Phenomenology of *b*-associated TeV scale scalar production with baryon-number violation in $t\psi$ final states at the LHC

Denis Rathjens

May 23rd, 2024

- If matter and antimatter symmetric, gamma rays from annihilation expected at contact borders (right)
- Not observed, need to explain baryon asymmetry from early universe on
- $\rightarrow\,$ Need to satisfy Sakharov conditions

 - ② B-violating interaction out of thermal equilibrium → must stop before recombination
 - **3** C and CP violation \rightarrow favour matter
 - Let's introduce a model with $\Delta \mathcal{B} = 2$

TeV scale scalar with baryon-number violation model

- Combine dark matter (DM) with baryon asymmetry mechanism
- There are several versions of this (ours: arXiv:2404.14844v2) with a massive scalar mediator X, a fermionic DM candidate ψ , production couplings to down-type quarks, and decay couplings to up-type quarks

$$\mathcal{L} \supset \lambda_{\alpha i} X_{\alpha} \psi u_{i}^{c} + \lambda_{\alpha i j}^{\prime} X_{\alpha}^{*} d_{i}^{c} d_{j}^{c} + \frac{m_{\psi}}{2} \bar{\psi}^{c} \psi + \text{h.c.}$$
(1)

- Assuming all quark couplings are equal, production at LHC dominated by *d-s* fusion (limits *m_X* > 3.4 TeV)
- \bullet No principal reason for that assumption to be true \rightarrow look at third generation case

$$\mathcal{L}_{\text{single top}} \supset \lambda_{\psi t} X_1 \psi t^c + \lambda'_{db} X_1^* d^c b^c + \lambda'_{sb} X_1^* s^c b^c + \text{h.c.}$$
(2)

- Simplification $m_{X_1} \ll m_{X_2}$, suppresses loop-level interference terms
- Production (decay) coupling $\lambda_1 = \lambda'_{db} = \lambda'_{sb} (\lambda_2 = \lambda_{\psi t})$

How could one look for this?

$\begin{array}{c} b \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $						
\bar{s}/\bar{d}	$\searrow \psi$		ℓ^+			
		cross section σ [fb]				
• In principle, can have any up-type quark	λ_1	λ_1 λ_2				
• In principic, can have any up-type quark		0.1	0.2	0.5	1.0	
and phi decay of $X ightarrow$ monojets	0.1	2.22	5.42	9.12	10.3	
· Character former on ten comparie	0.2	2.40	8.13	25.5	36.3	
• Chose to focus on top scenario \rightarrow	0.5	2.47	9.62	51.1	132	
monotops	1.0	2.57	10.3	61.1	210	

- m_{X_1} expected TeV scale \rightarrow boost
- $\psi \mathcal{O}(\text{GeV})$ DM candidate

Table: Cross sections for $m_{X_1} = 1$ TeV. The cross section is inversely proportional to $2|\lambda_1|^2 + |\lambda_2|^2$. 4/13

Analysis strategy and BDT optimization

- Delphes-level description with modified (b-tag eff. & jet radius) CMS card setup
- Select leptonic top decays to avoid dependence on boosted hadronic top modeling
- One ℓ (e or μ) with p_{T} >30 GeV, non-isolated
- We remove the leading lepton from any jet it might be merged with (important, later)
- At least two b-tagged jets with $p_{\rm T}$ >50 (30) GeV for (sub-)leading jets
- $p_{\mathrm{T}}^{\mathrm{miss}} > 50 \; \mathrm{GeV}$
- Train Boosted Decision Tree (BDT) after baseline selection (above) for several coupling points λ_i = 0.1, 0.3, 1.0 vs tt
 t t, single top, W+jets, DY+jets, and diboson backgrounds
- Optimized hyperparameters (NTree and MaxDepth) depending on m_X
- Set limits for cut on BDT output chosen by largst significance

Features distinguishing Monotop from SM backgrounds

- Lepton and b-tagging requirements preselect mostly $t\bar{t}$ and single top as SM backgrounds
- Probed a list of variables: p_T and η of the b_1 , b_2 , l, and $b_1 + \ell$, $\Delta R(b_1, b_2)$, $\Delta R(b_1, \ell)$, $\Delta \phi(b_2, p_T^{\text{miss}})$, $\Delta \phi(\ell, p_T^{\text{miss}})$, $m_T(b_1, p_T^{\text{miss}})$, $m_T(\ell, p_T^{\text{miss}})$
- Most significant azimuthal angular difference between b_2 and $p_{\rm T}^{\rm miss}$ and angular distance between ℓ and b_1

Results compared to existing monotop searches

$$\mathcal{L} = \phi \bar{\mathrm{d}}_i^C [(a_q)^{ij} + (b_q)^{ij} \gamma^5] \mathrm{d}_j + \phi \bar{\mathrm{t}} [a_\psi + b_\psi \gamma^5] \psi + \mathrm{h.c.}$$

- Hadronic monotop analysis by CMS (left, see model Lagrangian) vs our phenomenological results at 300/fb (right)
- Traditional monotop analyses veto b-tagged jets beyond the first
- Accounting for differences in int. Lum. and *t*-decay branching ratio, similar performance on exclusion (bar realistic systematics for pheno)
- Actually enter region for $m_{X_1} = 1$ TeV where X_1 would hadronize

Why removing the leading lepton from its jet is important

• Leptons are to a jet just clusters to be gobbled up

- Jet radius is 0.4 with anti-kT jet algorithm as in realistic CMS
- If we don't treat the lepton, it often becomes part of b_1 (left)
- This is not as good in separation power as removing it manually (right)
- Cause: Lepton clustering changes jet direction drastically (1/3 of the)energy in $b + \ell$ on average in ℓ)
- Also issue of doublecounting energy of lepton separately and again in jet

The fallibility of jet clustering algorithms under strong boosts even in semi-leptonic decays

High top p_T

Credits: Gregor Kasieczka

• Top momentum boost collimates angles of decay products (top)

boost

- Anti-kT jet clustering algorithm produces circular jets, as long as jet centers farther apart than jet radius
- Between 0.4 and 0.8, more energetic jet will impact less energetic jet shape
- $p_{\mathrm{T}}(\ell) < p_{\mathrm{T}}(b_1)
 ightarrow$ no issue?

A brief description of a Scale-Invariant Filtered Tree (SIFT)

• An alternative algorithm for jet clustering designed to be fully scale-invariant is e.g. SIFT

$$\delta_{AB}^{\rm SIFT} \equiv \frac{\Delta M_{AB}^2}{E_{\rm TA}^2 + E_{\rm TB}^2}$$

• Can relate to collider angular coordinates with $\xi = p_T/E_T$: $\Delta m_{AB}^2 = 2E_T^A E_T^B (\cosh \Delta y_{AB} - \xi^A \xi^B \cos \Delta \phi_{AB})$

- Take angular component of measure as modified angular distance: $\Delta \tilde{R}^2 = \cosh \Delta y_{AB} - \xi^A \xi^B \cos \Delta \phi_{AB}$
- Mitigates azimuthal differences in non-relativistic limit
- $\rightarrow\,$ Avoids clustering massive/low momentum objects
 - Denominator can also be reformed with $u := \ln(E_T/[\text{GeV}])$: $\epsilon_{AB} = (2 \cosh \Delta u_{AB})^{-1}$

$$\epsilon_{AB} = (200 \mathrm{SH} \Delta u_{AB})$$

Prefers disparate scale pairings

Would SIFT cluster that lepton?

- In boosted regime, fake mass is generated by large angle soft radiation randomly clustered into jets
- Softdrop is the usual counterpoison, SIFT has a similar inbuilt measure during clustering

- Can assume $E_{\rm T}(\ell) = E_{\rm T}(b_1)/2 \rightarrow \epsilon_{AB} = 0.4$
- \bullet Will cluster for $\Delta \tilde{R}^2/2 < 0.8 \rightarrow$ even more often than anti-kT
- Even using boost-specialized algorithm, boosted lepton needs special treatment

Aside on astrophysical constraints

Fig. 2. Illustration of binary pulsar PSR B1913+16.

DOI:10.2436/20.7010.01.189

- Astrophysics showed us there's an abundance of matter
- Used high energy particle physics to look for mechanism
- Full circle: Binary pulsars can also be used to constrain possible coupling space
- See Adrian Thompson's talk on saturday

Conclusions

- Among the principal unsolved issues of physics, the way to a grand unified theory is unclear, dark energy is hard to pin down, dark matter has lots of possible solutions
- Baryon asymmetry stands out as a large effect with an unknown mechanism, but well-known conditions for solutions
- Presented a baryon-number-violating phenomenological study looking for third generation quark couplings in b-jet-associated monotop events arXiv:2404.14844v2
- Fully complementary to regular monotop studies by selections, similar expected reach despite lower branching ratio (looked at leptonic decays)
- Treatment of boosted lepton very important
- Boosted physics in general becomes more important at higher energies for reconstruction \rightarrow need to develop better scale-invariant tools
- Can be creative with source of constraints, collider or astronomy