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Beyond HL-LHC?

 Experiment-led: notwithstanding huge theoretical
developments both in precision and in model-
building

* Future Colliders (FCC/ILC/CLIC/CepC/Muon/eh)

Last European strategy update 2020 (paraphrase):
1) next collider should be e+e-

2) And we should work on magnet technologies to enable an
energy frontier collider

Snowmass (US): supports activity to prepare for future energy
frontier colliders; also supports “Higgs factory” from 2035.
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LHeC
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LHeC

~olli Outline

Log(ep=>HX)

The eh programmes of LHC and FCC are designed to operate synchronously with hh
Interesting physics programme on its own and synergic:

= PDFs, strong coupling constant, low-x measurements
= W mass, top mass, on other precision measurements in EWK and Top sectors
= Higgs measurements with additional sensitivity = precision higgs facility together with LHC

= Searches for new physics, including prompt and long-lived new scalars from Higgs, SUSY
particles, neavy neutrinos, dark photons and axions

= High-energy and high-density measurements of heavy ion collisions

- the LHeC(FCC-eh) will contribute to the main objectives of the HL-LHC(FCC-hh),
empowering its programme and bringing in more variety

Some key examples in the following

much more in CDR https://arxiv.org/abs/2007.14491, https://cds.cern.ch/record/2729018/files/ECFA-Newsletter-5-
Summer2020.pdf, Eur. Phys. J. C (2022) 82:40, FCC CDR: EPJC 79, no. 6, 474 (2019) , Phys Eur. Phys. J. ST 228, no. 4, 755 (2019)
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LHeC

Collision energy above the threshold for EW/Higgs/Top

DIS Higgs Production Cross Section = the real game Change between HERA
and the LHeC/FCC-eh

Log(ep=>HX)

1000
LHeC fo
- 200/
o HERA 200,000 H’s

compared to proton collisions, these are
reasonably clean Higgs events with much
5 less backgrounds

assuming unpolarized electron beams at EIC and

5 HERA, versus polarized (P=-0.8) at LHeC and FCC-eh at these energies and luminosities, interactions
0 ! £ e eaergy /Te\‘} with all SM particles can be measured precisely
3 Monica D'Onofrio, ES UK 2024 24/9/24
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LHeC
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Charged Currents: ep = vHX
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Colliders
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The e+e- Physics Program
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e+e- Collider

FCCAnalyses: FCC-ee Simulation (Delphes)

ILC/CLIC/FCCee/CepC/HALHF 3 T

Rich program of Higgs/W/Z/Top o s e
physics Pl e m:
Choice of CoM energy ¥ e '

Higgs width, Higgs coupling to
second generation

(What about first generation?)
GigaZ program

./\
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Linear collider: polarized beams, lower instantaneous
luminosity, upgradeable with length extension

Circular collider: unpolarized beams but higher
Instantaneous luminosity, not so easily upgraded
(though can step through energies well). Reuse the
tunnel for a high energy proton-proton collider
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arXiv:2206.0832¢

ete- Sclence

Energy/Lum upgraded e+e-

precision reach on eﬂ‘ectlve couplings from SMEFT global f|t | "Higgefactory” etar |
MHL-LHC S2 4 LEP/SLD B CEPC Z;00/WW, ﬂ240G Vag M CLIC 380GeV R
arice) | M CEPG +360GeV IH_C +350GeV; 2+500GeV, lcuc 1.5TeV, .M C1 LHC followed by HL LHC
F HWdlh MIC +1TeVs  VwiGiga -z -CLIC +3TeVs W MuC 1ZSGeV 2+10TeV 1o Today 2040 ~2050-55 Time
nofH exotic decay subscripts denote luminosity inab™', Z & WW denote Z-pole & WW threshold

Higgs couplings

IM a1

i“ Mi h” 10 A wide programme:
¢ [LCX —e.g. beam-dump

m wo e e experiments, dark sector
£ ‘ ‘ w ‘ ‘ m l R physics, light dark matter,
i 6617 o9t e
e+e- colliders show very comparable
performance for single-Higgs program, despite » Higher energies:
quite different assumed integrated luminosities Improved Higgs, extended
=> |longitudinal beam polarization an important models, top well above
factor for LCs threshold with
» several couplings at few-0.1% level: Z, W, g, b, 1 polarization, new physics
e some more at ~1%: vy, c searches and

measurements
« Z running also possible
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https://agenda.linearcollider.org/event/9211/overview
https://arxiv.org/abs/2206.08326
arxiv:2206.08326

Higgs Physics In e+e-
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>1 million ZH events
~100000 WW fusion

Large rates, no pile-up or underlying event
No QCD background

Some model-dependence can be removed as a result and
because of the possibility to measure absolute rates
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Higgs Physics In e+e-

FCC-ee simulation Vs =240 GeV, 5ab "’
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Z observed through leptonic decay
Recoil mass off the Higgs can be reconstructed
Precise ZH production cross-section

Therefore quasi model-independent extraction of the
Higgs total width

Sinead Farrington, University of Edinburgh
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Higgs Physics In e+e-

o 5X1012 Z bosons at Z p0|e Quantity current | ILC250 | ILC-GigaZ FCC-ee
L. Aa(mz)~" (x103) | 17.8* 17.8* 3.8 (1.2)
° EW preC|S|On prog ram Amy (MeV) 127 | 0.5 (2.4) 0.25 (0.3)
o Amyz (MeV) 21 | 0.7 (0.2) 0.2 0.004 (0.1)
° Amy (MeV) 170* 14 2.5 (2)
Sensitivity for BSM effects e B b
° I ATz (MeV) 2.3 | 1.5(0.2) 0.12 0.004 (0.025)
Flavour phySICS AA, (x10%) 190* | 14 (4.5) 1.5 (8) 0.7 (2)
AA4,, (x105) 1500* | 82 (4.5) 3 (8) 2.3 (2.2)
AA, (x10°) 400* | 86 (4.5) 3(8) .5 (20)
AAy (x10%) 2000* | 53 (35) 9 (50) 4 (21)
AA, (x10%) 2700% | 140 (25) | 20 (37) 20 (15)
Particle production (10°) B° / B’ Bt /B~ BY/ E‘j Ay /Ay ce T /7t ? 17.85 -
Belle 11 27.5 27.5 n/a n/a 65 45 =
FCC-ee 300 300 80 80 600 150 17.80-
17.75 —
17.70 —
Lepton universality with
m,=1776.86 + 0.12 MeV
17.65 - |
289 290 291

T lifetime [fs]

Sinead Farrington, University of Edinburgh 14



Top Physics In et+e-

e
« tf threshold scan will enable most precise T oal S
measurements of top-quark mass and width. § 2_2-_§::::;§:;;3_-5565:V
» Precise measurements of top quark EW couplings ) ik
provide essential input to precise extraction of top  °3.
yukawa at FCC-hh. -
0:34‘,0‘ H ‘3415‘ H ‘35‘,0‘
(s [GeV]
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Electroweak Precision In ete-

Quantity current | ILC250 | ILC-GigaZ FCC-ee CEPC CLIC380
Aca(mz) 1 (x10%) | 17.8* 17.8* 3.8 (1.2) 17.8*
Amw (MeV) 12* 0.5 (2.4) 0.25 (0.3) 0.35 (0.3)
Amyz (MeV) 2.1* 0.7 (0.2) 0.2 0.004 (0.1) 0.005 (0.1) 2.1*
Ampg (MeV) 170* 14 2.5 (2) 5.9 78
Al'y (MeV) 42* 2 1.2 (0.3) 1.8 (0.9)
Al'z (MeV) 2.3* 1.5 (0.2) 0.12 0.004 (0.025) | 0.005 (0.025) 2.3%
AA, (x107) 190* 14 (4.5) 1.5 (8) 0.7 (2) 1.5 (2) 60 (15)
AA, (x10°) 1500% | 82 (4.5) 3 (8) 2.3 (2.2) 3.0 (1.8) 390 (14)
AA; (x10°) 400" 86 (4.5) 3 (8) 0.5 (20) 1.2 (20) 550 (14)
AAy (x10°) 2000* 53 (35) 9 (50) 2.4 (21) 3 (21) 360 (92)
AA. (x10%) 2700* | 140 (25) 20 (37) 20 (15) 6 (30) 190 (67)
Ao 4 (pb) 37" 0.035 (4) 0.05 (2) 37
OR, (x103) 24> 0.5 (1.0) | 0.2 (0.5) 0.004 (0.3) 0.003 (0.2) 2.5 (1.0)
6R, (x10°) 1.6* 0.5 (1.0) | 0.2 (0.2) 0.003 (0.05) 0.003 (0.1) 2.5 (1.0)
SR, (x10%) 2.2% 0.6 (1.0) | 0.2 (0.4) 0.003 (0.1) 0.003 (0.1) 3.3 (5.0)
SRy (x103) 3.1* 0.4 (1.0) | 0.04 (0.7) | 0.0014 (< 0.3) | 0.005 (0.2) 1.5 (1.0)
OR.(x10%) 17* 0.6 (5.0) | 0.2 (3.0) 0.015 (1.5) 0.02 (1) 2.4 (5.0)

Sinead Farrington, University of Edinburgh
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BSM sensitivity

Snowmass 2021: Energy Frontier Collider Sensitivities
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Collider Type NZ) P[%] L
e~ /et | ab”! /IP
HL-LHC  pp 14 TeV 3
ILC & C® ee 250 GeV | £80/ £+ 30 2
350 GeV | 80/ £ 30 0.2
500 GeV | £80/ £ 30 4
1TeV | £80/+20 8
CLIC ee 380 GeV +80/0 1
CEPC ee Mz 50
2Mw 3
240 GeV 10
360 GeV 0.5
FCC-ee ee My 75
2Mw 5
240 GeV 25
2 Miop 0.8
p-collider — pp 125 GeV 0.02

ooooooo0000004 ~/s/2
..... R R R DR ~Vsi2
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ILCO0.5TeV,4ab "' X CEPC0.24TeV, 10ab '
B= ILC1TeV,4ab ' [Ff] FCC-ee 0.35TeV, 12.6ab '
Il LC Indirect Limits §@&% Muon 10 TeV, 10ab '

Wl cLic3Tev,5ab" g

— LHC Limits
. Range of estimates

"] HL-LHC 14 TeV, 3ab '
HE-LHC 27 TeV, 15ab '
[/] FCC-hh 100 TeV, 30 ab '

"4 Muon 30 TeV, 10ab '

Sinead Farrington, University of Edinburgh
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FUTURE

CIRCULAR FCC Integrated Programme

COLLIDER

comprehensive long-term program maximizing physics opportunities
stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities

stage 2. FCC-hh (~100 TeV) as natural continuation at energy frontier, pp & AA collisions; e-h option

highly synergetic and complementary programme boosting the physics reach of both colliders (e.g. model-independent
measurements of the Higgs couplings at FCC-hh thanks to input from FCC-ee; and FCC-hh as “energy upgrade” of FCC-ee)

common civil engineering and technical infrastructures, building on and reusing CERN’s existing infrastructure

Azimuth = -10.2°

————————

Injection into collider

Technical site
PL.

LSS =2160 m Technical site

LSS = zweom B
3 Beam dump

Booster RF ~

FCC ee

Arc length = 9616. 556\7:

(Optional §88=1400m | (gptional
Experiment Experiment
site) site)

- g g
s Schematic of an
g 80-100 km

s long tunnel

’

Technical sité:
PH

Betatron &
momentum
PG (Experiment site) collimation

Collider RF

Higgs self-coupling determined to 5%

ated prOJect allows the start of a new, major facility at CERN within a few years of the end of HL-LHC

transfer lines proposed to be
installed inside FCC-hh ring tunnel

Technical site
PB Beam dump

. Fce- hh

Arc length = 96]6555\1'\

(Secondary P $55=1400m | (Seconda
aaaaaaa t experimes

®
22

N
LSS =2160m [J ;chhml:al site

/
Technical site
Pn O(LSS =2160m

Momentum
collimation

Betatron collimation

PG (Experiment site)

2074 -

F. Zimmerman
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What about Detector Technology

£y CERN-ESU-017

v N 5
& 5 &
F £ &
4 S e o &
Fs FFan )
Sesifsy F £
Fsfiddsd Ff g
PSS F 5O Fs N
FEFLoFg IS § S5 @ S
FEET T $e0888EES
& &S TPI eI FEISILTEEELS
DRDT 2030 2035- >2045
< 2030-2035 2040 2040-2045
Rad-hard/longevity 11 o [ X ] [ ] ® 00
Muon system Time resolution 11 L J [ J
Proposed technologies: Fine granularity 11 @ @ o0 @ [ ] [ ]
RPC, Mult-GEM. resisiive GEM.  Gias properties (eco-gas) 13 [ .
Micromegas, micropixel
Micromegas, iRwel, LPIC .. Spatial resolution 11 @ @ o0 [ ] ® 00
Rate capability 13 @ @ o0 [ ) ® o0
Rad-hard/longevity 11 @0 @ L] [ ]
Inner/central Low X, 2 900 o [ . [ .
tracking with PID IBF (TPC only) 12 @@ 9000
Proposed technologies: Time resolution 11 ([ ] o [ ]
e i e sl Rte capability 3 e e 4 e Ce
layers of MPGD, straw chambers g E/dx 12 @ o
Fine granularity 11 @ [ ] ( ] 2900 0
Rad-hard/longevity 11
h:h.nwlfl Low power 11
Calorimeters Gas properties (eco-gas) 13 o000
Proposed technologies: Fast timing 11
, MRPC, Micromegas
GEM.uRweIHnCﬂ_:Img‘_Egmed Fine granularity 11 00
e e son i Rate capability 13
Large array/integration 13 000
Rad-hard (photocathode) i1 @ ®
Particle ID/TOF IBF (ﬁlCﬂ ‘?n|Y) 12 00 [ J
roposed techmologies: Precise timing 11 [ ] o
RAICH+MPGD, TRD4MPGD, TOF: - Rate capability 13 [ ] [ ]
MRPC, Picosec, FTM
dE/dx 12 L d
Fine granularity 11 [ ] )
Low power 14 . ‘ ‘
Fine granularity 14 o000 [ X ]
TRC for rare decays Large array/volume 14 [ . .
?;'a‘l%‘?é&';‘&:!iﬁ?;mm Higher energy resolution 14 L J . . . .
low {0 very high pressure) Lower energy threshold 14 [ KX ] o0
Optical readout 14 . . . .
Gas pressure stability 14 [ ] . .
Radiopurity 14 o090 o0
.Musl happen or main physics goals cannot be met . Important to meet several physics goals Desirable to enhance physics reach @ R&D needs being met

1) Large ton dual-phase (PandaX-4T, LZ, DarkSide -20k, Argo 200k, ARIADNE, ...
2) Light dark matter, solar axion, Onbb, rare nuclei8ions and astro-particle reactions, Ba tagging)
3) R&D for 100-ton scale dual-phase DM/neutrino experiments

Sinead Farrington, University of Edinburgh
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Linear Colliders
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(Polarised Beams)

One advantage of linear e"e™ colliders is the opportunity to exploit
beam polarization which can benefit precision SM measurements and
BSM searches. Baseline design of ILC assumes 80% longitudinal
polarization of electron beam and 30% polarization of positron beam.

ORR

oLl

ORL

OLR

«— only from RL, LR

+«— only from LL, RR

e~ et
[ ]
é |é 1+Pe— 1+Pg+
2 2 J
.=0
- -— 1-P _ . 1-P +
2 2
L i = 1+Pe_ . 1_P3+ .
2 2 J 1
- =
: > » 17Pe_ . 1+Pe+
2 2

R depends on P.+

a
iy, Zor Z' b = helicity of ¢~ not coupled
with helicity of e™
e c

v depends on F.-

Enhance cross-section for
SM vector-boson production
OR suppress backgrounds
in search for scalars.

For t/u-channel exchanges,
helicities of incoming beams

directly coupled to helicities
of outgoing particles.

S. Willlams
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e [ e |
em | Parameters
C.M. Energy 250 GeV
Length 20km
Luminosity 1.35x103% cmZs"
Repetition 5Hz
8,000 1.3GHz Beam Pulse Period 0.73ms
e- Main Linac SRF cavities @ 2K Beam Current 5.8 mA (in pulse)
Beam size (y) at FF 7.7 nm@250GeV
e+ Source SRF Cavity G. :(i;SSMI\c/\//r/nrr)r
Physics Detectors Q, Qy=1x1010

Beam delivery system (BDS)
e- Source

e+ Main Linac

« Cost ~$5B(2010) UPDATE IN PROGRESS
- Power ~111 MW  FOR EPPSU MARCH 25

Sinead Farrington, University of Edinburgh
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The Compact Linear Collider (CLIC)

» Timeline: Electron-positron linear collider at
CERN for the era beyond HL-LHC

ORIVE BEAM INJECTOR + Compact: Novel and unique two-beam
accelerating technigue with high-gradient room
temperature RF cavities (~20’500 structures at
~~._BYPASS TUNNEL

T oo 380 GeV), ~11km in its initial phase
MN BEAM INJECTOR

DAMPING RINGS * Expandable: Staged programme with collision
energies from 380 GeV (Higgs/top) up to 3 TeV
(Energy Frontier)

DRIVE BEAM LOOPS

~.._DRIVE BEAM DUMPS

* CDR in 2012 with focus on 3 TeV. Updated
project overview documents in 2018 (Project
Implementation Plan) with focus 380 GeV for
Higgs and top.

TURN AROUND

Accelerating structure
prototype for CLIC: 12 GHz
(L~25 cm), 100 MV/m

S. Stapnes

29.11.
Sinead Farrington, University of Edinburgh 3




Yyye,.
= ) .-

CLIC to 3 TeV

Table 1.1: Key parameters of the CLIC energy stages.

?:“’.‘:., o oty . S — Parameter Unit Stage 1 Stage 2  Stage 3
e ) Sy R — e — Centre-of-mass energy GeV 380 1500 3000
(PQMW (W’ , W’ ’HW D ‘W) ‘W) [m‘){“(‘i e — S Repetition frequency Hz 50 50 50
- - — S ) = Nb. of bunches per train 352 312 312
it — Bunch separation ns 0.5 0.5 0.5
i H : H Pulse length 244 244 244
_— &) o e Npo Extend by extending main linacs, tee ene =
- m——a . . Accelerating gradient MV/m 72 72/100  72/100
- o increase drivebeam pulse-length == Rt 23 37 5o
e =T . and power, and a second Lum. above 9% of /s 1x10¥cem~2s! 1.3 14 2
d . b t t t 3 T V Total int. lum. per year b=t 276 444 708
rnvebeam to ge 0 € Main linac tunnel length km 114 29.0 50.1
\AA LT ,./“y.m C i Nb. of particles per bunch  1x10° 5.2 3.7 3.7
[ («({((« il { Vo oreng Bunch length um 70 44 44
5T BobmcUCI00 IP beam size nm 149/2.0 ~60/1.5 ~40/1
Final RMS energy spread % 0.35 0.35 0.35
Crossing angle (at IP) mrad 16.5 20 20

The CLIC accelerator studies are mature:

» Optimised design for cost and power

* Many tests in CTF3, FELSs, light-sources and test-
stands

» Technical developments of “all” key elements

S. Stapnes



New J. Phys. 25 093037 (2023)

HALHF

Hybrid, Asymmetric, Linear Higgs Factory

based on plasma-wakefield (electrons) and radio-frequency acceleration
(positrons)

Plasma-wakefield aim: orders of magnitude higher accelerating gradients

Facility length: ~3.3 km
. L Turn-around loops
Positron Damping rings . (31 GeV e*/drivers)
source (3 GeV) Driver source,

Interaction point

RF linac (5 GeV) RF linac Electron
(250 GeV c.o.m.) - > (5-31 GeV e/drivers) source
- [ 22221 B 2222200000000 0000000000000 000022002022 222000 e

B

RF linac
. . Beam-delivery system _ ; K
eam-delivery system Positron transfer line (500 GeV &) Plasma-accelerator linac (5 GeVe)

with turn-around loop (31 GeVe’) \1G:tages; -5 GeV perstgs)
(81 GeV e*) | ’

Scale: 500 m
Smaller, cheaper than other linear colliders
Has technological challenges to overcome, and demonstrate
Novel technology — scalable

Will yield asymmetric collisions
Aim for same program as ILC/CLIC
Could be seen as an upgrade to ILC/CLIC

Sinead Farrington, University of Edinburgh 25



Future Circular Collider
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FUTURE

circuLar  European Strategy for Particle Physics

COLLIDER

2013 Update of European Strategy for Particle Physics:

“CERN should undertake design studies for accelerator projects in a global context, with
emphasis on proton-proton and electron-positron high-energy frontier machines.”

- FCC Conceptual Design Reports (2018/19)

& ST ST EP] |
Wi o B B ) Vol 1 Physics, Vol 2 FCC-ee, Vol 3 FCC-hh, Vol 4 HE-

Particles and Fields Special Topics Special Topics Special Topics

CDRs published in European Physical Journal C (Vol 1)
and ST (Vol 2 -4)

| EPJC 79, 6(2019) 474 , EPJ ST 228, 2 (2019) 261-623,
EPJ ST 228, 4 (2019) 755-1107 , EPJ ST 228, 5 (2019) 1109-1382

2020 Update of European Strategy for Particle Physics:

“Europe, together with its international partners, should investigate technical and financial
feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV
and with an electron-positron Higgs and electroweak factory as a possible first stage.”

F. Zimmerman

Sinead Farrington, University of Edinburgh


https://link.springer.com/article/10.1140/epjc/s10052-019-6904-3
https://link.springer.com/article/10.1140/epjst/e2019-900045-4
https://link.springer.com/article/10.1140/epjst/e2019-900087-0
https://link.springer.com/article/10.1140/epjst/e2019-900088-6

( ) oircliar FCC Feasibility Study (2021-2025): high-level objectives

COLLIDER

O demonstration of the geological, technical, environmental and administrative feasibility of the tunnel and surface areas
and optimisation of placement and layout of the ring and related infrastructure;

O pursuit, together with the Host States, of the preparatory administrative processes required for a potential project
approval to identify and remove any showstopper;

U optimisation of the design of the colliders and their injector chains, supported by R&D to develop the needed key
technologies;

U elaboration of a sustainable operational model for the colliders and experiments in terms of human and financial resource
needs, as well as environmental aspects and energy efficiency;

U development of a consolidated cost estimate, as well as the funding and organisational models needed to enable the
project’s technical design completion, implementation and operation;

U identification of substantial resources from outside CERN’s budget for the implementation of the first stage of a possible
future project (tunnel and FCC-ee);

O consolidation of the physics case and detector concepts for both colliders.

Results will be summarised in a Feasibility Study Report to be released at end 2025

F. Gianotti

F. Zimmerman

Sinead Farrington, University of Edinburgh



= Q FINANCIAL TIMES
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Why we need Cern’s €16bn atom smasher

The Future Circular Collider could unlock some of the secrets of the universe

THE EDITORIAL BOARD + Add to myFT

But the promise of technological spin-offs is very much a secondary
justification. The reason to invest in the FCC is to gain fundamental knowledge
about the way the universe works. This will be rewarding in a cultural or
philosophical sense. It may also pay off practically in the far future through
applications we cannot foresee today — just as 21st-century technology in fields
from computing to satellite navigation depends on an understanding of
quantum theory and relativity, whose foundations were laid by pioneering
physicists almost a century ago.

LR
ATLAS is one of two general-purpose detectors at the Large Hadron Collider © CERN

Sinead Farrington, Univer The editorial board FEBRUARY 9 2024 [ 2 =



Multi-TeV Collisions
1) FCChh
2) Muon Collider

Sinead Farrington, University of Edinburgh
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Hadron Collider

Rich program of Higgs/W/Z/Top physics
Search capability
Probe up to ~40 TeV directly

Higgs self-coupling (only a ~1-3 TeV scale ee collider
can compete)

Technologically challenging: accelerator magnets,
detector occupancy and readout —see HL-LHC
detectors, pileup of ~1000 vs 200 (HL-LHC) vs 60 (LHC)

Sinead Farrington, University of Edinburgh



FCChh New physics
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Chargino mass [GeV]
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Cover full mass range for discovery of WIMP dark

matter candidates

Formidable challenges:

U high-field superconducting magnets: 14 -20 T

O power load in arcs from synchrotron radiation: 4 MW = cryogenics, vacuum
Q stored beam energy: ~ 9 GJ - machine protection

U pile-up in the detectors: ~1000 events/xing

O energy consumption: 4 TWh/year - R&D on cryo, HTS, beam current, ...

FCC-hh Simulation (Delphes), s = 100 TeV
B A L B L o e

50 z{)iscoveryz

e — 1t : - 25ab”
W 30 ab’
00 ab™

T o - 100 ab

Ly = 1T - i i |
R | TN I T T I S W
0 10 20 30 40 50

Mass scale [TeV]

Substantial discovery reach for
heavy resonances

Formidable physics reach, including:

O Direct discovery potential up to ~ 40 TeV

O Measurement of Higgs self to ~ 5% and ttH to ~ 1%

O High-precision and model-indep (with FCC-ee input)
measurements of rare Higgs decays (yy, Zy, HJ)

O Final word about WIMP dark matter

F. Glanotti

Sinead Farrington, University

of Edinburgh



Higgs Self-Coupling

 Obtainable from hadron collider or from highly
upgraded linear colliders

collider Indirect-h hh combined
HL-LHC [40] 100-200% 50% 50%
ILCa50/C?-250 [31, 33] 49% - 49%
ILCs00/C?-550 [31, 33] 38% 20% 20%
ILC1000/C?-1000 [31, 33] 36% 10% 10%
CLIC380 [35] 50% — 50%
CLIC1500 [35] 49% 36% 29%
CLIC3s000 [35] 49% 9% 9%
FCC-ee [36] 33% — 33%
FCC-ee (4 IPs) [36] 24% — 24%

(100 TeV) rcc-hh [41] _ 3.4-7.8%  3.4-7.8%

(3 TeV) [39] - 15-30% 15-30%
(10 TeV) [39] - 4% 4%

Sinead Farrington, University of Edinburgh 33



Study of FCChh energies J-Howa

NLO cross-section [pb]

104 p

103 E

102 4

101 4

100 4
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——
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1024

cross-section [pb]

100 -
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Energy for order of

magnitude increase

in xsec, relative to
LHC:

tt: 50 TeV (FCChn)
ttZ: 50 TeV (FCChn)
ttW: 70 TeV (FCChn)

- Zttvovp‘ g tttt: 27 TeV (HE-LHC)
L ] I ' = 9I-ponnt scale vanatnf:ns 2X 70 TeV (FCChh)
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Energy for order of

—— ggF (NNLO+NNLL QCD + NLO EW)
~— VBF (NNLO QCD)

—— VH (NNLO QCD)

—— ttH (NLO QCD)

—— HH

20 40 60 80 100
proton-proton collision energy [TeV]

magnitude increase
in xsec, relative to
LHC:

ggF: 70 TeV (FCChn)
VBF: 65 TeV (FCCnn)
VH: 80 TeV (FCChn)

ttH: 35 TeV (HE-LHC)
HH: 45 TeV (FCChn)

Sinead Farrington, University of Edinburgh



FCChh CDR Higgs Couplings

Observable Parameter| Precision| Precision
(stat) | (stat+syst+lumi)
u=o(H) x B(H— ~v) o/ 0.1% 1.45%
p=oc(H) x BH—-pup) o/ 0.28% 1.22%
u=oc(H) x B(H— 4u) o/ 0.18% 1.85%
u=o(H) x B(H— yuu) o/ 0.55% 1.61%
p = o(HH) x B(H—~vy)B(H—bb) OA/A 5% 7.0%
R = B(H—pu)/B(H—4p) OR/R 0.33% 1.3%
R = B(H—~vv)/B(H— 2e2u) OR/R 0.17% 0.8%
R = B(H—~~)/B(H— 2pu) 0R/R 0.29% 1.38%
R = B(H—ppy)/B(H—pp) dR/R 0.58% 1.82%
R = o(ttH) x B(H— bb) /o (ttZ) x B(Z— bb) SR/R 1.05% 1.9%
B(H— invisible) B@95%CL| 1x10~* 2.5 x 10~*

CDR=Conceptual Design Report

Sinead Farrington, University of Edinburgh
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Experiment/Theory exchange

 Whatever is built next requires joined up approach to
understanding where limiting systematics will be

e Calculating extreme precision is less useful where
experimental uncertainties are going to be large

Sinead Farrington, University of Edinburgh



Magnets

e Limits: Critical , Critical B field, Critical S. Gibson

- remember: typically coil-dominated magnets

* Materials: NbTi (LHC current), Nb;Sn (HL-LHC,
FCC-hh)

- Nb;Sn supports ~2x maximum B, but more costly

CIRCULAR R&D on HTS high-field magnets

COLLIDER

* High Temperature Superconductors: an enabling technology for high field (>
15 T) magnets - a sustainable opportunity for future accelerator technology

* Focus of the LDG Accelerator R&D Roadmap is presently on REBCO, but
alternative options are also considered (IBS as in China)

* To exploit the potential, a rigorous R&D program is required

* R&D on conductor is essential for subsequent successful implementation in
HTS magnets. This requires:

* reaching controlled, homogeneous and reproducible properties on industrially available
conductor;

* achieving long (~ 1 km) lengths of industrially available conductor;
* innovation via development of high-current cables;

* validation of the technology via a parallel programme of small demonstrator coils; this is
needed to provide feedback to conductor R&D and to support/launch magnet design and
development

m Michael Benedikt and Frank Zimmermann, CERN

Sinead Farrington, University of Edinburgh 37




Muon Collider

Sinead Farrington, University of Edinburgh
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Muon Collider Technology

Synchroton radiation 2Bn times less than electron

E4
P }/4:(_)
m

However muon lifetime is only 2.2us
Smaller energy consumption than ee, smaller footprint
Looking towards demonstrator facility

Significant technical challenges
But an exciting possibility for 10 TeV

Muon Collider

>10TeV CoM
~10km circumference

M Injector

¥
-----------------------------------------

4 . Target, wDecay u Cooling e
i Proton & uBunching Channel  pAcceleration
* Source Channel :

.....................................................................

Sinead Farrington, University of Edinburgh
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A unique facility

To give insight on fundamental questions:

* Higgs potential
* Precision H couplings

10TeV ™, Liyy = 10ab !

107 ¢
10¢

10 4\ 10
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events
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High energy lets us finally improve on Higgs Potential

HL-LHC

* Very high energy-scale BSM
* And many many more!

Ke

1
Ky Kz x X Ky K

Ky x,
II " |
X A

10

IL‘

*u

[0rx| [%)]

18
16

14+

12
10

(== N =2 o)

CLIC

FCC-hh |
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Note that we can get to threshold for EW phase
transition at EW scale with FCC-hh and ;Col

Patrick Meade P5 BNL Town Hall Meeting

10 TeV xCol

k-0 | HL- |LHeC|HE-LHC ILC CLIC CEPC| FCC-ee |FCC-ee/ ,u*;f
fit [LHC S2 82’ [250 500 1000 | 380 1500 3000 240 365 eh/hh |10000
kw | 1.7 1 0.75 [1.4 0.98 | 1.8 0.29 0.24|0.86 0.16 0.11| 1.3 | 1.3 0.43| 0.14 0.11
kz | 15| 1.2 |1.3 0.9 |0.290.23 0.22] 0.5 0.26 0.23| 0.14 |0.20 0.17| 0.12 0.35
kg |23 | 3.6 |1.9 1.2 |23 097 066 2.5 1.3 0.9 1.5 |1.7 1.0 0.49 0.45
Ky | 19| 76 [1.6 1.2 (6.7 3.4 1.9 |98x 50 22 3.7 |47 39 0.29 0.84
Kz~| 10. — |5.7 3.8 |99% 86% 85% [120% 15 6.9 | 82 |81x 75« 0.69 5.5
Ke | — 41 |- - [25 1.3 09|43 18 14 22 |18 13 0.95 1.8
ke | 3.3 — 12.8 1.7 — 6.9 1.6 — - 2.7 — — — 1.0 1.4
ky | 3.6 | 21 (3.2 2.3 (1.8 0.58 048 1.9 0.46 0.37| 1.2 |1.3 0.67| 0.43 0.24
Ky | 4.6 — 126 1.7 |15 9.4 6.2 |320x 13 5.8 8.9 10 89 0.41 29
k- |19 33 [1.5 1.1 |1.9 0.70 0.57| 3.0 1.3 0.88| 1.3 |1.4 0.73| 0.44 0.59
Matthew Forslund and Patrick Meade
8

Jorge De Blas et al.

Sinead Farrington, University of Edinburgh



Muon Collider

A high-energy muon collider would also be a vector-boson collider=> direct BSM and

providing "Higgs factory” (see next slide)

Sy
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____________________________ MuC 3 TeV
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ettt ]
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Above: exclusion for scalar
singlet mixing with Higgs
Left: comparison of HL-LHC
(solid), FCC (shaded) and
tentative muon collider reach
at 10, 14, 30 TeV (lines)

Sinead Farrington, University of Edinburgh
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Jaﬁan

China

CERN

USA

Future Collider Timelines?

rin

B Pproton collider
B Electron collider
B Muon collider

2038 start physics
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FCC Feas

ibility Study

Advanced

Status of FCC feasibility study: mid-term review

For more details see

* Mid-term review just completed
(approval by council soon).

+ Key updates:

* Choice of ring placement and 4
IPs (higher statistics).

» Adaptation of accelerator RF/
optics for new placement
(details in backup).

 Significant R+D ongoing to
improve energy efficiency
(including HTS).

by S. Williams at CEPC workshop.
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Beyond...

 Beyond Colliders
SHIP will happen — sensitivity to many BSM signatures
Dark matter experiments will happen
Quantum technology is there
- And ripe for a strategic internationalized set of experiments
DUNE/HyperK are underconstruction
Muon experiments...

 The field has a multi-pronged approach to
understanding the nature of fundamental
Interactions

We are well-equipped to delve deeper into how these work, and
a complementary set of approaches best builds-on (and
preserves) the knowledge we have achieved to date

Sinead Farrington, University of Edinburgh
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What we don’t know

Nature of neutrinos
Mass hierarchy of neutrinos

CP violation (how did the universe come to be
matter-dominated?)

Is there only one Higgs boson?

Is supersymmetry realised in nature?
Why three generations?

Nature of dark matter

...which questions to ask?

Sinead Farrington, University of Edinburgh
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Discussion questions

 Which parameter do you most want to measure and
why?
 Which three?

Sinead Farrington, University of Edinburgh

46



