Lecture 2: HL-LHC and Beyond

Sinead Farrington STFC PPD / U. of Edinburgh

Beyond HL-LHC?

- **Experiment-led: notwithstanding huge theoretical developments both in precision and in modelbuilding**
- **Future Colliders (FCC/ILC/CLiC/CepC/Muon/eh)**
	- Last European strategy update 2020 (paraphrase):
	- 1) next collider should be e+e-
	- 2) And we should work on magnet technologies to enable an energy frontier collider
	- Snowmass (US): supports activity to prepare for future energy frontier colliders; also supports "Higgs factory" from 2035.

Colli Outline

 $\overline{4}$

The eh programmes of LHC and FCC are designed to operate synchronously with hh Interesting physics programme on its own and synergic:

- PDFs, strong coupling constant, low-x measurements
- W mass, top mass, on other precision measurements in EWK and Top sectors
- \blacktriangleright Higgs measurements with additional sensitivity \rightarrow precision higgs facility together with LHC
- Searches for new physics, including prompt and long-lived new scalars from Higgs, SUSY particles, neavy neutrinos, dark photons and axions
- High-energy and high-density measurements of heavy ion collisions

\rightarrow the LHeC(FCC-eh) will contribute to the main objectives of the HL-LHC(FCC-hh), empowering its programme and bringing in more variety

Some key examples in the following

much more in CDR https://arxiv.org/abs/2007.14491, https://cds.cern.ch/record/2729018/files/ECFA-Newsletter-5-Summer2020.pdf, Eur. Phys. J. C (2022) 82:40, FCC CDR: EPJC 79, no. 6, 474 (2019), Phys Eur. Phys. J. ST 228, no. 4, 755 (2019)

Monica D'Onofrio, ES UK 2024

 $24/9/24$

3

Collision energy above the threshold for EW/Higgs/Top

3

Monica D'Onofrio, ES UK 2024

= the real game change between HERA and the LHeC/FCC-eh

compared to proton collisions, these are reasonably clean Higgs events with much less backgrounds

at these energies and luminosities, interactions with all SM particles can be measured precisely

 $24/9/24$

$δμ/μ$ [%]

Colliders

Adapted from S. Williams

The e+e- Physics Program

e+e- Collider

- **ILC/CLIC/FCCee/CepC/HALHF**
- **Rich program of Higgs/W/Z/Top physics**
- **Choice of CoM energy**
- **Higgs width, Higgs coupling to second generation**
	- (What about first generation?)
	- GigaZ program

- **Linear collider: polarized beams, lower instantaneous luminosity, upgradeable with length extension**
- **Circular collider: unpolarized beams but higher instantaneous luminosity, not so easily upgraded (though can step through energies well). Reuse the tunnel for a high energy proton-proton collider**

e +e - Science

e+e- colliders show very comparable performance for single-Higgs program, despite quite different assumed integrated luminosities => longitudinal beam polarization an important factor for LCs

- several couplings at few-0.1% level: Z, W, g, b, τ
- some more at $~1\%$: γ, c

S. Stapnes

Energy/Lum upgraded e+e "Higgs-factory" e+e-LHC followed by HL LHC 2040 $-2050 - 55$

A wide programme:

• ILCX – e.g. beam-dump experiments, dark sector physics, light dark matter,

- **Higher energies:** Improved Higgs, extended models, top well above threshold with polarization, new physics searches and measurements
- Z running also possible

Higgs Physics in e+e-

- >1 million ZH events
- \sim 100000 WW fusion
- Large rates, no pile-up or underlying event
- No QCD background
- Some model-dependence can be removed as a result and because of the possibility to measure absolute rates

Higgs Physics in e+e-

- Z observed through leptonic decay
- Recoil mass off the Higgs can be reconstructed
- Precise ZH production cross-section
- Therefore quasi model-independent extraction of the Higgs total width

Higgs Physics in e+e-

• 5x10¹² Z bosons at Z pole

- EW precision program
- Sensitivity for BSM effects
- Flavour physics

Top Physics in e+e-

- $t\bar{t}$ threshold scan will enable most precise \bullet measurements of top-quark mass and width.
- Precise measurements of top quark EW couplings provide essential input to precise extraction of top yukawa at FCC-hh.

Electroweak Precision in eter

BSM sensitivity

FCC Integrated Programme

comprehensive long-term program maximizing physics opportunities

FUTURE CIRCULAR COLLIDER

- **stage 1: FCC-ee (Z, W, H,** tt**) as Higgs factory, electroweak & top factory at highest luminosities** ҧ
- **stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, pp & AA collisions; e-h option**
- highly synergetic and complementary programme boosting the physics reach of both colliders (e.g. model-independent measurements of the Higgs couplings at FCC-hh thanks to input from FCC-ee; and FCC-hh as "energy upgrade" of FCC-ee)
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows the start of a new, major facility at CERN within a few years of the end of HL-LHC

Higgs self-coupling determined to 5% F. Zimmerman

Sinead Farrington, University of Edinburgh

What about Detector Technology

 \tilde{z}

CERN-ESU-017

1) Large ton dual-phase (PandaX-4T, LZ, DarkSide -20k, Argo 200k, ARIADNE, ...)
2) Light dark matter, solar axion, 0nbb, rare nuclei&ions and astro-particle reactions, Ba tagging)

3) R&D for 100-ton scale dual-phase DM/neutrino experiments

Linear Colliders

(Polarised Beams)

One advantage of linear e^+e^- colliders is the opportunity to exploit beam polarization which can benefit precision SM measurements and BSM searches. Baseline design of ILC assumes 80% longitudinal polarization of electron beam and 30% polarization of positron beam.

- Enhance cross-section for SM vector-boson production OR suppress backgrounds in search for scalars.
- For t/u-channel exchanges, helicities of incoming beams directly coupled to helicities of outgoing particles.

S. Williams

ILC

The Compact Linear Collider (CLIC)

- **Timeline:** Electron-positron linear collider at CERN for the era beyond HL-LHC
- **Compact:** Novel and unique two-beam accelerating technique with high-gradient room temperature RF cavities (~20'500 structures at 380 GeV), ~11km in its initial phase
- **Expandable:** Staged programme with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier)
- CDR in 2012 with focus on 3 TeV. Updated project overview documents in 2018 (Project Implementation Plan) with focus 380 GeV for Higgs and top.

Sinead Farrington, University of Edinburgh

29.11.

S. Stapnes

CLIC to 3 TeV

Extend by extending main linacs, increase drivebeam pulse-length and power, and a second drivebeam to get to 3 TeV

Table 1.1: Key parameters of the CLIC energy stages.

The CLIC accelerator studies are mature:

- Optimised design for cost and power
- Many tests in CTF3, FELs, light-sources and teststands
- Technical developments of "all" key elements

S. Stapnes

HALHF

• **Hybrid, Asymmetric, Linear Higgs Factory**

- **based on plasma-wakefield (electrons) and radio-frequency acceleration (positrons)**
- **Plasma-wakefield aim: orders of magnitude higher accelerating gradients**

- **Smaller, cheaper than other linear colliders**
- **Has technological challenges to overcome, and demonstrate**
- **Novel technology – scalable**
- **Will yield asymmetric collisions**
	- **Aim for same program as ILC/CLIC**
	- **Could be seen as an upgrade to ILC/CLIC**

Future Circular Collider

European Strategy for Particle Physics CIRCULAR COLLIDER

2013 Update of European Strategy for Particle Physics:

"*CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines***."**

→ FCC Conceptual Design Reports (2018/19)

FUTURE

Vol 1 Physics, Vol 2 FCC-ee, Vol 3 FCC-hh, Vol 4 HE-LHC

CDRs published in **European Physical Journal C (Vol 1)** and ST (Vol $2 - 4$)

[EPJ C 79, 6 \(2019\) 474](https://link.springer.com/article/10.1140/epjc/s10052-019-6904-3) , [EPJ ST 228, 2 \(2019\) 261-623 ,](https://link.springer.com/article/10.1140/epjst/e2019-900045-4) [EPJ ST 228, 4 \(2019\) 755-1107](https://link.springer.com/article/10.1140/epjst/e2019-900087-0) , [EPJ ST 228, 5 \(2019\) 1109-1382](https://link.springer.com/article/10.1140/epjst/e2019-900088-6)

2020 Update of European Strategy for Particle Physics:

"*Europe, together with its international partners, should investigate technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage***."**

F. Zimmerman

FUTURE FCC Feasibility Study (2021-2025): high-level objectives CIRCULAR

- ❑ demonstration of the **geological, technical, environmental and administrative feasibility of the tunnel and surface areas** and optimisation of **placement and layout of the ring** and related infrastructure;
- ❑ pursuit, **together with the Host States, of the preparatory administrative processes required for a potential project approval** to identify and remove any showstopper;
- ❑ **optimisation of the design of the colliders and their injector chains, supported by R&D to develop the needed key technologies**;
- ❑ elaboration of a **sustainable operational model for the colliders and experiments in terms of human and financial resource needs**, as well as **environmental aspects and energy efficiency**;
- ❑ development of a **consolidated cost estimate**, as well as the **funding and organisational models** needed to enable the project's technical design completion, implementation and operation;
- ❑ **identification of substantial resources from outside CERN's budget** for the implementation of the first stage of a possible future project (tunnel and FCC-ee);
- ❑ **consolidation of the physics case and detector concepts** for both colliders.

Results will be summarised in a Feasibility Study Report to be released at end 2025

F. Gianotti

But the promise of technological spin-offs is very much a secondary justification. The reason to invest in the FCC is to gain fundamental knowledge about the way the universe works. This will be rewarding in a cultural or philosophical sense. It may also pay off practically in the far future through applications we cannot foresee today $-$ just as 21st-century technology in fields from computing to satellite navigation depends on an understanding of quantum theory and relativity, whose foundations were laid by pioneering physicists almost a century ago.

se detectors at the Large Hadron Collider © CERN

Sinead Farrington, University The editorial board FEBRUARY 9 2024 **2008 2009 2009 2009**

Multi-TeV Collisions 1) FCChh 2) Muon Collider

Hadron Collider

- **Rich program of Higgs/W/Z/Top physics**
- **Search capability**
- **Probe up to ~40 TeV directly**
- **Higgs self-coupling (only a ~1-3 TeV scale ee collider can compete)**
- **Technologically challenging: accelerator magnets, detector occupancy and readout – see HL-LHC detectors, pileup of ~1000 vs 200 (HL-LHC) vs 60 (LHC)**

FCChh New physics

Cover full mass range for discovery of WIMP dark matter candidates

Substantial discovery reach for heavy resonances

Formidable physics reach, including:

- \Box Direct discovery potential up to \sim 40 TeV
- \Box Measurement of Higgs self to ~ 5% and ttH to ~ 1%
- \Box High-precision and model-indep (with FCC-ee input) measurements of rare Higgs decays $(\gamma \gamma, Z \gamma, \mu\mu)$
- \Box Final word about WIMP dark matter

F. Gianotti

6

Higgs Self-Coupling

• **Obtainable from hadron collider or from highly upgraded linear colliders**

Study of FCChh energies J. Howarth

Energy for order of magnitude increase in xsec, relative to LHC: tt: 50 TeV (FCC_{hh}) ttZ: 50 TeV (FCC_{hh}) ttW: 70 TeV (FCC_{hh}) tttt: 27 TeV (HE-LHC) $2x$ 70 TeV (FCC_{hh})

> **Energy for order of** magnitude increase in xsec, relative to LHC:

ggF: 70 TeV (FCC_{hh}) VBF: 65 TeV (FCC_{hh}) VH: 80 TeV (FCC_{hh}) ttH: 35 TeV (HE-LHC) HH: 45 TeV (FCC_{hh})

FCChh CDR Higgs Couplings

CDR=Conceptual Design Report

Experiment/Theory exchange

- **Whatever is built next requires joined up approach to understanding where limiting systematics will be**
- **Calculating extreme precision is less useful where experimental uncertainties are going to be large**

Magnets

- . Limits: Critical current, Critical B field, Critical temperature
	- remember: typically coil-dominated magnets
- Materials: NbTi (LHC current), Nb₃Sn (HL-LHC, FCC-hh)
	- $Nb₃Sn$ supports \sim 2x maximum B, but more costly

ᄀ*ᅀ*᠄

S. Gibson

Muon Collider

Muon Collider Technology

• **Synchroton radiation 2Bn times less than electron**

$$
P \propto \gamma^4 = \left(\frac{E}{m}\right)^4
$$

- **However muon lifetime is only 2.2** μ s
- **Smaller energy consumption than ee, smaller footprint**
- **Looking towards demonstrator facility**
- **Significant technical challenges**
	- But an exciting possibility for 10 TeV

 IP

A unique facility

To give insight on fundamental questions:

- **Higgs potential** \ast
- **Precision H couplings** ∗

- * Very high energy-scale BSM
- And many many more!

CC-hh

High energy lets us finally improve on Higgs Potential

Note that we can get to threshold for EW phase transition at EW scale with FCC-hh and μ Col Patrick Meade P5 BNL Town Hall Meeting

		κ -0 HL-LHeCHE-LHC				ILC			CLIC					CEPC FCC-ee FCC-ee/ $\mu^+\mu^-$	
fit	LHC		$^{\rm S2}$	S2'	250		500 1000	380		1500 3000			240 365	eh/hh	10000
κ_W	1.7	0.75		1.4 0.98			1.8 0.29 0.24 0.86 0.16 0.11				1.3		1.3 0.43	0.14	0.11
κ_Z	1.5	1.2	1.3	0.9			$\vert 0.29 \; 0.23 \; 0.22 \vert$			0.5 0.26 0.23	0.14		0.200.17	0.12	0.35
κ_q	2.3	3.6	1.9	1.2			2.3 0.97 0.66	2.5	1.3	0.9	1.5	1.7	$1.0\,$	0.49	0.45
κ_{γ}	1.9	7.6	1.6	1.2	6.7	3.4	1.9	$98\star$	5.0	2.2	3.7	4.7	3.9	0.29	0.84
$\kappa_{Z\gamma}$	10.	$\overline{}$	5.7	3.8			99* 86* 85*	$120\star$	-15	6.9	8.2		$81\star 75\star$	0.69	5.5
κ_c	$\hspace{0.1mm}-\hspace{0.1mm}$	4.1			2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95	1.8
κ_t	3.3	-	12.8	1.7	$\overline{}$	6.9	1.6			2.7				1.0	1.4
κ_b	3.6	2.1		$ 3.2 \t2.3$			1.8 0.58 0.48	1.9	0.46 0.37		1.2		1.3 0.67	0.43	0.24
κ_{μ}	4.6	—	2.5	1.7	15	9.4	6.2	$320\star$	13	5.8	8.9	10	8.9	0.41	2.9
κ_{τ}	1.9	3.3	1.5	1.1			1.9 0.70 0.57	3.0	1.3	0.88	1.3		1.4 0.73	0.44	0.59

Matthew Forslund and Patrick Meade

Jorge De Blas et al.

8

Muon Collider

A high-energy muon collider would also be a vector-boson collider=> direct BSM and providing "Higgs factory" (see next slide) 10^{-1} HL-LHC

Future Collider Timelines?

FCC Feasibility Study

• **Advanced**

Status of FCC feasibility study: mid-term review

For more details see slides by S. Williams at CEPC workshop.

- Mid-term review just completed \bullet (approval by council soon).
- Key updates:
	- Choice of ring placement and 4 IPs (higher statistics).
	- Adaptation of accelerator RF/ \bullet optics for new placement (details in backup).
- Significant R+D ongoing to improve energy efficiency (including HTS).

Beyond…

• **Beyond Colliders**

- SHIP will happen sensitivity to many BSM signatures
- Dark matter experiments will happen
- Quantum technology is there
	- And ripe for a strategic internationalized set of experiments
- DUNE/HyperK are underconstruction
- Muon experiments...
- \bullet . . .
- **The field has a multi-pronged approach to understanding the nature of fundamental interactions**
	- We are well-equipped to delve deeper into how these work, and a complementary set of approaches best builds-on (and preserves) the knowledge we have achieved to date

What we don't know

- **Nature of neutrinos**
- **Mass hierarchy of neutrinos**
- **CP violation (how did the universe come to be matter-dominated?)**
- **Is there only one Higgs boson?**
- **Is supersymmetry realised in nature?**
- **Why three generations?**
- **Nature of dark matter**
- **…which questions to ask?**

Discussion questions

- **Which parameter do you most want to measure and why?**
- **Which three?**