles of equal probability
- compare the pt of jets in AA and pp in the same quantile

$$Q_{AA} = \left. \frac{p_T^{AA}}{p_T^{pp}} \right|_{\Sigma^{\text{eff}}}$$

QAA is also the (average) solution to the optimal transport problem, in the space of all allowed theories, of deforming pp spectrum into AA spectrum

$$\Sigma^{\text{eff}}(p_T^{\min}) = \int_{p_T^{\min}}^{\infty} \mathrm{d}p_T \, \frac{\mathrm{d}\sigma^{\text{eff}}}{\mathrm{d}p_T}$$

(1-QAA) is a proxy for the average energy loss :: would be exact if energy loss was strictly monotonic

QUANTILE PROCEDURE

COMPLEMENTARY INFORMATION

QAA and RAA provide very different information

• RAA depends on different spectral shape for quark and gluon initiated jets :: QAA does not

QUANTILE PROCEDURE AS PROXY FOR INITIAL ENERGY

• provides a proxy for the initial pt of a quenched [prior to QGP-induced energy loss]

Phys. Rev. Lett. 122 (2019), no. 22 222301

$$\Sigma_{\rm pp}^{\rm eff}(p_T^{\rm quant}) \equiv \Sigma_{\rm AA}^{\rm eff}(p_T^{\rm AA})$$

VALIDATION

• quantile procedure closely reconstructs unquenched [initial] pt :: in this case measurable

MITIGATION OF MIGRATION EFFECTS :: AN EXAMPLE

- quantile procedure isolates 'true' modification

Phys. Rev. Lett. 122 (2019), no. 22 222301

• part of observable modification due to bin migration [comparison of jets with different initial energy]

survivor bias can be a very sizeable effect and obscure true QGP induced modifications of jet properties

jet and hadron R_{AA}

- different suppression of hadrons and jets was long seen as a 'puzzle'
 - 0 of a multiparticle state fully account for the different suppression

Casalderrey, Hulcher, Milhano, Pablos, Rajagopal :: 1808.07386 [hep-ph]

all bona fide MC, and all analytical calculations that treat jets as resulting from evolution

jet and hadron RAA

- excellent global fit for LHC data :: some tension with RHIC data
- high p_T hadrons originate from narrow jets [fragmented less] which are less suppressed than inclusive jets
- simultaneous description of jet and hadron R_{AA} natural feature of any approach that treats jets as such [ie, objects resulting from evolution of state with internal structure]

QGP sees jet substructure sensitivity to QGP of different scales present in jets can be used to study QGP

enhanced p_T imbalance in back-to-back dijet pairs in HI collisions

$$A_J = \frac{p_{\perp,1} - p_{\perp,2}}{p_{\perp,1} + p_{\perp,2}}$$

• JEWEL provides good data description

- very tempting naive geometrical interpretation
 - one jet loses more energy than the other DUE TO different traversed amount of QGP matter

enhanced p_T imbalance in back-to-back dijet pairs in HI collisions

$$A_J = \frac{p_{\perp,1} - p_{\perp,2}}{p_{\perp,1} + p_{\perp,2}}$$

• JEWEL provides good data description

• very tempting naive geometrical interpretation

• one jet loss prore energy than the other D_E TO different traversed amount of QGP matter

really not the case ...

[accounts for medium expansion, rapidity independent for boost invariant medium]

• small bias towards smaller path-length for leading jets

• however, significant fraction [34%] of events have longer path-length for leading jet

• consequence of fast medium expansion

-6

-8

-8

-6 -4 -2 0 2 4 6 8

x [fm]

• 'typical' event has rather similar path-lengths

• difference in path-length DOES NOT play a significant role in the observed modification of A_l distribution

jet energy loss dominated by fluctuations

Eur.Phys.J. C76 (2016))

• not all same-energy jets are equal

• number of constituents driven by initial mass-to-pt ratio :: vacuum physics

• more populated jets have larger number of energy loss candidates

• more populated jets lose more energy and their structure is more modified

> [analogous results within other approaches] Chesler, Rajagopal 1511.07567 Rajagopal, Sadofyev, van der Schee 1602.04187 Brewer, Rajagopal, van der Schee 1710.03237 Escobedo, Iancu 1609.06104 [hep-ph]

QGP sees inside jets and total energy loss is indeed dominated by number of constituents need to be careful not to fall for simplistic intuition

- propagating particles [what will be a jet] modify the QGP they traverse and modification of QGP reconstructed as part of jet
 - inclusion of QGP response in MC improves agreement with data
 - first evidence for importance of QGP response was seen in MC
 - QGP response of full shower remains untractable in [semi-]analytic calculations

$$\rho(r) = \frac{1}{p_{\perp}^{\text{jet}}} \sum_{\substack{k \text{ with} \\ \Delta R_{kJ} \in [r, r+\delta r]}} p_{\perp}^{(k)}$$

QGP response in jet substructure

• distance between main prongs of jet declustered with SoftDrop [largest hard splitting angle]

- clear QGP response signal
- HOWEVER: effect also present for unmodified jet [no interaction with QGP] embedded in HI event and background subtracted
- QGP response signal overlaps with contamination from imperfect background subtraction :: effect is NOT observable

not all observed modifications are due to quenching

0-10%, $\sqrt{s}=5.02 \text{ TeV}$, R=0.4, $|\eta_{jet}| < 1.6$, $p_T^{trk} > 0.7 \text{ GeV}$, $p_T^{lead jet} > 120 \text{ GeV}$, $p_T^{sublead jet} > 50 \text{ GeV}$, $\Delta \phi > 5\pi/6$ – PbPb + MR / pp DOI: 10.1007/JHEP05(2021)116

$$\rho(r) = \frac{1}{p_{\perp}^{\text{jet}}} \sum_{\substack{k \text{ with} \\ \Delta R_{kJ} \in [r, r+\delta r]}} p_{\perp}^{(k)}$$

n(k_t) 8

_₀SD Inclusive PbPb + MR + UE / pp + UE

Inclusive PbPb + MR / pp

Inclusive PbPb + MR + UE / pp + UE

2.5

1.5

observation of medium response

- First p_T^{ch} differential measurement of Z⁰-hadron correlation in azimuthal angle and rapidity
- medium response in **QGP**
- High statistics analysis with Run3+4 data in the near future

Yen-Jie Lee (MIT)

Evidence of Medium Response to Hard Probes with Z⁰-tagged Hadrons in PbPb at 5.02 TeV

[it is the response of we want to understand to an excitation we control]

medium response is an intrinsic part of jets in HI if medium response can be isolated, a wealth of information can be extracted
PROBING QGP

~ 0.1 fm/c

~1 fm/c [~10⁻²⁴ s]

- all QGP probing so far is only sensitive to its integrated time evolution [flows and correlations, jets, ...]

$\sim 10 \text{ fm/c}$

• no time-differential information of a system whose properties are strongly time-dependent

121

time

PROBING QGP TIME EVOLUTION

- need probes produced later than at collision time
- need time delay to be inferable from final state
- need process that produces time-delayed probes to be accessible [cross-section luminosity] and findable in HI

in semi-leptonic top-antitop production the jets from W-decay start interacting with QGP only after a series of time delays which is strongly correlated with the p_t of the top

TIME DELAYS

- at rest $\tau_{top} \simeq 0.15 \, \text{fm/c}$ and $\tau_W \simeq 0.09 \, \text{fm/c}$
- far apart to be 'seen' by QGP]
- decoherence delay

• the average delay time [correlated with top p_t]

$$\langle \tau_{tot} \rangle = \gamma_{t,top} \tau_{top}$$

• the hadronic decays of the W will not interact with QGP until they are resolved [sufficiently

Casalderrey-Solana, Mehtar-Tani, Salgado, Tywoniuk :: 1210.7765 [hep-ph] PLB725, 357 (2013)

 $+ \gamma_{t,W} \tau_W + \tau_d$

transverse boost

 $\gamma_{t,X} = (p_{t,X}^2 + 1)^{\frac{1}{2}}$

jets from hadronically decaying W only see QGP that remains after τ_{tot}

TIME DELAYS

- T_{tot} correlated with top p_t
- weak dependence on \hat{q}

PROBING QGP TIME EVOLUTION

- measure jet quenching as modification of the reconstructed invariant mass m_{ii}
 - in pp closely related to W mass
- average time delay [thus time spent interacting with QGP] from reconstructed top pt

long tails in delay time distribution add sensitivity to times significantly larger than average

W MASS RECONSTRUCTION

- quenching shifts mass peak and reduces number of events that satisfy cuts
- continuum [mis-reconstruction] reduced with increasing pt

$N(m) = a \exp\left[-\frac{(m - m_W^{fit})^2}{2\sigma^2}\right] + b + c m$

FEASIBILITY

semi-leptonic channel measured in pA and leptonic in AA

CMS :: 1709.07411[hep-ex] PRL119 (2017) 242001

CMS :: 2006.11110 [hep-ex]

...

SENSITIVITY TO QGP SIZE AND DELAY TIME

- width of bands obtained from dispersion of results in large number of real size pseudoexperiments

• distance between bands measures diference in quenching for each QGP size and delay time

SENSITIVITY TO QGP SIZE [INCLUSIVE]

SCENARIOS

SCENARIOS :: LIGHT IONS

ACCESSING TIMES

- have a space-time picture of parton branching
- for example, can determine the time the first splitting occurred and look at jet properties as function of that time

Eur.Phys.J.C 84 (2024) 7, 672

• jet reclustering [infer a splitting history by regrouping jet constituents according to a specific ordering variable] allows us to

the earlier a jet starts splitting [the more it splits], the more energy it loses

jets can be used to probe QGP in a time differential way