

HL-LHC and Beyond

Sinead Farrington STFC PPD / U. of Edinburgh

6/7 October 2024

Two Lectures

1) Today: LHC, collider physics, HL-LHC prospects 2) Tomorrow: "Beyond": Future colliders

Now

Sinead Farrington, STFC PPD / U. of Edinburgh

Now…

OVERVIOR OF CITIE EAST FEBRIC

String resonance

Zy resonance

vector mediator ($q\bar{q}$), $g_q = 0.25$, $g_{016} = 1$, $m_Z = 1$ GeV

CMS preliminary 0.5-7.9 1911.0 3947 (2j) 137 fb 36 fb⁻
137 fb 0.35-4.0 1712.03143 (2 μ + 1y; 2e + 1y; 2j + 1y) $1.5 - 8.02106.10509$ (1j + 1y) $0.72 - 3.251808.01257(1j+1\gamma)$ 36 fb⁻ 0.5-3.7 1911.03947 (2j) 137 fb 0.5-7.5 1911.03947 (2j) $\frac{137}{137}$ fb $0.015 - 0.075$ 1911.04968 (3t, $\geq 4t$) $0.108 - 0.341911.04968$ (3*t*, ≥ 4 *t*) 137 fb $0.6 - 1.6$ CMS-PAS-EXO-19-009 (pp + H , pp + γ) 37 fb⁻ 0.0-1.2 CMS-PAS-EXO-22-022 (2(yy)) 137 fb 0.3-2.0 CMS-PAS-EXO-21-017 (($l + p_T^{miss} + \gamma$)) 138 fb 0.2-2.0 CMS-PAS-EXO-23-002 ((SUEPOffline)) 138 fb 0.0-2.13 CMS-PAS-EXO-18-002 (dE/dx) 101 fb 0.0-0.69 CMS-PAS-EXO-18-002 (dE/dx) 101 fb M_{\star}^{\prime} 0.0-1.46 CMS-PAS-EXO-18-002 (dE/dx) 101 fb 0.0-24.0 2103.02708 (2/) 140 fb Λ^*_{LAR} 0.0-36.0 2103.0 2708 (2/) 140 fb **ATLAR** 77 fb⁻ $0.2 - 5.62001.04521(2e + 2j)$ $0.2 - 5.72001.04521(2\mu + 2j)$ 77 fb⁻¹ $0.35 - 0.71911.03761$ ($\geq 3j$) 18 fb⁻ 0.2-1.92 2103.02708 (2e, 2µ) 140 fb 0.5-2.8 1911.03947 (2j) 137 fb 0.0-1.95 2107.13021 ($\geq 1j + p_T^{miss}$) 101 fb 0.2-4.64 2103.02708 (2e, 2µ) 140 fb 0.0-0.29 1901.01553 (0, 1/ + \geq 2j + p^{ptss}] 36 fb⁻ $0.05 - 0.42107.10892$ (0, $1t + \ge 2j + p_T^{\min}$ 137 fb $0.0 - 1.5$ 2107.13021 (≥ 1 j + p^{ms}) 101 fb $0.0 - 0.472107.13021$ ($\geq 1j + p_T^{miss}$) 101 fb $0.0 - 0.31901.01553$ (0, 1/ + $\geq 2j + pT^{(2)}$) 36 fb⁻ $0.05 - 0.42$ 2107.10892 (0, 1/ + \geq 2j + pt^{rss}) 137 fb 0.0-1.54 1810.10069 (4j) 16 fb⁻ $0.0-1.6$ 1908.01713 (h + pmbs) $36 fb$ 1.5-5.1 2112.11125 (2j + p_T^{miss}) 138 fb $0.5 - 3.1$ 1908.01713 (h + pmbs) 36 fb⁻ $0.3 - 0.6$ 1811.10151 (1 μ + 1j + p^{mbs}) $77 fb$ 0.5-2.0 CMS-PAS-EXO-21-007 (pp + yy) 103 fb 0.003-0.08 CMS-PAS-EXO-20-010 (2 displaced μ + $p_T^{\rm miss}$) 137 fb 0.02-0.08 CMS-PAS-EXO-20-010 (2 displaced μ + p_T^{miss}) 137 fb 0.16-0.352 CMS-PAS-EXO-21-012 (1/ + 2j + pr¹²⁵, 2/ + pr¹²⁵) 137 fb 0.08-0.52 1808.03124 (2j; 4j) 36 fb⁻ \overline{M}

RPV stop to 4 quarks

å

March 2024

Why?

Understanding the Universe

Older ….. larger … colder ….less energetic

Sinead Farrington, STFC PPD / U. of Edinburgh **⁷**

Standard Model of Particle Physics

- •Strong, weak and Electromagnetic forces
- •Describes interaction of matter particles by the means of force carrier particles

Goals of Particle Physics

- **Measuring Standard Model parameters precisely**
	- It has 26 free parameters
- **Understanding the generation of mass (is the Higgs mechanism the right answer?)**
- **Searching for new phenomena to rule in or out new theories**
	- Standard Model has some shortcomings
	- Joining up our understanding of the very large (galaxies) with the very small: what is dark matter?
- **CP violation**

The Collider Approach (in the present)

The Energy Frontier

• Mass of new particles that can be produced:

$E=mc^2$

- The larger the collision momentum (energy), the higher the mass of new particles that can be produced
	- And the higher the process cross-section

Particle Collisions

Two particles collide at very high energy New particles are produced which we detect and study

Sinead Farrington, STFC PPD / U. of Edinburgh **¹²**

Proton Proton Collisions

Proton Proton Collisions

• Example production diagrams: top, exotic W'

- Leads to multitude of signatures (leptons, jets...)
- Motivates a *General Purpose Detector* with capabilities for all these particles (ATLAS and CMS)
- Dedicated b-physics detector: LHCb, (Tim Gershon)
- Dedicated heavy-ion detector: ALICE

A Particle Detector

"Onion shell" structure enables reconstruction of particles

Use this capability to reconstruct particle interactions of special interest

The LHC Detectors

Sinead Farrington, STFC PPD / U. of Edinburgh 16

The ATLAS experiment

• **40M readout channels**

• **Finely instrumented tracking detectors, then deep calorimeters then muon chambers, two magnet systems**

Precision silicon tracking

100's millions readout channels

Large scale magnets and muon detection

LHC Collider Upgrades

NEW TECHNOLOGIES FOR THE HIGH-LUMINOSITY LHC

LHC Collider Upgrades

LHC Upgrades

- **~10x instantaneous luminosity**
- **Pile-up of ~200 (c.f. 60 now) at ATLAS/CMS**
- **High Luminosity-LHC detector occupancy would overwhelm existing detectors**
	- Require finer-grained silicon detectors, new tracking detectors

LHC Upgrades

- **Construction work is taking place around the world**
- **All new silicon detectors for ATLAS/CMS**
	- In addition to substantial software developments in data-recording
	- Challenging projects, large scale pixel detector. Much to do!
- **ALICE and LHCb propose upgrades after LS4**

Sinead Farrington, STFC PPD / U. of Edinburgh

CMS upgrades

P. McBride

ATLAS upgrades

New Inner Tracking Detector (ITk)

- All silicon with 9 layers up to $|\eta| = 4$
- Less material, finer segmentation
- Improve vertexing, tracking, b-tagging

New High Granularity Timing Detector (HGTD)

- Precision track timing (30 ps) with LGAD in the forward region
- Improved pile-up separation and bunch-by-bunch luminosity

Calorimeter Electronics

- On-detector/off-detector electronics upgrades of LAr and Tile Calorimeter
- Provide 40 MHz readout for triggering

New Muon Chambers and electronics

- Inner barrel region with new RPCs, sMDTs, and TGCs
- Improved trigger efficiency/momentum resolution, reduced fake rate

Upgraded Trigger and Data Acquisition System

- Single Level Trigger with 1 MHz output (x 10 current)
- Improved DAQ system with faster FPGAs

Additional small upgrades

- Luminosity detectors (1% precision)
- HL-ZDC (Heavy lon physics)

LHCb and ALICE Proposed Upgrades

ALICE: very light tracker LHCb: magnet stations

- MAPS technology PID, calorimetry...
- Enable 20-50xhigher lumi

What is a scientific paper?

- Original work
- Peer-reviewed adversarial process
	- Collaborations have strict internal review processes in addition

PHILOSOPHICAL L E IOVRNAL TRANSACTIONS: **GIVING SOME** DEF ACCOMPT SCAVANS (savants)Undertakings, Studies, and Labours De Lundy V. Janvier M. D.C. L OF THE Barle Saw DE HEDOVVILLE INGENIOUS INMANY CONSIDERABLE PARTS OF THE WORLD Vol 1. For Anno 1665, and 1666. A PARIS. Chez I past Cytinos, rue 5. Jacques, a limage de S. Iean Baptille. In the S A V O T . $\begin{array}{l} \text{linearly T}, \text{ } \text{N}, \text{ for } \textit{Table}~ \textit{Memory} \text{ at the Bell, a linele with} \\ \text{on } \textit{Sample}~ \textit{for} \text{ }, \text{ and } \textit{Game}~ \textit{allowly in } \textit{book}~ \textit{Law} \text{,} \\ \text{Poisons to the } \textit{Log}~ \textit{loop,} \end{array}$ M. DC. LXV. AFIC PRIVILIOS BY ROY. Provinted by the Author May 30th 16 bry.

1665

"Giving some Account of the present Undertakings, Studies, and Labours of the Ingenious in many considerable parts of the World" (Royal Society journal)

Celebrate

- Each paper is the result of the collaboration's work to
	- construct the detector
	- read data out
	- calibrate the data
	- process the data to reconstruct the objects
	- analyse the data…
- Hence large authorship papers **inter-**

Which processes can we probe?

Sinead Farrington, STFC PPD / U. of Edinburgh

Which processes can we probe?: QCD

• **First thing to understand with collisions at a new centre of mass energy: what are the bulk of the collisions and do they look as we would expect, extrapolating from lower energies?**

Which processes can we probe?: QCD

• **First thing to understand with collisions at a new centre of mass energy: what are the bulk of the collisions and do they look as we would expect, extrapolating from lower energies?**

32

Which processes can we probe?: EW

• **Many parameters and processes to explore**

• **Example: WW scattering**

• Significant and delicate test of the Electroweak theory with the Higgs boson at the heart of it – deviation from exact SM Higgs predictions would alter WW cross-section potentially fatally for the SM, but it agrees with predictions so far.

SM prospects

Weak Mixing angle

• **LHCb benefit from forward acceptance**

$$
A_{\rm FB} = \frac{N(\cos \theta^* > 0) - N(\cos \theta^* < 0)}{N(\cos \theta^* > 0) + N(\cos \theta^* < 0)}
$$

ATL-PHYS-PUB-2018-037 LHCb-PUB-2018-013

Effective Field Theory

• **Not a model as such, but an equation with terms additional to the SM, that modify it in specific ways**

$$
\sigma = \sigma_{\text{SM}} + \sum_{j} \frac{C_j}{\Lambda^2} \sigma_j^{\text{dim-6, lin.}} + \sum_{\text{i,j}} \frac{C_j C_j}{\Lambda^4} \sigma_{ij}^{\text{dim-6, quad}} + \sum_{\text{i,j} \text{ of } \text{non-6}} \frac{C_j}{\Lambda^4} \sigma_j^{\text{dim-8, lin.}} + \dots
$$

Standard Model Shortcomings

- Remarkable self-consistency and predictive power... but...
- Couplings of different scales partial unification through Electroweak theory, but not unified with QCD
- Nothing to say about gravity
- (Too?) many free parameters
- Hierarchy problem (difference in scales of fundamental forces)
- Naturalness problem (Higgs mass fine—tuned)
- No dark matter candidate
- ... and so we are driven to look Beyond the Standard **Model**

Dark Matter

Dark Matter

- **There are specific theories**
- **But even better than looking for specific theories:**
	- go and map out the phase space = what can we see (or not)?
		- organise by experimental signature
		- divide the parameter space up into "fiducial volumes" well-defined regions, separated by cuts
		- Say what you saw or didn't see in that region
			- This constrains the theories

A fully testable idea

J. Liu

Dark Matter / BSM in colliders?

Which processes can we probe?: Searches

• **For example, rule out new particles decaying to two leptons up to around 4.5 TeV in mass**

Dark matter candidates at (HL-)LHC

• **SUSY neutralino**

Z' Prospects

Legacy: Cross sections in fiducial regions

Reinterpretation

Exemplar:

Alternative Axis: Lifetime

Sinead Farrington, STFC PPD / U. of Edinburgh

Dark matter candidates at (HL-)LHC

• **SUSY long-lived gluino**

The Higgs b present throughout which gives The more a with the Hig its mass.

SM Higgs Boson Couplings

SM Higgs Boson Couplings

• 2HDM (SUSY) Higgs: h⁰, H⁰: 0⁺⁺; A⁰: 0⁻⁺; H[±]

⁵¹ *^D*^m $2i \frac{M_{\rm V}^2}{\sin(\beta-\alpha)h^0 + \cos(\beta-\alpha)H^0}$ $-i \frac{m_{\rm f}}{v} \left[-\frac{\sin\alpha}{\cos\beta}h^0 + \frac{\cos\beta}{\cos\beta} \right]$ ∕ h,H b h,H $D_{\scriptscriptstyle M} {\sf F}^{\ast}_{1,2} D^{\scriptscriptstyle M} {\sf F}_{1,2}$ + V (${\sf F}_1,{\sf F}_2$) + $D_{\scriptscriptstyle L} Y_{\scriptscriptstyle D} D_{\scriptscriptstyle R} {\sf F}_1$ + $U_{\scriptscriptstyle L} Y_{\scriptscriptstyle D} U_{\scriptscriptstyle R} {\sf F}_2$ *v* $m_{\rm f}$ $\sin \alpha_{1.0}$ $\cos \alpha_{1.0}$ $i\frac{m_f}{\hbar}$ - $\frac{\sin \alpha}{\hbar}$ h⁰ $v \mid \cos \beta$ $\cos \beta$

Sinead Farrington, STFC PPD / U. of Edinburgh

SM Higgs Boson Couplings

Standard Model Agreement with Data

• **Within uncertainties the data agree with the Standard Model**

Sinead Farrington, STFC PPD / U. of Edinburgh

What precision is necessary?

- **SM couplings can be modified by new physics** $\Gamma_{\rm i} = \kappa_{\rm i}^2 \Gamma_{\rm i}^{\rm SM}$
- **Modifications can be small depending on the BSM scenario (Snowmass report)**
	- For new physics at the 1TeV mass scale:

arXiv:1310.8361

• Higher scales imply smaller effects

What did we discover?

Sinead Farrington, STFC PPD / U. of Edinburgh

Cross Section in exclusive regions

Sinead Farrington, STFC PPD / U. of Edinburgh

H→tt **in regions**

Cross Section in exclusive regions

Agreement across three orders of magnitude

Sinead Farrington, STFC PPD / U. of Edinburgh

HL-LHC Prospects: Higgs

Single Higgs Couplings

Di-Higgs

- **Total production cross section is very small ~30fb**
- **Currently set limits on HH production (inclusive of both diagrams)**

Di-Higgs

- **Getting close to SM: both experiments set limits on cross-section at ~2.5 x SM cross-section**
- **Theory systematics: parton shower up to 13%; PDF up to 12%; scale variations up to 8%**

 \rightarrow Uncertainty in κ_{λ} ~ 20% with LHC combination!

But

Technique improvements

Kinematic Distributions

Kinematic distributions

Differential Higgs boson measurements also expected to yield sensitivity to Higgs boson self-coupling \rightarrow combine with HH searches for ultimate sensitivity to κ_{λ}

N. Wardle

 H

^eeeeee^a

Future up to 2040

• **HL-LHC is a major part of our field until 2040 (or until we reach 3ab-1 at ATLAS/CMS)**

The next 1000 papers from the HL-LHC?

- **New triggers are in place to record new signatures, so even with the same LHC run configuration, we can say new things**
- **Higgs boson established, it's the only fundamental spin 0 particle we know of, explore its properties and those of W/Z/top more precisely**
- **Higgs Self coupling?**
- **Map out phase space as far as our ingenuity allows us**

What might we know in 2040?

- **Higgs self-coupling to 20% (if SM value…)**
- **Higgs single couplings to % level (2nd generation to a few %; light quarks? Get smart on that too?)**
- **Top mass to 0.1%?**
- **W mass to a few MeV**
- **pdf constraints improved by several factors**
- **Constraints on event rates for a huge signature phase space**
	- (know which models not to consider…)
- **All this -> EFT fits – hints?**
- **Or something direct and anomalous?**

Some Lessons?

- **Smart ideas make a big difference**
	- Trigger (big gains for di-Higgs and will be existential in HL-LHC)
	- Object identification (AI: big gains in b-tagging)
	- Smart analysis tool (e.g. separate ggF and VBF in di-Higgs)
- **Legacy results should include reinterpretable ones**
- **Hadron colliders can do precision (W mass, weak mixing angle)**
	- And low pt (whole host of QCD spectroscopy)
- **Leaps in sensitivity do happen**
- **Trigger**
	- Turn the "picoscope" to a completely new area of phase space
- **Colliders are complementary to other facilities**

Some questions?

- **In projections we easily assume theory uncertainty improves by factor 2 – how do we get there and is this realistic?**
- What accuracy of κ ₂ will tell us the fate of the **universe?**
- **How would you organize to have a comprehensive set of legacy measurements in ~2040?**