Lecture 2: HL-LHC and Beyond

Sinead Farrington STFC PPD / U. of Edinburgh

Beyond HL-LHC?

- Experiment-led: notwithstanding huge theoretical developments both in precision and in modelbuilding
- Future Colliders (FCC/ILC/CLiC/CepC/Muon/eh)
 - Last European strategy update 2020 (paraphrase):
 - 1) next collider should be e+e-
 - 2) And we should work on magnet technologies to enable an energy frontier collider
 - Snowmass (US): supports activity to prepare for future energy frontier colliders; also supports "Higgs factory" from 2035.

Colli Outline

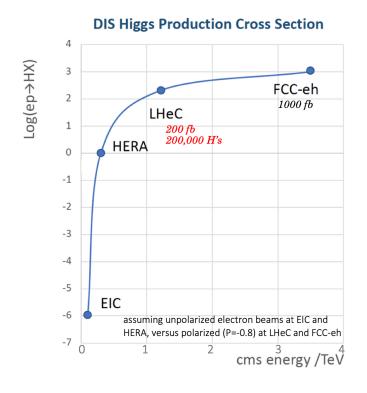
4

The *eh* programmes of LHC and FCC are designed to operate **synchronously** with *hh* **Interesting physics programme on its own and synergic:**

- PDFs, strong coupling constant, low-x measurements
- W mass, top mass, on other precision measurements in EWK and Top sectors
- Higgs measurements with additional sensitivity \rightarrow precision higgs facility together with LHC
- Searches for new physics, including prompt and long-lived new scalars from Higgs, SUSY particles, neavy neutrinos, dark photons and axions
- High-energy and high-density measurements of heavy ion collisions

\rightarrow the LHeC(FCC-eh) will contribute to the main objectives of the HL-LHC(FCC-hh), empowering its programme and bringing in more variety

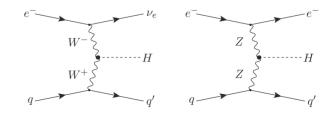
Some key examples in the following


much more in CDR <u>https://arxiv.org/abs/2007.14491</u>, <u>https://cds.cern.ch/record/2729018/files/ECFA-Newsletter-5-</u> Summer2020.pdf, Eur. Phys. J. C (2022) 82:40, FCC CDR: EPJC 79, no. 6, 474 (2019), Phys Eur. Phys. J. ST 228, no. 4, 755 (2019)

Monica D'Onofrio, ES UK 2024

24/9/24

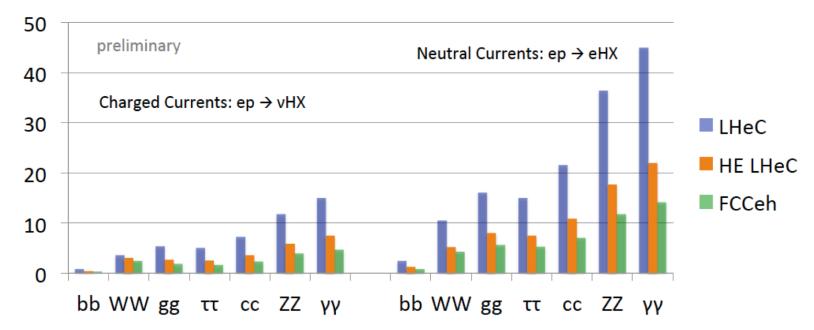
3


Collision energy above the threshold for EW/Higgs/Top

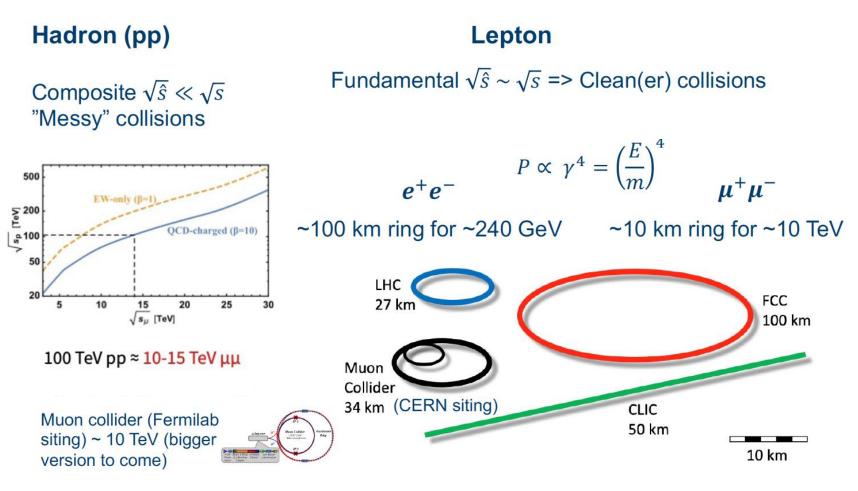
3

Monica D'Onofrio, ES UK 2024

= the real game change between HERA and the LHeC/FCC-eh



compared to proton collisions, these are reasonably clean Higgs events with much less backgrounds

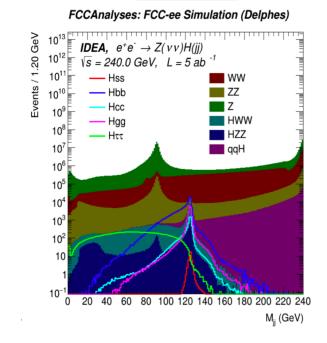

at these energies and luminosities, interactions with all SM particles can be measured precisely

24/9/24

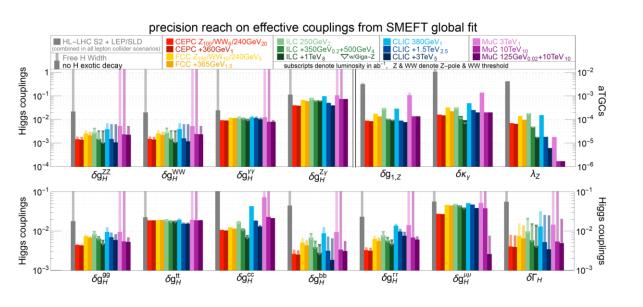
δμ/μ [%]

Colliders

Adapted from S. Williams


The e+e- Physics Program

Higgs factory	Flavor "boosted" B/D/ r factory:	QCD - EWK most precise SM test	BSM feebly interacting particles
m _H , σ, Γ _H self-coupling	CKM matrix CPV measurements	m _z , Γ _z , Γ _{inv}	Heavy Neutral Leptons (HNL)
$H \rightarrow bb, cc, ss, gg$ $H \rightarrow inv$ $ee \rightarrow H$ $H \rightarrow bs,$	Charged LFV Lepton Universality τ properties (lifetime, BRs)	$sin^2 \theta_W^{}$, R_{ℓ}^Z , $R_b^{}$, $R_c^{}$ $A_{FB}^{b,c}$, τ pol.	Dark Photons Z _D
Тор	$ \begin{array}{c} B_{c} \to \pmb{\tau} \lor \\ B_{s} \to D_{s} K / \pi \\ B_{s} \to K^{*} \pmb{\tau} \mathbf{\tau} \end{array} $	α _s ,	Axion Like Particles (ALPs)
mtop, Γtop, ttZ, FCNCs	$\vec{B} \rightarrow K^* \vee \nu B_s \rightarrow \phi \vee \nu \dots$	т _w , Г _w	Exotic Higgs decays


e+e- Collider

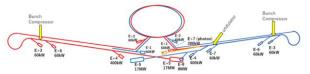
- ILC/CLIC/FCCee/CepC/HALHF
- Rich program of Higgs/W/Z/Top physics
- Choice of CoM energy
- Higgs width, Higgs coupling to second generation
 - (What about first generation?)
 - GigaZ program

- Linear collider: polarized beams, lower instantaneous luminosity, upgradeable with length extension
- Circular collider: unpolarized beams but higher instantaneous luminosity, not so easily upgraded (though can step through energies well). Reuse the tunnel for a high energy proton-proton collider

e⁺e⁻ Science

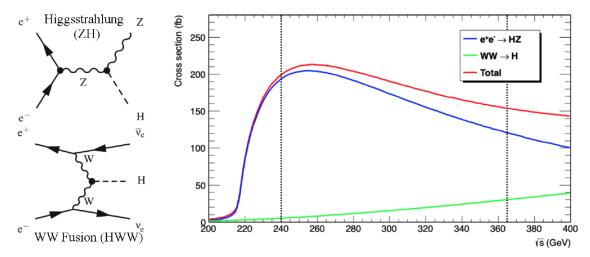
e+e- colliders show very comparable performance for single-Higgs program, despite quite different assumed integrated luminosities => longitudinal beam polarization an important factor for LCs

- several couplings at few-0.1% level: Z, W, g, b, τ
- some more at ~1%: γ, c

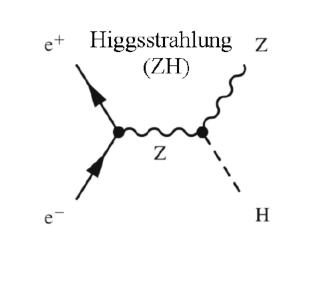

S. Stapnes

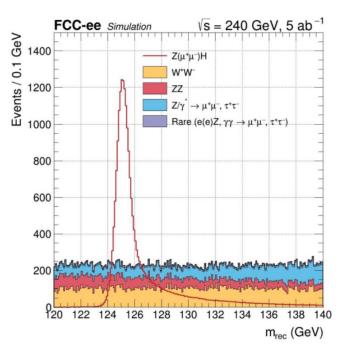
Energy/Lum upgraded e+e-"Higgs-factory" e+e-LHC followed by HL LHC Today 2040 -2050-55 Time

A wide programme:


 ILCX – e.g. beam-dump experiments, dark sector physics, light dark matter,

11.2. ILC FACILITIES FOR FIXED-TARGET EXPERIMENTS


- Higher energies: Improved Higgs, extended models, top well above threshold with polarization, new physics searches and measurements
- Z running also possible


Higgs Physics in e+e-

- >1 million ZH events
- ~100000 WW fusion
- Large rates, no pile-up or underlying event
- No QCD background
- Some model-dependence can be removed as a result and because of the possibility to measure absolute rates

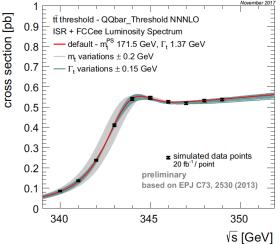
Higgs Physics in e+e-

- Z observed through leptonic decay
- Recoil mass off the Higgs can be reconstructed
- Precise ZH production cross-section
- Therefore quasi model-independent extraction of the Higgs total width

Higgs Physics in e+e-

• 5x10¹² Z bosons at Z pole

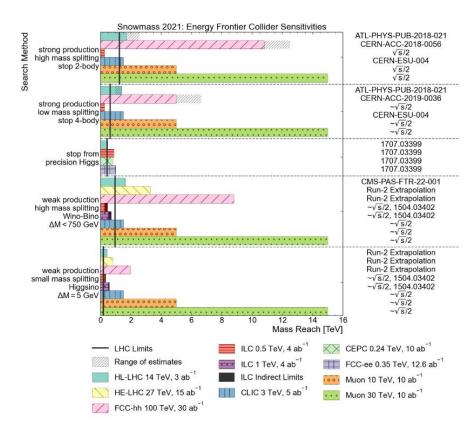
- EW precision program
- Sensitivity for BSM effects
- Flavour physics


<u> </u>					
Quantity	current	ILC250	ILC-GigaZ	FCC-ee	
$\Delta lpha(m_Z)^{-1}~(imes 10^3)$	17.8^{*}	17.8*		3.8(1.2)	
$\Delta m_W ~({ m MeV})$	12*	0.5(2.4)		0.25(0.3)	
$\Delta m_Z ~({ m MeV})$	2.1^{*}	0.7(0.2)	0.2	0.004(0.1)	
$\Delta m_H ~({ m MeV})$	170*	14		2.5(2)	
$\Delta\Gamma_W ~({ m MeV})$	42*	2		1.2 (0.3)	
$\Delta\Gamma_Z$ (MeV)	2.3^{*}	1.5(0.2)	0.12	0.004 (0.025)	
$\Delta A_e ~(imes 10^5)$	190*	14(4.5)	1.5(8)	0.7(2)	
$\Delta A_{\mu} \; (\times 10^5)$	1500^{*}	82 (4.5)	3(8)	2.3(2.2)	
$\Delta A_{\tau} ~(imes 10^5)$	400*	86(4.5)	3(8)	0.5(20)	
$\Delta A_b~(imes 10^5)$	2000*	53(35)	9(50)	2.4(21)	
$\Delta A_c~(imes 10^5)$	2700^{*}	140(25)	20(37)	20(15)	

Particle production (10^9)	$B^0 \ / \ \overline{B}^0$	B^{+} / B^{-}	$B^0_s \ / \ \overline{B}^0_s$	$\Lambda_b \; / \; \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150

Top Physics in e+e-

- $t\bar{t}$ threshold scan will enable most precise measurements of top-quark mass and width.
- Precise measurements of top quark EW couplings provide essential input to precise extraction of top yukawa at FCC-hh.

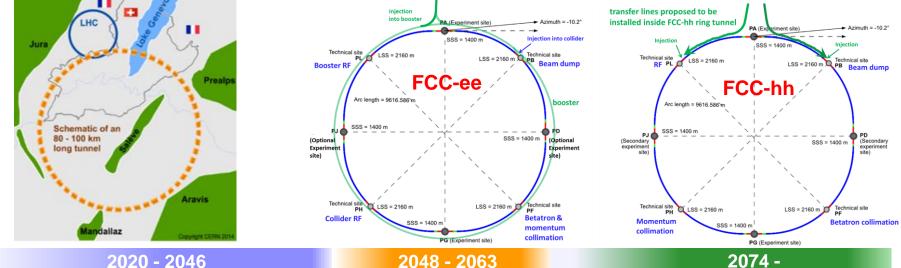


Electroweak Precision in e⁺e⁻

Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
$\Delta \alpha(m_Z)^{-1} (\times 10^3)$	17.8*	17.8*		3.8(1.2)	17.8*	
$\Delta m_W \; ({\rm MeV})$	12^{*}	0.5(2.4)		0.25~(0.3)	$0.35\ (0.3)$	
$\Delta m_Z \ ({\rm MeV})$	2.1^{*}	0.7(0.2)	0.2	0.004~(0.1)	0.005~(0.1)	2.1^{*}
$\Delta m_H \ ({\rm MeV})$	170^{*}	14		2.5(2)	5.9	78
$\Delta\Gamma_W$ (MeV)	42*	2		$1.2 \ (0.3)$	1.8 (0.9)	
$\Delta\Gamma_Z$ (MeV)	2.3^{*}	1.5(0.2)	0.12	$0.004\ (0.025)$	$0.005\ (0.025)$	2.3^{*}
$\Delta A_e \; (\times 10^5)$	190*	14(4.5)	1.5(8)	0.7(2)	1.5(2)	60(15)
$\Delta A_{\mu} (\times 10^5)$	1500^{*}	82(4.5)	3(8)	2.3(2.2)	3.0(1.8)	390(14)
$\Delta A_{\tau} (\times 10^5)$	400*	86(4.5)	3(8)	0.5(20)	1.2(20)	550(14)
$\Delta A_b \; (\times 10^5)$	2000*	53(35)	9(50)	2.4(21)	3(21)	360 (92)
$\Delta A_c \; (\times 10^5)$	2700*	140(25)	20(37)	20(15)	6(30)	190~(67)
$\Delta \sigma_{\rm had}^0 ~({\rm pb})$	37*			0.035(4)	0.05(2)	37*
$\delta R_e \; (\times 10^3)$	2.4^{*}	0.5(1.0)	$0.2 \ (0.5)$	0.004~(0.3)	0.003~(0.2)	2.5(1.0)
$\delta R_{\mu} \; (\times 10^3)$	1.6^{*}	0.5(1.0)	0.2 (0.2)	$0.003\ (0.05)$	$0.003\ (0.1)$	2.5(1.0)
$\delta R_{\tau} \ (\times 10^3)$	2.2^{*}	0.6(1.0)	0.2(0.4)	$0.003\ (0.1)$	$0.003\ (0.1)$	3.3(5.0)
$\delta R_b \; (\times 10^3)$	3.1^{*}	0.4(1.0)	0.04(0.7)	$0.0014 \ (< 0.3)$	0.005~(0.2)	1.5(1.0)
$\delta R_c(\times 10^3)$	17^{*}	0.6(5.0)	0.2(3.0)	$0.015\ (1.5)$	0.02(1)	2.4(5.0)

BSM sensitivity

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$
			e^{-}/e^{+}	ab^{-1} /IP
HL-LHC	pp	$14 { m TeV}$		3
ILC & C^3	ee	$250 { m ~GeV}$	$\pm 80/\pm 30$	2
		$350~{\rm GeV}$	$\pm 80/\pm 30$	0.2
		$500 { m GeV}$	$\pm 80/\pm 30$	4
		$1 { m TeV}$	$\pm 80/\pm 20$	8
CLIC	ee	$380~{ m GeV}$	$\pm 80/0$	1
CEPC	ee	M_Z		50
		$2M_W$		3
		$240 { m GeV}$		10
		$360~{\rm GeV}$		0.5
FCC-ee	ee	M_Z		75
		$2M_W$		5
		$240~{\rm GeV}$		2.5
		$2 M_{top}$		0.8
μ -collider	$\mu\mu$	$125 \mathrm{GeV}$		0.02


FCC Integrated Programme

comprehensive long-term program maximizing physics opportunities

FUTURE

CIRCULAR

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, pp & AA collisions; e-h option
- highly synergetic and complementary programme boosting the physics reach of both colliders (e.g. model-independent measurements of the Higgs couplings at FCC-hh thanks to input from FCC-ee; and FCC-hh as "energy upgrade" of FCC-ee)
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows the start of a new, major facility at CERN within a few years of the end of HL-LHC

Higgs self-coupling determined to 5%

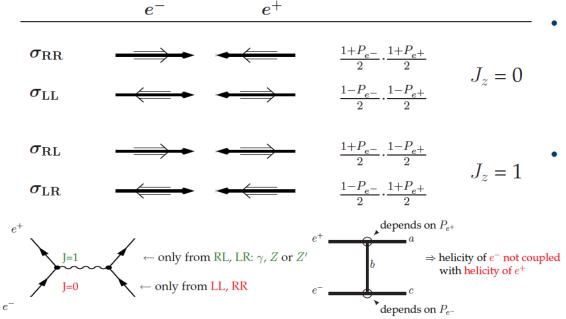
F. Zimmerman

Sinead Farrington, University of Edinburgh

What about Detector Technology

			Sps. filmed and	Other Party of Anne, March 1990	Lon a construction with the second se	ATAS - USA -	Pac Durneurino Pac Durneurino ILC ton Scale O Poeri	rcca mb ^{llanbe}	ر دیہ در دی اس می میں
		DRDT		< 2030		2030-2035	2035-2040		>2045
	Rad-hard/longevity	1.1					2040		
uon system	Time resolution	1.1							
-	Fine granularity	1.1							
roposed technologies: PC, Multi-GEM, resistive GEM,	Gas properties (eco-gas)	1.3							
licromegas, micropixel licromegas, µRwell, µPIC	Spatial resolution	1.1							
	Rate capability	1.3							
	Rad-hard/longevity	1.1							
nner/central	Low X _o	1.2							
	IBF (TPC only)	1.2		—		.			
roposed technologies: PC+(multi-GEM, Micromegas, iridpix), drift chambers, cylindrical	Time resolution	1.1							
	Rate conchility	1.3	<u> </u>	-					
	dE/dx	1.2	ě.	_			-		
	Fine granularity	1.1	ě	•					
	Rad-hard/longevity	1.1	T.						
eshower/	Low power	1.1							
alorimeters	Gas properties (eco-gas)	1.3						ŏŏ.	
oposed technologies:	Fast timing	1.1							
PC, MRPC, Micromegas and EM, uRwell, InGrid (integrated	Fine granularity	1.1						.	
cromegas grid with pixel adout), Pico-sec, FTM	Rate capability	1.3					i i i	ŏŏ	i i i
addig, 1160-366, 1111	Large array/integration	1.3						ŏŏ	
	Rad-hard (photocathode)	1.1							
article ID/TOF	IBF (RICH only)	1.2	õ õ			•			
	Precise timing	1.1							
oposed technologies: CH+MPGD, TRD+MPGD, TOF:	Rate capability	1.3				ĕ			
RPC, Picosec, FTM	dE/dx	1.2							
	Fine granularity	1.1							
	Low power	1.4							
	Fine granularity	1.4		i i			ŏ •		
C for rare decays	Large array/volume	1.4		• •)				
Proposed technologies:	Higher energy resolution	1.4		•			ŏŏ		
C+MPGD operation (from very v to very high pressure)	Lower energy threshold	1.4			i i i		ŏ ŏ 👘		
	Optical readout	1.4					ě ě		
	Gas pressure stability	1.4		•	•		Ó		
	Radiopurity	1.4		•			• •		

CERN-ESU-017

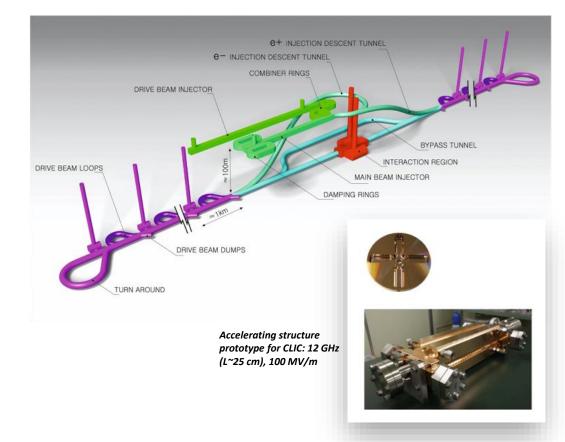

1) Large ton dual-phase (PandaX-4T, LZ, DarkSide -20k, Argo 200k, ARIADNE, ...) Light dark matter, solar axion, 0nbb, rare nuclei&ions and astro-particle reactions, Ba tagging)

3) R&D for 100-ton scale dual-phase DM/neutrino experiments

Linear Colliders

(Polarised Beams)

One advantage of linear e^+e^- colliders is the opportunity to exploit beam polarization which can benefit precision SM measurements and BSM searches. Baseline design of ILC assumes 80% longitudinal polarization of electron beam and 30% polarization of positron beam.


- Enhance cross-section for
 SM vector-boson production
 OR suppress backgrounds
 in search for scalars.
- For t/u-channel exchanges, helicities of incoming beams directly coupled to helicities of outgoing particles.

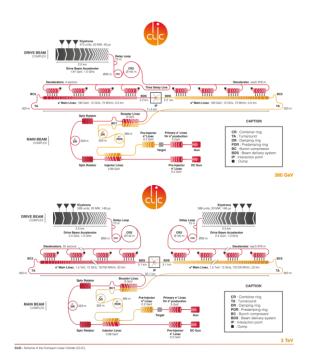
S. Williams

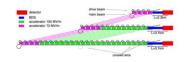
ILC

		Item	Parameters
		C.M. Energy	250 GeV
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Length	20km
	Party of the second second second	Luminosity	1.35 x10 ³⁴ cm ⁻² s ⁻¹
	A CONTRACTOR OF	Repetition	5 Hz
	8,000 1.3GHz	Beam Pulse Period	0.73 ms
e- Main Linac	SRF cavities @ 2K	Beam Current	5.8 mA (in pulse)
		Beam size (y) at FF	7.7 nm@250GeV
e+ Sor		SRF Cavity G.	31.5 MV/m (35 MV/m)
	Physics Detectors	Q ₀	Q ₀ = 1x10 ¹⁰
Damping Rin	Beam delivery system e- Source Total 20.5	(BDS) e+ Main Linac	
<ul> <li>Cost ~ \$5B (2010)</li> <li>Power ~ 111 MW</li> </ul>	UPDATE IN PROGRESS FOR EPPSU MARCH 25		

### **The Compact Linear Collider (CLIC)**




- **Timeline:** Electron-positron linear collider at CERN for the era beyond HL-LHC
- Compact: Novel and unique two-beam accelerating technique with high-gradient room temperature RF cavities (~20'500 structures at 380 GeV), ~11km in its initial phase
- Expandable: Staged programme with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier)
- CDR in 2012 with focus on 3 TeV. Updated project overview documents in 2018 (Project Implementation Plan) with focus 380 GeV for Higgs and top.


Sinead Farrington, University of Edinburgh

29.11.

S. Stapnes

### **CLIC to 3 TeV**





Extend by extending main linacs, increase drivebeam pulse-length and power, and a second drivebeam to get to 3 TeV

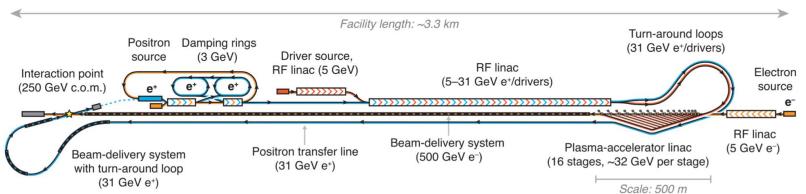


#### Table 1.1: Key parameters of the CLIC energy stages.

Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	GeV	380	1500	3000
Repetition frequency	Hz	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	MV/m	72	72/100	72/100
Total luminosity	$1{\times}10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	2.3	3.7	5.9
Lum. above 99 % of $\sqrt{s}$	$1{ imes}10^{34}{ m cm}^{-2}{ m s}^{-1}$	1.3	1.4	2
Total int. lum. per year	$\rm fb^{-1}$	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	$1 \times 10^{9}$	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	$\sim \! 60/1.5$	$\sim \! 40/1$
Final RMS energy spread	%	0.35	0.35	0.35
Crossing angle (at IP)	mrad	16.5	20	20



#### The CLIC accelerator studies are mature:


- · Optimised design for cost and power
- Many tests in CTF3, FELs, light-sources and teststands
- · Technical developments of "all" key elements

### S. Stapnes

# HALHF

### Hybrid, Asymmetric, Linear Higgs Factory

- based on plasma-wakefield (electrons) and radio-frequency acceleration (positrons)
- Plasma-wakefield aim: orders of magnitude higher accelerating gradients



- Smaller, cheaper than other linear colliders
- Has technological challenges to overcome, and demonstrate
- Novel technology scalable
- Will yield asymmetric collisions
  - Aim for same program as ILC/CLIC
  - Could be seen as an upgrade to ILC/CLIC

## **Future Circular Collider**

### CIRCULAR European Strategy for Particle Physics

#### **2013 Update of European Strategy for Particle Physics:**

"CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines."

#### → FCC Conceptual Design Reports (2018/19)



Vol 1 Physics, Vol 2 FCC-ee, Vol 3 FCC-hh, Vol 4 HE-LHC

CDRs published in European Physical Journal C (Vol 1) and ST (Vol 2 – 4)

EPJ C 79, 6 (2019) 474 , EPJ ST 228, 2 (2019) 261-623 , EPJ ST 228, 4 (2019) 755-1107 , EPJ ST 228, 5 (2019) 1109-1382

#### **2020 Update of European Strategy for Particle Physics:**

"Europe, together with its international partners, should investigate technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage."

#### F. Zimmerman

### CIRCULAR FCC Feasibility Study (2021-2025): high-level objectives

- demonstration of the geological, technical, environmental and administrative feasibility of the tunnel and surface areas and optimisation of placement and layout of the ring and related infrastructure;
- pursuit, together with the Host States, of the preparatory administrative processes required for a potential project approval to identify and remove any showstopper;
- optimisation of the design of the colliders and their injector chains, supported by R&D to develop the needed key technologies;
- elaboration of a sustainable operational model for the colliders and experiments in terms of human and financial resource needs, as well as environmental aspects and energy efficiency;
- development of a consolidated cost estimate, as well as the funding and organisational models needed to enable the project's technical design completion, implementation and operation;
- identification of substantial resources from outside CERN's budget for the implementation of the first stage of a possible future project (tunnel and FCC-ee);
- **consolidation of the physics case and detector concepts** for both colliders.

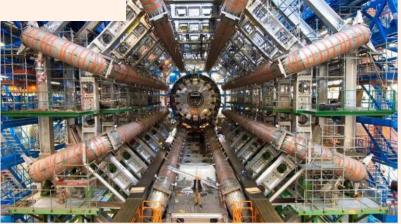
Results will be summarised in a Feasibility Study Report to be released at end 2025

F. Gianotti

F. Zimmerman



#### FINANCIAL TIMES


HOME WORLD UK COMPANIES TECH MARKETS CLIMATE OPINION WORK & CAREERS LIFE & ARTS HTSI

#### Why we need Cern's €16bn atom smasher

The Future Circular Collider could unlock some of the secrets of the universe

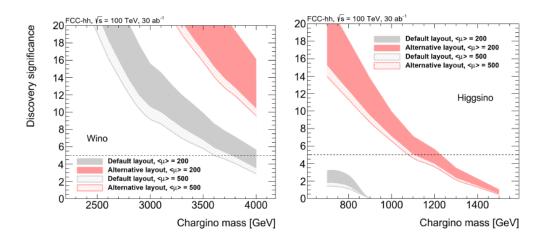
THE EDITORIAL BOARD ( + Add to myFT

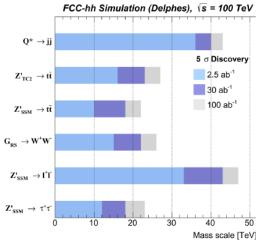
But the promise of technological spin-offs is very much a secondary justification. The reason to invest in the FCC is to gain fundamental knowledge about the way the universe works. This will be rewarding in a cultural or philosophical sense. It may also pay off practically in the far future through applications we cannot foresee today — just as 21st-century technology in fields from computing to satellite navigation depends on an understanding of quantum theory and relativity, whose foundations were laid by pioneering physicists almost a century ago.



ATLAS is one of two general-purpose detectors at the Large Hadron Collider © CERN

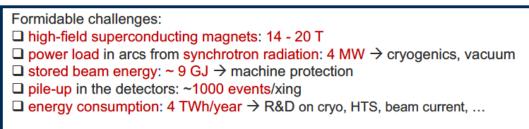
#### Sinead Farrington, Univer


The editorial board FEBRUARY 9 2024


# Multi-TeV Collisions 1) FCChh 2) Muon Collider

## **Hadron Collider**

- Rich program of Higgs/W/Z/Top physics
- Search capability
- Probe up to ~40 TeV directly
- Higgs self-coupling (only a ~1-3 TeV scale ee collider can compete)
- Technologically challenging: accelerator magnets, detector occupancy and readout – see HL-LHC detectors, pileup of ~1000 vs 200 (HL-LHC) vs 60 (LHC)


# **FCChh New physics**





### Cover full mass range for discovery of WIMP dark matter candidates

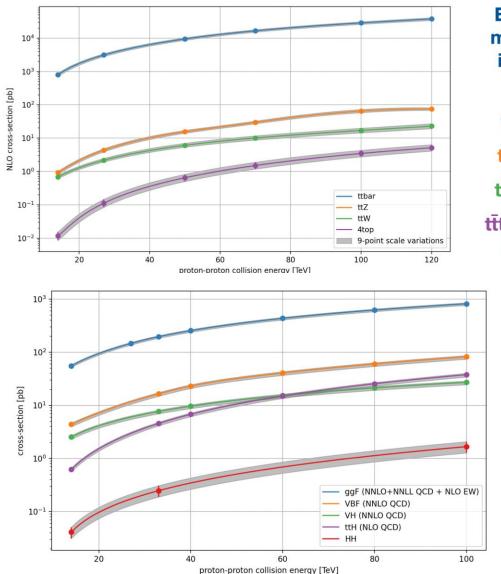
### Substantial discovery reach for heavy resonances



Formidable physics reach, including:

- □ Direct discovery potential up to ~ 40 TeV
- $\hfill\square$  Measurement of Higgs self to ~ 5% and ttH to ~ 1%
- High-precision and model-indep (with FCC-ee input) measurements of rare Higgs decays (γγ, Ζγ, μμ)
- Final word about WIMP dark matter

F. Gianotti


6

# **Higgs Self-Coupling**

Obtainable from hadron collider or from highly upgraded linear colliders

collider	Indirect- $h$	hh	combined
HL-LHC [40]	] 100-200%	50%	50%
ILC ₂₅₀ /C ³ -250 [3	1, 33] 49%	_	49%
$ILC_{500}/C^3-550$ [3	1, 33] 38%	20%	20%
$ILC_{1000}/C^3-1000$ [3]	$31,  33] \qquad 36\%$	10%	10%
$CLIC_{380}$ [35	] 50%	_	50%
$CLIC_{1500}$ [35	] 49%	36%	29%
CLIC ₃₀₀₀ [35	] 49%	9%	9%
FCC-ee [36]	33%	_	33%
FCC-ee (4 IPs)		_	24%
(100 TeV) FCC-hh [41]	] –	3.4-7.8%	3.4-7.8%
$\mu(3 \text{ TeV})$ [39	] –	15-30%	15 - 30%
$\mu(10 \text{ TeV})$ [39	9] -	4%	4%

# Study of FCChh energies J. Howarth

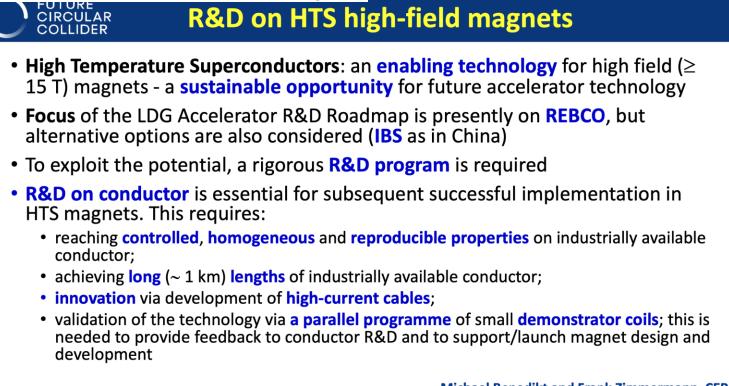


> Energy for order of magnitude increase in xsec, relative to LHC:

ggF: 70 TeV (FCC_{hh}) VBF: 65 TeV (FCC_{hh}) VH: 80 TeV (FCC_{hh}) ttTH: 35 TeV (HE-LHC) HH: 45 TeV (FCC_{hh})

# **FCChh CDR Higgs Couplings**

Observable	Parameter	Precision	Precision
		(stat)	(stat+syst+lumi)
$\mu = \sigma(\mathrm{H}) \times \mathrm{B}(\mathrm{H} \rightarrow \gamma \gamma)$	$\delta \mu / \mu$	0.1%	1.45%
$\mu = \sigma(H) \times B(H \rightarrow \mu \mu)$	$\delta \mu / \mu$	0.28%	1.22%
$\mu = \sigma(H) \times B(H \rightarrow 4\mu)$	$\delta \mu / \mu$	0.18%	1.85%
$\mu = \sigma(\mathrm{H}) \times \mathrm{B}(\mathrm{H} \rightarrow \gamma \mu \mu)$	$\delta \mu / \mu$	0.55%	1.61%
$\mu = \sigma(HH) \times B(H \rightarrow \gamma \gamma) B(H \rightarrow b\bar{b})$	$\delta\lambda/\lambda$	5%	7.0%
$R = B(H \rightarrow \mu \mu)/B(H \rightarrow 4\mu)$	$\delta R/R$	0.33%	1.3%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu)$	$\delta R/R$	0.17%	0.8%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2\mu)$	$\delta R/R$	0.29%	1.38%
$R = B(H \rightarrow \mu \mu \gamma) / B(H \rightarrow \mu \mu)$	$\delta R/R$	0.58%	1.82%
$  R = \sigma(t\bar{t}H) \times B(H \rightarrow b\bar{b}) / \sigma(t\bar{t}Z) \times B(Z \rightarrow b\bar{b})$	$\delta R/R$	1.05%	1.9%
$B(H \rightarrow invisible)$	B@95%CL	$1 \times 10^{-4}$	$2.5  imes 10^{-4}$


### **CDR=Conceptual Design Report**

# **Experiment/Theory exchange**

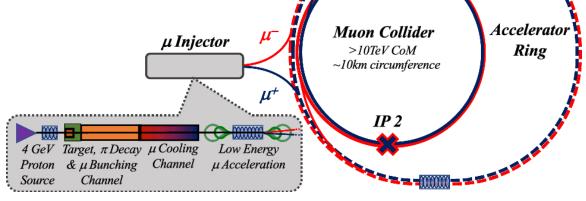
- Whatever is built next requires joined up approach to understanding where limiting systematics will be
- Calculating extreme precision is less useful where experimental uncertainties are going to be large

# Magnets

- Limits: Critical current, Critical B field, Critical temperature
  - remember: typically coil-dominated magnets
- Materials: NbTi (LHC current), Nb₃Sn (HL-LHC, FCC-hh)
  - Nb₃Sn supports ~2x maximum B, but more costly



S. Gibson

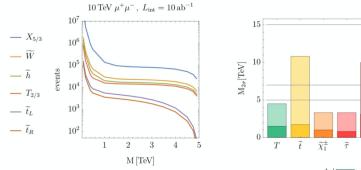

## **Muon Collider**

# **Muon Collider Technology**

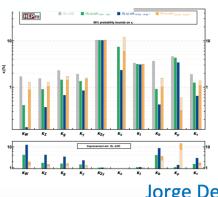
• Synchroton radiation 2Bn times less than electron

$$P \propto \gamma^4 = \left(\frac{E}{m}\right)^4$$

- However muon lifetime is only 2.2μs
- Smaller energy consumption than ee, smaller footprint
- Looking towards demonstrator facility
- Significant technical challenges
  - But an exciting possibility for 10 TeV



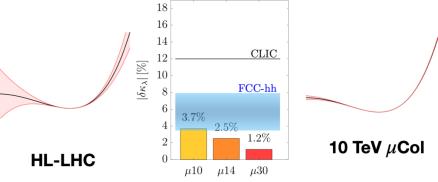

IP 1


# A unique facility

#### To give insight on fundamental questions:

- * Higgs potential
- * Precision H couplings




- * Very high energy-scale BSM
- * And many many more!



FCC-hł

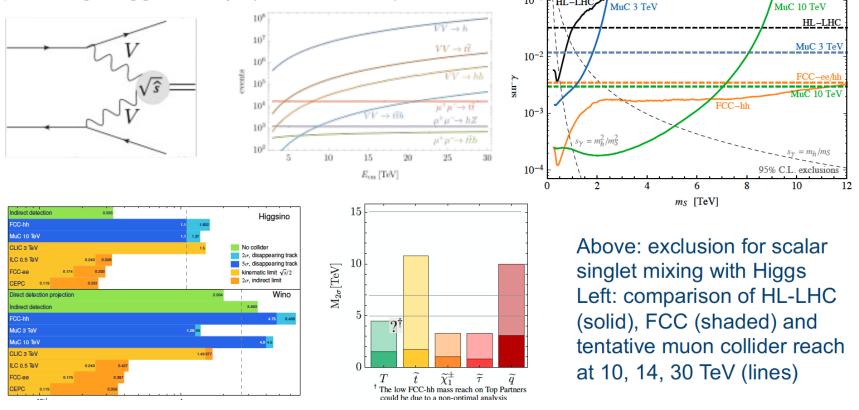
 $\widetilde{q}$ 

#### High energy lets us finally improve on Higgs Potential

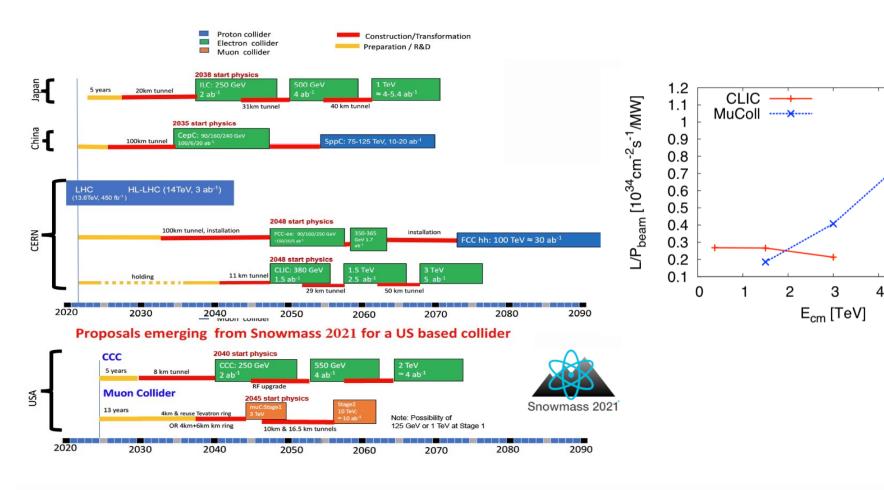


Note that we can get to threshold for EW phase transition at EW scale with FCC-hh and  $\mu$ Col Patrick Meade P5 BNL Town Hall Meeting

<i>κ</i> -0	HL-	LHeC	HE-	LHC		ILC			CLIC	;	CEPC	FC	C-ee	FCC-ee/	$\mu^+\mu^-$
$\mathbf{fit}$	LHC		S2	S2'	250	500	1000	380	1500	3000		240	365	eh/hh	10000
$\kappa_W$	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14	0.11
$\kappa_Z$	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12	0.35
$\kappa_g$	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49	0.45
$\kappa_\gamma$	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29	0.84
$\kappa_{Z\gamma}$	10.	-	5.7	3.8	99*	$86\star$	$85\star$	$120\star$	15	6.9	8.2	81*	$75\star$	0.69	5.5
$\kappa_c$	-	4.1	-	-	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95	1.8
$\kappa_t$	3.3	-	2.8	1.7	-	6.9	1.6	-	-	2.7	-	-	-	1.0	1.4
$\kappa_b$	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43	0.24
$\kappa_{\mu}$	4.6	—	2.5	1.7	15	9.4	6.2	$320\star$	13	5.8	8.9	10	8.9	0.41	2.9
$\kappa_{ au}$	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44	0.59


Matthew Forslund and Patrick Meade

Jorge De Blas et al.


8

## **Muon Collider**

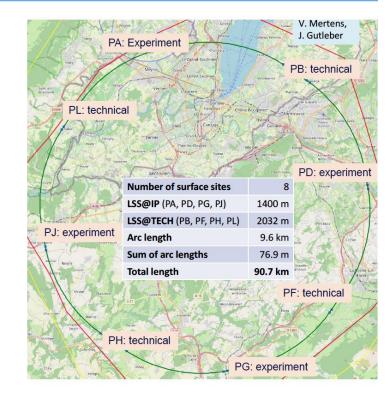
A high-energy muon collider would also be a vector-boson collider=> direct BSM and providing "Higgs factory" (see next slide)



## **Future Collider Timelines?**



5


# **FCC Feasibility Study**

### Advanced

#### Status of FCC feasibility study: mid-term review

For more details see <u>slides</u> by S. Williams at CEPC workshop.

- Mid-term review just completed (approval by council soon).
- Key updates:
  - Choice of ring placement and 4 IPs (higher statistics).
  - Adaptation of accelerator RF/ optics for new placement (details in backup).
- Significant R+D ongoing to improve energy efficiency (including HTS).



# Beyond...

### Beyond Colliders

- SHIP will happen sensitivity to many BSM signatures
- Dark matter experiments will happen
- Quantum technology is there
  - And ripe for a strategic internationalized set of experiments
- DUNE/HyperK are underconstruction
- Muon experiments...
- ....
- The field has a multi-pronged approach to understanding the nature of fundamental interactions
  - We are well-equipped to delve deeper into how these work, and a complementary set of approaches best builds-on (and preserves) the knowledge we have achieved to date

## What we don't know

- Nature of neutrinos
- Mass hierarchy of neutrinos
- CP violation (how did the universe come to be matter-dominated?)
- Is there only one Higgs boson?
- Is supersymmetry realised in nature?
- Why three generations?
- Nature of dark matter
- ...which questions to ask?

## **Discussion questions**

- Which parameter do you most want to measure and why?
- Which three?