Flavor-violating new physics at the intensity frontier

mhostert@g.harvard.edu

Going beyond the Standard Model with Muons The "progress axes" for muon facilities

Rare decay searches (Intensity & Precision)

 $10^{16} - 10^{18}$ muons in clean environments

This talk: Five-track events at the Mu3e experiment

This talk: Muon-induced baryon number violation at Mu2e

Lepton Flavor Beyond the Standard Model

Accidental symmetry in the Standard Model

$$U(1)_B \times U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}} \quad \text{or}$$

Neutrino masses violate lepton flavor

Lucky to have discovered this

"Earth-sized flavor interferometers"

$$U(1)_{B+L} \times U(1)_{B-L} \times U(1)_{L_e-L_{\mu}} \times U(1)_{L_e+L_{\tau}-2L_{\mu}}$$

J. Heeck (arXiv:1610.07623)

$$\nu_{\alpha} \rightarrow \nu_{\beta}$$

Lepton Flavor Beyond the Standard Model

Accidental symmetry in the Standard Model

$$U(1)_B imes U(1)_{L_e} imes U(1)_{L_{\mu}} imes U(1)_{L_{\tau}}$$
 or

But in charged lepton sector, this is unobservable:

$$U(1)_{B+L} \times U(1)_{B-L} \times U(1)_{L_e - L_{\mu}} \times U(1)_{L_e + L_{\tau} - 2L_{\mu}}$$

J. Heeck (arXiv:1610.07623)

$$\mathscr{B}(\mu \to e\gamma) \sim \frac{3\alpha}{32\pi} \frac{m_{\nu}^4}{M_W^4} \sim 10^{-53}$$

Any measurement of a non-zero rate provides unambiguous evidence for new physics.

Lepton Flavor Beyond the Standard Model

Accidental symmetry in the Standard Model

$$U(1)_B imes U(1)_{L_e} imes U(1)_{L_{\mu}} imes U(1)_{L_{\tau}}$$
 or

$$\Delta(L_e - L_\mu) = 2$$

$$U(1)_{B+L} \times U(1)_{B-L} \times U(1)_{L_e - L_{\mu}} \times U(1)_{L_e + L_{\tau} - 2L_{\mu}}$$

J. Heeck (arXiv:1610.07623)

Muons are the lamppost for this symmetry factor:

Nucleus

Going beyond the Standard Model Muon facilities

Huge progress is coming. And soon!

L. Calibbi, G. Signorelli, arXiv:1709.00294

Reaction	Present limit	Expected Limit	Experime
$\mu^+ \to e^+ \gamma$	$< 4.2 \times 10^{-13}$	5×10^{-14}	MEG II
$\mu^+ \to e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	10^{-16}	Mu3e
$\mu^-\mathrm{Al} \to e^-\mathrm{Al} \ ^\dagger$	$< 6.1 \times 10^{-13}$	10^{-17}	Mu2e, COM
$\mu^{-}\mathrm{Si/C} \rightarrow e^{-}\mathrm{Si/C}^{\dagger}$	_	5×10^{-14}	DeeMe

Snowmass 2021 Rare and Precision Frontier Report

Going beyond the Standard Model Effective Field Theories

Very useful for interpreting cLFV results but not the only possibility.

Extract information on UV physics from low-energy observables.

Beyond Effective Field Theory

New physics exclusively at low scale?

$\mathscr{L}(SM) + = \mathscr{L}(new fields)$

$$\mathscr{L}(\mathrm{SM}) + = \mathscr{L}(\mathrm{new \ fields}) + \frac{1}{\Lambda^n} \mathscr{O}(\mathrm{SM}, \mathrm{new \ fields})^{4+n} + \frac{1}{\Lambda^n} \mathscr{O}(\mathrm{SM})^{4+n}$$

E.g., axion-like-particles, $\partial_{\mu}a(\mu\gamma^{\mu}e)$, QCD Axions, Majorons, Flavons, etc

New physics exclusively at high scale?

$$\mathscr{L}(\mathrm{SM}) + = \frac{1}{\Lambda^n} \mathscr{O}(\mathrm{SM})^{4+n}$$

L. Calibbi, D. Redigolo, R. Ziegler, J. Zupan, <u>10.1007/JHEP09(2021)173</u>

New particle production in μ^+ decays

Multi-electron final states at Mage Mu5e

MH, T. Menzo, M. Pospelov, J. Zupan, <u>10.1007/JHEP10(2023)006</u>

See also $\mu^+ \rightarrow e^+ a (\gamma^* \rightarrow e^+ e^-)$ for low masses,

S. Knapen, T. Opferkuch, D. Redigolo, arXiv:2311.17915

(1) $\mu^+ \rightarrow e^+ X_{inv}$ — Peak in the Michel spectrum.

Current limits: $\mathscr{B} \lesssim 10^{-5}$ Projected reach: $\mathscr{B} \leq 10^{-8}$

AK. Perrevoort (Ph.D. thesis), <u>10.11588/heidok.00024585</u> L. Calibbi, D. Redigolo, R. Ziegler, J. Zupan, <u>10.1007/JHEP09(2021)173</u>

See also $\mu^+ \to e^+ a(\gamma^* \to e^+ e^-)$ for low masses, S. Knapen, T. Opferkuch, D. Redigolo, arXiv:2311.17915

(2) $\mu^+ \rightarrow e^+(X \rightarrow e^+e^-)$ – Visible resonance

Current limits: $\mathscr{B} \lesssim 3 \times 10^{-12}$ Expected reach: $\mathscr{B} \lesssim 10^{-15}$ or better

J. Heeck, W. Rodejohann, <u>10.1016/j.physletb.2017.11.067</u> SINDRUM-I coll., <u>10.1016/0370-2693(86)90339-4</u>

11

(1) $\mu^+ \rightarrow e^+ X_{inv}$ — Peak in the Michel spectrum.

Current limits: $\mathscr{B} \lesssim 10^{-5}$ Projected reach: $\mathscr{B} \leq 10^{-8}$

AK. Perrevoort (Ph.D. thesis), <u>10.11588/heidok.00024585</u> L. Calibbi, D. Redigolo, R. Ziegler, J. Zupan, <u>10.1007/JHEP09(2021)173</u>

See also $\mu^+ \rightarrow e^+ a(\gamma^* \rightarrow e^+ e^-)$ for low masses, S. Knapen, T. Opferkuch, D. Redigolo, arXiv:2311.17915

(2) $\mu^+ \rightarrow e^+(X \rightarrow e^+e^-)$ — Visible resonance

Current limits: $\mathscr{B} \leq 3 \times 10^{-12}$ Expected reach: $\mathscr{B} \lesssim 10^{-15}$ or better

J. Heeck, W. Rodejohann, <u>10.1016/j.physletb.2017.11.067</u> SINDRUM-I coll., <u>10.1016/0370-2693(86)90339-4</u>

(3) $\mu^+ \rightarrow e^+ \nu \nu (X \rightarrow e^+ e^-)$ — Visible resonance + missing E

Projected reach: $\mathscr{B} \leq 10^{-9} - 10^{-11}$.

B. Echenard, R. Essig, Y.M. Zhong, 10.1007/JHEP01(2015)113 AK. Perrevoort (Ph.D. thesis), <u>10.11588/heidok.00024585</u> S. Knapen, T. Opferkuch, D. Redigolo, arXiv:2311.17913

(4)
$$\mu^+ \to e^+(X \to e^+e^-e^+e^-)$$
 — This talk

Projected reach: $\mathscr{B} \leq 10^{-12} - 10^{-14}$

Cascade of 2-body decays.

Also, the first study of SM five-track rate.

MH, T. Menzo, M. Pospelov, J. Zupan, <u>10.1007/JHEP10(2023)006</u>

(1) $\mu^+ \rightarrow e^+ X_{inv}$ — Peak in the Michel spectrum.

Current limits: $\mathscr{B} \lesssim 10^{-5}$ Projected reach: $\mathscr{B} \lesssim 10^{-8}$

AK. Perrevoort (Ph.D. thesis), <u>10.11588/heidok.00024585</u> L. Calibbi, D. Redigolo, R. Ziegler, J. Zupan, 10.1007/JHEP09(2021)173

See also $\mu^+ \rightarrow e^+ a(\gamma^* \rightarrow e^+ e^-)$ for low masses, S. Knapen, T. Opferkuch, D. Redigolo, arXiv:2311.17915

(2) $\mu^+ \rightarrow e^+(X \rightarrow e^+e^-)$ — Visible resonance

Current limits: $\mathscr{B} \leq 3 \times 10^{-12}$ Expected reach: $\mathscr{B} \leq 10^{-15}$ or better

J. Heeck, W. Rodejohann, <u>10.1016/j.physletb.2017.11.067</u> SINDRUM-I coll., <u>10.1016/0370-2693(86)90339-4</u>

(3) $\mu^+ \rightarrow e^+ \nu \nu (X \rightarrow e^+ e^-)$ — Visible resonance + missing E

Projected reach: $\mathscr{B} \leq 10^{-9} - 10^{-11}$.

B. Echenard, R. Essig, Y.M. Zhong, 10.1007/JHEP01(2015)113 AK. Perrevoort (Ph.D. thesis), <u>10.11588/heidok.00024585</u> S. Knapen, T. Opferkuch, D. Redigolo, arXiv:2311.17913

(4)
$$\mu^+ \to e^+(X \to e^+e^-e^+e^-)$$
 — This talk

Projected reach: $\mathscr{B} \leq 10^{-12} - 10^{-14}$

Cascade of 2-body decays.

Also, the first study of SM five-track rate.

MH, T. Menzo, M. Pospelov, J. Zupan, <u>10.1007/JHEP10(2023)006</u>

Flavor-preserving version of (4).

the heavy "dark" neutrino N to electron and muon.

M. Hostert

(1) $\mu^+ \rightarrow e^+ X_{inv}$ — Peak in the Michel spectrum.

Current limits: $\mathscr{B} \lesssim 10^{-5}$ Projected reach: $\mathscr{B} \leq 10^{-8}$

AK. Perrevoort (Ph.D. thesis), <u>10.11588/heidok.00024585</u> L. Calibbi, D. Redigolo, R. Ziegler, J. Zupan, 10.1007/JHEP09(2021)173

See also $\mu^+ \to e^+ a(\gamma^* \to e^+ e^-)$ for low masses, S. Knapen, T. Opferkuch, D. Redigolo, arXiv:2311.17915

(2) $\mu^+ \rightarrow e^+(X \rightarrow e^+e^-)$ — Visible resonance

Current limits: $\mathscr{B} \leq 3 \times 10^{-12}$ Expected reach: $\mathscr{B} \leq 10^{-15}$ or better

J. Heeck, W. Rodejohann, <u>10.1016/j.physletb.2017.11.067</u> SINDRUM-I coll., 10.1016/0370-2693(86)90339-4

(3) $\mu^+ \rightarrow e^+ \nu \nu (X \rightarrow e^+ e^-)$ — Visible resonance + missing E

Projected reach: $\mathscr{B} \leq 10^{-9} - 10^{-11}$.

B. Echenard, R. Essig, Y.M. Zhong, 10.1007/JHEP01(2015)113 AK. Perrevoort (Ph.D. thesis), <u>10.11588/heidok.00024585</u> S. Knapen, T. Opferkuch, D. Redigolo, arXiv:2311.17913

14

(4) $\mu^+ \rightarrow e^+(X \rightarrow e^+e^-e^+e^-)$ — Two visible resonances

Projected reach: $\mathscr{B} \leq 10^{-12} - 10^{-14}$

Cascade of 2-body decays.

Also, the first study of SM five-track rate.

MH, T. Menzo, M. Pospelov, J. Zupan, <u>10.1007/JHEP10(2023)006</u>

Flavor-preserving version of (4).

the heavy "dark" neutrino N to electron and muon.

M. Hostert

(1) $\mu^+ \rightarrow e^+ X_{inv}$ — Peak in the Michel spectrum.

Current limits: $\mathscr{B} \lesssim 10^{-5}$ Projected reach: $\mathscr{B} \leq 10^{-8}$

AK. Perrevoort (Ph.D. thesis), <u>10.11588/heidok.00024585</u> L. Calibbi, D. Redigolo, R. Ziegler, J. Zupan, <u>10.1007/JHEP09(2021)173</u>

See also $\mu^+ \rightarrow e^+ a(\gamma^* \rightarrow e^+ e^-)$ for low masses,

S. Knapen, T. Opferkuch, D. Redigolo, arXiv:2311.17915

(2) $\mu^+ \rightarrow e^+(X \rightarrow e^+e^-)$ – Visible resonance

Current limits: $\mathscr{B} \leq 3 \times 10^{-12}$ Expected reach: $\mathscr{B} \leq 10^{-15}$ or better

J. Heeck, W. Rodejohann, <u>10.1016/j.physletb.2017.11.067</u> SINDRUM-I coll., 10.1016/0370-2693(86)90339-4

(3) $\mu^+ \rightarrow e^+ \nu \nu (X \rightarrow e^+ e^-)$ — Visible resonance + missing E

Projected reach: $\mathscr{B} \leq 10^{-9} - 10^{-11}$.

B. Echenard, R. Essig, Y.M. Zhong, 10.1007/JHEP01(2015)113 AK. Perrevoort (Ph.D. thesis), <u>10.11588/heidok.00024585</u> S. Knapen, T. Opferkuch, D. Redigolo, arXiv:2311.17913

Rare muon decays at Mu3e Higgsed $U(1)_d$ — more is different

mixes with hypercharge:

If
$$m_{h_d} > 2m_{\gamma_d} > 4m_e$$
, o

Higgsed dark $U(1)_d$: dark photon (γ_d) gets a mass from the dark Higgs (h_d), and kinetically

$$\mathscr{L}_{\mathrm{Kin}} \supset -\frac{\varepsilon}{2c_W} F^d_{\mu\nu} B^{\mu\nu}$$

dark Higgs decays to four leptons in cascades of 2-body decays.

Simple and well-motivated model — multiplication of leptons comes "for free."

Rare muon decays at Mu3e Higgsed $U(1)_d$ — more is different

Recently targeted by a new five-track search at NA62.

$$K^+ \to \pi^+(h_d \to \gamma_d \gamma_d \to 2(e^+e^-))$$

MH, M. Pospelov, <u>10.1103/PhysRevD.105.015017</u> NA62 coll., <u>10.1016/j.physletb.2023.138193</u>

Higgsed dark $U(1)_d$: dark photon (γ_d) gets a mass from the dark Higgs (h_d), and kinetically

$$\mathscr{L}_{\mathrm{Kin}} \supset -\frac{\varepsilon}{2c_W} F^d_{\mu\nu} B^{\mu\nu}$$

If $m_{h_d} > 2m_{\gamma_d} > 4m_e$, dark Higgs decays to four leptons in cascades of 2-body decays.

Simple and well-motivated model — multiplication of leptons comes "for free."

Searches at kaon, e+e- colliders, and LHC target the coupling of h_d with the Higgs and ε , which can be small. **Consider now new operators** with cLFV couplings to leptons. e^{-}

Rare muon decays at Mu3e Higgsed $U(1)_d$

$$Y_{e\mu}\overline{L}_{\mu}He_{R} + Y_{\mu e}\overline{L}_{e}H\mu_{R} \end{pmatrix} \stackrel{\text{EW}}{\longrightarrow} h_{d} \left(y_{e\mu}\overline{\mu}_{L}e_{R} + y_{\mu e}\overline{e}_{L}\mu_{R} \right), \qquad y_{e\mu} = \frac{Y_{e\mu}}{\sqrt{2}}$$

Rare muon decays at Mu3e Higgsed $U(1)_d$

$$He_{R} + Y_{\mu e}\overline{L}_{e}H\mu_{R} \end{pmatrix} \stackrel{\text{EW}}{\longrightarrow} h_{d} \left(y_{e\mu}\overline{\mu}_{L}e_{R} + y_{\mu e}\overline{e}_{L}\mu_{R} \right), \qquad y_{e\mu} = \frac{Y_{e\mu}v_{\text{EW}}}{\sqrt{2}\Lambda}$$

Rare muon decays at Mu3e Mu3e at PSI

Aiming for $\mathscr{B}(\mu^+ \rightarrow e^+ e^+ e^-) < 10^{-16}$

(4 orders of magnitude improvement on current limits).

Phase-I: $\gtrsim 2 \times 10^{15} \mu^+$ decays Phase-II: $\gtrsim 5 \times 10^{16} \mu^+$ decays

- 1) About 10^8 muons/s from 2.4 mA proton beam,
- 2) Low pion contamination, $< 2 \times 10^{-7}$ fraction,
- 3) Each layer has about $\sim 0.1\%$ radiation length.
- 4) B = 1 T magnetic field

30 MeV e^+/e^- deflected by about 2° in 1 % of radiation length due to multiple scattering.

Rare muon decays at Mu3e A theorist's fast MC for the detector

- Scikit-HEP phase-space package (unpolarized μ).
- energy-dependent Gaussians.*

* Technical design of the phase I Mu3e experiment <u>arXiv:2009.11690</u> M. Hostert

Rare muon decays at Mu3e A theorist's fast MC for the detector

- Generating muon decays with MadGraph5 v3.5.0 and 1) Scikit-HEP phase-space package (unpolarized μ).
- Place muons on surface of Mylar target.* 2)
- Draw helical trajectories with B = 1 T, smearing $|p_{\rho}|$ with 3) energy-dependent Gaussians.*
- Signal selection based on # of hits on scintillator layers. 4)

70 μ **m Mylar target** (decays on the surface)

* Technical design of the phase I Mu3e experiment <u>arXiv:2009.11690</u> M. Hostert

Rare muon decays at Mu3e A theorist's fast MC for the detector

- Generating muon decays with MadGraph5 v3.5.0 and 1) Scikit-HEP phase-space package (unpolarized μ).
- Place muons on surface of Mylar target.* 2)
- Draw helical trajectories with B = 1 T, smearing $|p_{\rho}|$ with 3) energy-dependent Gaussians.*
- Signal selection based on # of hits on scintillator layers. 4)

70 μ **m Mylar target** (decays on the surface)

* Technical design of the phase I Mu3e experiment <u>arXiv:2009.11690</u> M. Hostert

Rare muon decays at Mu3e The Standard Model rate

From MadGraph5 v3.5.0, we can calculate the total rate: Leading order in G_F and α — negligible MC stats error

 $\mathscr{B}(\mu^+ \to e^+ e^+ e^- e^+ e^- \nu \nu) \simeq 3.9 \times 10^{-10},$

but this is not all observable. Some simple truth-level cuts illustrate the challenge:

$$\mathscr{B}\left(\mu^+ \to e^+ e^+ e^- e^+ e^- \nu\nu \,|\, \mathrm{all}\, p_{\mathrm{e}^{\pm}}^{\mathrm{T,true}} > 10\,\mathrm{MeV}\right) =$$

The smallest decay rate measurement for fundamental particles involving 2nd and 3rd generation?

 $= (1.4 \pm 0.1) \times 10^{-14}$.

1 of 84 diagrams

Rare muon decays at Mu3e The Standard Model rate

From MadGraph5 v3.5.0, we can calculate the total rate: Leading order in G_F and α — negligible MC stats error

 $\mathscr{B}(\mu^+ \to e^+ e^+ e^- e^+ e^- \nu \nu) \simeq 3.9 \times 10^{-10},$

but this is not all observable. Some simple truth-level cuts illustrate the challenge:

$$\mathscr{B}\left(\mu^+ \to e^+ e^+ e^- e^+ e^- \nu\nu \,|\, \mathrm{all}\, p_{\mathrm{e}^{\pm}}^{\mathrm{T,true}} > 10\,\mathrm{MeV}\right) =$$

The smallest decay rate measurement for fundamental particles involving 2nd and 3rd generation?

When looking for neutrino-less channels, this SM rate will not be an issue. Missing energy cuts are very effective:

$$\mathscr{B}\left(\mu^{+} \to e^{+}e^{+}e^{-}e^{+}e^{-}\nu\nu \mid E_{\text{missing}}^{\text{true}} < 20 \text{ MeV}\right) = (8.9 \pm 0.3) \times 10^{-14}$$
$$\mathscr{B}\left(\mu^{+} \to e^{+}e^{+}e^{-}e^{+}e^{-}\nu\nu \mid E_{\text{missing}}^{\text{true}} < 10 \text{ MeV}\right) = (1.1 \pm 0.2) \times 10^{-15}$$

 $= (1.4 \pm 0.1) \times 10^{-14}$.

1 of 84 diagrams

Rare muon decays at Mu3e Neutrinoless five-track events

We find: $\sigma_{m_{\gamma_d}}/m_{\gamma_d}=2.3\%$

Rare muon decays at Mu3e Neutrinoless five-track events

We find: $\sigma_{m_{\gamma_d}}/m_{\gamma_d}=2.3\%$ and $\sigma_{m_{h_d}}/m_{h_d}=1.5\%$

Rare muon decays at Mu3e Signal selection for new physics

Five-track SM decay is not going to be a show-stopper.

The most worrisome backgrounds, however, will arise from accidentals.

• $\mu^+ \rightarrow e^+ e^- e^- \nu \nu$ in coincidence with $\mu^+ \rightarrow e^+ \nu \nu$, where one of the positrons produces a Bhabha electron.

Before any kinematical cuts, we estimate this rate to be around

3 out of 10^{12} muon decays with a stopped muon rate of $10^8 \,\mu/s$.

It would also be interesting to investigate four-track events with only $2(e^-e^+)$.

Further experimental studies are needed, but a background-free search may be possible.

Rare muon decays @ Mu3e $U(1)_d$ with charged Lepton Flavor Violation

Extracting more energy out of μ^- capture

Muon-induced baryon number violation

Mu2e on $\mu \rightarrow e$ **conversion** Mono-energetic conversion electrons

Mu2e on $\mu \rightarrow e$ **conversion** Mono-energetic conversion electrons

Conversion Electron: $E_{cap} \sim 104.9 \text{ MeV}$

Can we overshoot this value with new physics?

A genuine source of $E_{e^-} > E_{cap}$ in muon capture can arise if we destroy a baryon.

New light particles at Mu2e/COMET

Soft spectrum under μ DIO

Electron energy

$$\delta E_{e^-} = E_{e^-} - m_\mu$$

Apparent B Violating

B conservation

New light particles at Mu2e/COMET

Soft spectrum under μ DIO

Electron energy

$$\delta E_{e^-} = E_{e^-} - m_\mu$$

B conservation

λ0

 e^{-}

New light particles at Mu2e/COMET

Harder spectrum above μ DIO

Electron energy

$$\delta E_{e^-} = E_{e^-} - m_\mu$$

 μ^{-} N**B** conservation A' p^+ μ^{-} ν_{μ} p^+ n χ_1 μ^{-} χ_2 Viola A' p^+ χ_0 μ^{-} χ_1 p^+

• X0

 e^{-}

New light particles at Mu2e/COMET

Harder spectrum above μ DIO

Electron energy

$$\delta E_{e^-} = E_{e^-} - m_\mu$$

 μ^{-} Nconservation A' p^+ μ^{-} ν_{μ} m p^+ n χ_1 μ^{-} χ_2 Viol p^+ χ_0 μ^{-} χ_1 p^+

Dark particle production in $\mu \rightarrow e$ conversion Borrowing energy from the proton

Consider new dark particles χ_2, χ_1 , and χ_0 . Schematically:

 $\mathscr{L} \supset G_{\mu\rho}(\overline{\mu}\chi_2)(\overline{p}\chi_0) + A'_{\mu} \left(g_D \overline{\chi_2} \gamma^{\mu} \chi_1 + e\varepsilon J_{\rm EM} \right)$

Challenge 1) Proton decay Suppression by fine tuning the spectrum

Proton decay is suppressed by "off-shellness" and the small Q-value.

Even if $\tau_p \sim 10^{32}$ years, not excluded as protons decay to very soft tracks.

Proton decay to 7 particles via off-shell μ^+ and χ_2 (possibly A')

Challenge 2) Neutron stars Muon capture leads to a new equilibrium

The core of a Neutron Star may have as much as 5% of its particle number in muons.

The muons in the Neutron Star will destroy protons/neutrons

This process happens "fast" in the history of the star

$$\Gamma_{\mu^- p^+ \to \chi_1 \chi_2}^{\rm NS} = \langle \sigma_{\mu p} v \rangle n_p \simeq \Gamma_{\mu^- p^+}^{\rm Lab} \frac{n_p}{|\psi(0)|^2} > \frac{1}{10^6}$$

A new equilibrium is then found and the pressure drops.

To support observed mass-radius relations, χ_1 particles must have self-interactions.

Summary

Charged Lepton Flavor Violation is exotic enough and we are looking for it hard enough that new particles, light or heavy, may be first discovered through their flavor-violating couplings.

- 2) Sensitivity to new physics scale can be as strong as $\Lambda \sim 10^7 / 10^{15}$ GeV.
- 3) Measurement of the SM rate is more challenging, but may not be impossible.
- 4) New speculations for $\mu \rightarrow e$: tap into baryonic energy reservoir in muon capture
- 5) Experimental implication: spectrum of e^- as well as e^+ with higher energy endpoint.

Thank you for listening!

Matheus Hostert (<u>mhostert@g.harvard.edu</u>)

1) Suggested an additional muon decay target for Mu3e: $\mu \rightarrow 5e$ within and beyond the SM.

Back-up slides

Rare muon decays at Mu3e Relaxing requirements to just 2 electrons?

M. Hostert 01 (0) EB

