

How light can dark matter particles be?

limits on dark matter particle mass

improved limits on dark matter particle mass?

$m \lesssim \text{few} M_{\odot}$

See PDG for more

A lower bound on dark matter mass

Mustafa A. Amin

with Mehrdad Mirbabayi

RICE

arXiv:2211.09775

Phys. Rev. Lett (2024, in press)

Dark matter density dominated by sub-Hubble field modes $\implies m \gtrsim 10^{-19} \,\mathrm{eV}$

our argument

Dark matter density dominated by sub-Hubble field modes

1. [white-noise] excess in isocurvature density pert.

2. [free-streaming] suppression in adiabatic density pert.

1. and 2. not seen for $k < k_{\rm obs} \sim 10 \,{\rm Mpc}^{-1}$

 $m \gtrsim 10^{-19} \,\mathrm{eV}$

comparison with literature

$$m \gtrsim 2 \times 10^{-21} \text{ eV}$$

$$m \gtrsim 3 \times 10^{-21} \text{ eV}$$

$$m \gtrsim 3 \times 10^{-19} \text{ eV}$$

$$m \gtrsim 4 \times 10^{-21} \text{ eV}$$

$$m \gtrsim 10^{-19} \text{ eV}$$

*Above are model independent constraints, stronger constraints exist for particular models (Irsic, Xiao & McQuinn, 2020) We are being very conservative here by insisting on model independence. For some explicit models (eg. with strings), similar arguments can lead to $m > 10^{-12}$ eV! For thermal production, this becomes a keV!

- Irsic et. al $(2017) Ly\alpha$
- Nadler et. al (2021) MW satellites
- Dalal & Kravtsov (2022) dynamical heating of stars
- Powell et. al (2023) lensing

MA & Mirbabayi (2022)

details

*to us, results were "intuitively convincing" but quantitative calculation is non-trivial *analytic calculation of density spectra, see appendix of MA & Mirbabayi (2022) *numerical simulations + self-interactions, MA & Ling (in progress)

average density from field

 $\rho \approx m^2 \varphi^2$ $arphi(t, oldsymbol{x})$

$$\bar{\rho}(t) \approx m^2 \int d\ln q \, \frac{q^3}{2\pi^2} P_{\varphi}(t,q)$$

$$\frac{q^3}{2\pi^2} P_{\varphi}(t,q)$$

power spectrum of *field*, peaked at k_* $a(t)H(t) \ll k_*$ holds for field produced after inflation $k_* \ll a(t)m$ eventually non-relativistic to be DM

light, but non-relativistic scalar field during rad. dom.

dark matter density close to matter radiation eq.

Note: no significant zero mode of the field!

examples of models that can produce such spectra

inflationary gravitational particle production

(see review by Kolb & Long, 2023)

- dark photon dark matter
- scalars with non-minimal coupling
- gravitational production minimal coupling

non-gravitational production after inflation

phase transitions

- axion-like fields (including QCD)

resonant/tachyonic energy transfer from fields, strings

- eg. dark photon dark matter

also works for thermal production, but nothing new there

Note: no significant zero mode of the field

density power spectrum (isocurvature)

$$P_{\delta}^{(\text{iso})}(t,k) = \frac{m^4}{\bar{\rho}^2(t)} \int d\ln q \frac{q^3}{2\pi^2} \left[P_{\varphi}(q,t) P_{\varphi}(q,t) \right]^2$$
$$\approx \frac{m^4}{\bar{\rho}^2(t)} \int d\ln q \frac{q^3}{2\pi^2} \left[P_{\varphi}(q,t) \right]^2$$
$$\equiv \frac{2\pi^2}{k_{\text{wn}}^3}$$

independendent of k for $k \ll k_*$

 $k_{\rm wn}$ is defined by the above relation

*ignore gravitational potentials on these scales during radiation domination

density power spectrum (isocurvature)

 $P_{\delta}^{(\text{iso})}(t,k) \approx \frac{m^4}{\bar{\rho}^2(t)} \int d\ln q \, \frac{q^3}{2\pi^2} \left[P_{\varphi}(q,t) \right]^2 \equiv \frac{2\pi^2}{k_{\text{wp}}^3}$

 δ (slice)

*ignore gravitational potentials on these scales during radiation domination

density power spectrum (adiabatic)

density perturbations in DM sourced by gravitational potentials in rad.

density power spectrum (adiabatic)

free streaming !

*initial conditions = inhomogeneous gaussian random field

with S. Ling (Rice)

*initial conditions = inhomogeneous gaussian random field

with S. Ling (Rice)

S. Ling

δ (averaged over an axis)

S. Ling

δ (averaged over an axis)

our argument — quantitative

Dark matter density dominated by sub-Hubble field modes

1. white-noise isocurvature excess in isocurvature density pert. 2. free-streaming suppression in adiabatic density pert.

1. and 2. not seen for $k < k_{\rm obs} \sim 10 \,\mathrm{M}$

 $k_{\rm dev}, k_{\rm fs} \gtrsim k_{\rm obs}$

 $k_{\rm dev} \approx 10^{-2} k_*$ $k_{\rm fs}(t) \approx \frac{a^2 H m}{k_* \ln(2am/k_*)}$

$$[pc^{-1}]$$
 e.g. $[Ly\alpha]$

$$\gtrsim 10^{-19} \,\mathrm{eV}$$

Note that we did not need to know $k_*!$

is our bound conservative?

$$\frac{q^3}{2\pi^2} P_{\varphi}(t,q) = A(t) \left[\left(\frac{q}{k_*} \right)^{\nu} \theta(k_* - k) + \left(\frac{k_*}{q} \right)^{\nu} \theta(k_* - k) \right]$$

$$m \ge \begin{cases} 4 \times 10^{-19} \,\text{eV} & \text{for} \quad \{\nu, \alpha\} = \{3, 3\}, \\ 1 \times 10^{-12} \,\text{eV} & \text{for} \quad \{\nu, \alpha\} = \{2, 1\}, \\ 2 \times 10^{-12} \,\text{eV} & \text{for} \quad \{\nu, \alpha\} = \{3, 1\}. \end{cases}$$

sharp UV fall off (our conservative choice)

gravitational produced dark photons (but better bounds exist) axion-like particles with strings (preliminary)

is our bound conservative?

$$\frac{q^3}{2\pi^2} P_{\varphi}(t,q) = A(t) \left[\left(\frac{q}{k_*} \right)^{\nu} \theta(k_* - k) + \left(\frac{k_*}{q} \right)^{\nu} \theta(k_* - k) \right]$$

$$m \ge \begin{cases} 4 \times 10^{-19} \,\text{eV} & \text{for} \quad \{\nu, \alpha\} = \{3, 3\}, \\ 1 \times 10^{-12} \,\text{eV} & \text{for} \quad \{\nu, \alpha\} = \{2, 1\}, \\ 2 \times 10^{-12} \,\text{eV} & \text{for} \quad \{\nu, \alpha\} = \{3, 1\}. \end{cases}$$

$$\frac{(k_*)^{\text{th}}}{(k_*)^{\text{non.th}}} \sim \sqrt{\frac{m_{\text{pl}}}{m}} \gg 1 \quad \Longrightarrow m \gtrsim 1$$

sharp UV fall off (our conservative choice)

gravitational produced dark photons (but better bounds exist) axion-like particles with strings (preliminary)

$few \times keV$ thermal warm DM bounds

"model independent" -- applies to all gravitationally interacting, non-relativistic fields (scalar, vector, tensor ...)

"model independent" -- applies to all gravitationally interacting, non-relativistic fields (scalar, vector, tensor ...)

$k_{\rm fs} \ll k_J \sim a \sqrt{mH} \Longrightarrow {\rm stronger \ bound}$

stronger than Jeans bound

"model independent" -- applies to all gravitationally interacting, non-relativistic fields (scalar, vector, tensor ...)

 $m_{\rm bound} \propto k_{\rm obs}^2$ rapid improvement expected!

$k_{\rm fs} \ll k_J \sim a \sqrt{mH} \Longrightarrow {\rm stronger \ bound}$

redshift when DM becomes non-relativistic : $z_{\rm nr} \gtrsim 10^8$

* For MW satellites, only suppression is well constrained

Relativistic + Non-relativistic lattice simulations

* cannot just use CLASS/CAMB from the beginning

* we can explore ICs, free-streaming, eventual self-gravity of "isocurvature", selfinteractions etc.

with Nadler and Wechsler

with Ling

including all relevant physics in 3+1 d lattice sims.

*goal — provide accurate initial conditions for DM density pert.

growth from gravitational infall

Later, in a very sped up movie, we see **free streaming** wiping out the structure.

Later, in a very sped up movie, we see **free streaming** wiping out the structure.

Later, in a very sped up movie, we see **free streaming** wiping out the structure.

Later, in a very sped up movie, we see **free streaming** wiping out the structure.

Dark matter density dominated by sub-Hubble field modes $\implies m \gtrsim 10^{-19} \,\mathrm{eV}$ * very few assumptions, conservative, with room for "improvement" - observations + theory + numerics

bound good, detection better

extra small-scale structure

formation of mini-clusters/halos/solitons

some exciting phenomenology related to spin!

