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e DM mass? e DM interactions with baryons?




i Strongly-interacting DM Component }

* A sub-component of DM can be strongly interacting.

¥ makes up a sub-component
of the total DM energy budget.




Strongly-interacting DM Component \:
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» "Earth-bound” DM provides a novel powerful probe. | & |

o % o %

The density of “"Earth-bound DM” can be huge.

Annihilating DM

Non-Annihilating DM

e Local annihilation inside any * Earth-bound DM can be
large-volume neutrino detectors up-scattered by fast
(such as Super-Kamiokande) 5 neutrons inside the

Ray, (with Mckeen, Morissey, : nuclear reactors, and

Pospelov, Ramani) [PRL, 2023] : subsequenfly defected.

. N : imilar sch CELNS

e Neutrinos from annihilation of (similar scheme as CELNS)
Earth-bound DM.

Pospelov & Ray [JCAP, 2024]

Ray, (with Ema, Pospelov)
[2402.03431]



| Earth-Bound DM |

Press & Spergel (1985,ApJ), Gould (1987, ApJ),...

Small 6,,, — single collision, large 0,,, > multiple collisions.




| Earth-Bound DM |

Capture fraction f¢
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Bramante et al. (PRD, 2022)
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e Lets do some estimate:

For DM mass of 1 GeV and ¢, = 107%% cm?

DM density (assuming they uniformly distribute over the
Earth-volume)

~ 3% 10 GeV/cm?
]} =1

» 15 orders of magnitude larger than the Galactic DM density!



" _ e Dimensionless
DM shrinks | profile function:
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Ray, (with Mckeen, Morissey, Pospelov, Ramani) [PRL, 2023]



Signal at Super-K |
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e Earth-bound DM, of mass GeV scale have an enormously
large surface density.

* Their detection via scattering is almost impossible as they
acquire very little amount kinetic energy (0.03 eV).

e How to detect them?

Ray, [PRL, 2023]

Our proposal: simply look at their annihilation signature inside large-

volume detectors (annihilation is not limited to the tiny kinetic energy)!




e Using existing di-nucleon annihilation searches at Super-K

Ray, (with Mckeen, Morissey, Pospelov, Ramani) [PRL, 2023]
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Ray, (with Mckeen, Morissey, Pospelov, Ramani) [PRL, 2023]

10_26 10—26
10_28 10—28
cr 10_30 (\'l_' 10—30
- -
O O
<< 10732 << 10722
1074 . i 10734 |f =107 |
|f, = 10-8 % XENON—1T_ W XENON—1T_
10—361 . . . 5 N L ™ 10—361 . . . 5 PE—r— =
‘IIIIIIIII mX[GeV] .......> mX[GeV]

DM shrinks towards

Evaporation the Earth-core




o Lets illustrate our result in a concrete phenomenological
model.

1 2 ¢ 1 2
2z = - Z <F/,4v> - EFI;VFW T Emj’ <A/,4> +)((W'MD/4 N m)())(

x : Dirac fermion which can couple to a dark photon A’

* The perturbative cross section for y fto scatter on a
nucleus (Z, A) is related to the model parameters

l6nZ*aa e zﬂfA

0 —
XA 4
mA/

Pospelov, Ritz, Voloshin (PLB, 2008)



* We are interested in the following channel

yy —> A’A" with A’ —> SM + SM (say e™ + ¢e7)

* To ensure the decay within the Super-K fiducial volume,
we restrict the decay length ycz, < 1 m.



Unprecedented

- sensitivity on parts
of the parameter
space.
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e Earth-bound DM if sufficiently heavy, shrinks tfowards the
core, leading to a negligible surface density.

gravity dominates over the diffusion processes

e Annihilation to neutrinos can occur at the Earth-core, if
Earth-bound DM if sufficiently heavy. Since the number
density is huge, annihilation rate is also fairly large.

* Neutrinos, because of their feeble interactions, can reach
detectors like Super-K, IceCube-DeepCore, and searching
these annihilated neutrinos can provide sensitivity to DM

Interactions.
Pospelov & Ray [JCAP, 2024]



* We consider two phenological scenarios:
Lower energy neutrinos from the stopped pion decay

Higher energy neutrino lines from direct annihilation

Detector
DM e

Detector
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Pospelov & Ray [JCAP, 2024]
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We use the Super-K DSNB search result with pure-water
(22.5 kton X 2970 days) to derive the exclusion limits.

Super-Kamiokande (PRD, 2021)




Energy Neufrinos |

Pospelov & Ray [JCAP, 2024]
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We use the Super-K DSNB search result with 0.01 wt% gadolinium
loaded water (22.5 kton X 552.2 days) to derive the exclusion limits

Super-Kamiokande (APJL, 2023)

*Gd-loaded water gives competitive limit (as compared to the pure-water
limits) although the data is 5 times less.
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DM annihilation directly to neutrinos yields a line at £, = m,

high-energy neutrinos can also come from yy — WTW~, bb, 17,
giving a continuum spectra up to £, =m, (or yy — A’A" = 4v).

e We search the "neutrino-line” signature in the IceCube
DeepCore data with a total live-time of 6.75 years.

* We use the null-detection of the neutrino-line signature in
the IceCube DeepCore data to derive the exclusions

vv

bb TT ' ,
Mass (GeV) P s | <10 a5 | <10 £ .. | 210 ¥
5 139 139.3 ' ’

10 396 7.0 1.37

20 29.7 0.97 0.27

35 7.41 0.22 0.09

50 3.51 0.096 0.05

100 1.39 0.038 0.027

IceCube (PRD,2022)
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Pospelov & Ray [JCAP, 2024]
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We probe up tfo f, > 1078 for significantly heavy Earth-bound DM.
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; Ear’rhasu the most opﬂmal bt ]

e Earth accumulates fewer number of DM particles as

2 2
(by a factor of ~ R@/RQ)

compared to the Sun.

Flux for Earth-bound DM is ~ 4000 larger than the neutrino flux from Sun.

This is quite different from standard weakly-interacting paradigm where Sun is the
most-optimal detector, and hence, has been studied over the past few decades.



* Nuclear Reactors act as powerful probe of Earth-bound DM
detection.

Earth-bound DM Fast neufron

g7 ar B = J7apdll
Up-scattered DM

Detector

Nuclear Reactor similar scheme as CELUNS detection

Ray, (with Ema, Pospelov) [2402.03431]
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e Accumulation of Earth-bound DM. Q

e Distribution of Earth-bound DM. Q

e Up-scattering of Earth-bound DM inside Nuclear Reactors by
fast neutrons (typically of MeV energy).

We use CONUS experiment setup for our analysis.

e Subsequent propagation through shielding and detection via
scattering.

We use MC simulations for the propagation along with provide an
analytical recipe.



Ray, (with Ema, Pospelov) [2402.03431]
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Smaller regions: includes only the DM particles which do not experience any collisions.
Bigger regions: includes the full multiple-scattering contributions.
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Tail of the distribution is utterly important. Many previous studies (e.g.,
Bramante et al [PRD, 2017], Leane et al. [JCAP, 2022] etc) neglect this simple

yet important point.



. Summary |

AT

e Earth accumulates significant number of DM particles from

the Galactic halo, leading to a DM density 15 orders of
magnitude larger than the Galactic DM density!

e Despite their prodigious abundance, their detection is
extremely challenging as they acquire tiny amount of Kinetic

energy.

e Annihilation of such Earth-bound DM at large-volume
neutrino detectors, provides a novel way for their detection
and can be used fo probe strongly-interacting DM component.

o If Earth-bound DM do not annihilate among themselves, up-
scattering them inside nuclear reactors provides a powerful
probe of their detection.



Y How to detect rare species of DM?

* Look at the e ? ﬂ .
Earth-bound DM! ’.) ‘

& % o %

Questions & Comments: anupam.ray@berkeley.edu
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* Major portion of the DM could be weakly-interacting, and
can have baryon-number-violating interactions.

~
~
~
~
~

~ —

R VAVAVAVANY )
L4
L4

L4

L4

>
Recycling . X1

Ray, (with Ema, McGhee, Pospelov)
[in prep.]

Leads to anomalous heating of cold Neutron Stars.



e Anomalous neutron star heating via captured DM annihilation (or via

kinetic energy transfer).

Leane et al [2405.05312]
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Coldest NS so far seen has T ~ 40,000 K (significantly larger than these estimatest!)




e Total amount of DM captured inside a neutron star is minuscule
as compared to the fotal neutron mass.
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Ray, (with Ema, McGhee, Pospelov) [in prep.]
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