How light can dark matter particles be?

Mustafa A. Amin
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limits on dark matter particle mass
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improved limits on dark matter particle mass ?
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main point

Dark matter density dominated by|sub-Hubble field modes

>m > 10717 eV




our argument

Dark matter density dominated by|sub-Hubble field modes

1. excess in 1socurvature density pert.
2. suppression in adiabatic density pert.

1. and 2. not seen for k£ < k. ps ~ 10 Mpc_1

\4

m > 10" eV



comparison with literature

m > 2 x 1072t eV Irsic et. al (2017) — Lya

m > 3 x 1072 eV Nadler et. al (2021) — MW satellites

m >3 x 107 YeV Dalal & Kravtsov (2022) — dynamical heating of stars
m >4 x 10721 eV Powell et. al (2023) — lensing

m Z 107 eV MA & Mirbabayi (2022)

*Above are model independent constraints, stronger constraints exist for particular models (Irsic, Xiao & McQuinn, 2020)

We are being very conservative here by insisting on model independence. For some explicit models (eg. with strings),
similar arguments can lead to m >10-12 eV! For thermal production, this becomes a keV!



details

*to us, results were “intuitively convincing” but quantitative calculation is non-trivial

*analytic calculation of density spectra, see appendix of MA & Mirbabayi (2022)

*numerical simulations + self-interactions, MA & Ling (in progress)



average density from field

o(t, ) s m2gp2 light, but non-relativistic scalar field during rad. dom.
3
o(t) = m? / d1n q QQ_WZ P,(t,q) dark matter density close to matter radiation eq.
A%Pf(t, q)
%P ot q)

power spectrum of field, peaked at ks . . .
a(t)H (t) < k.« holds for field produced after inflation -

ke < a(t)m eventually non-relativistic to be DM

Note: no significant zero mode of the field!



examples of models that can produce such spectra

inflationary gravitational particle production
(see review by Kolb & Long, 2023)
- dark photon dark matter

- scalars with non-minimal coupling

_ ensionalbroduction minimal '

non-gravitational production after inflation

phase transitions

- axion-like fields (including QCD)

resonant/tachyonic energy transfer from fields, strings

- eg.dark photon dark matter

Note: no significant zero mode of the field

also works for thermal production, but nothing new there 3



density power spectrum (isocurvature)
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independendent of k£ for £ < k.,
kwn 1S defined by the above relation

k —

*ignore gravitational potentials on these scales during radiation domination



density power spectrum (isocurvature)

. 4 3 2
PO (4 k)~ / ding L [P,(q,0)" = =

pA(1)

o (slice)
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*ignore gravitational potentials on these scales during radiation domination



density power spectrum (adiabatic)

density perturbations in DM sourced by gravitational potentials in rad.

, K
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density power spectrum (adiabatic)

density perturbations in DM sourced by gravitational potentials in rad.

I — Ps (t, k)

T

A(Zs (ta k)|cdm ~ 10_9 lOg

“scale invariant+log”
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free streaming !

a’Hm

field power at k. == kis(t) ~ ke In(2am/k.)

'sin(k/éfs)' .
L (k/k’fs.) |

AF(t, k)lcdm X

CLH kfs(t) k* ~ kwn

>

k —
*main idea is mostly “straightforward”, but the detailed calculation is not — see MA & Mirbabayi (2022)’s Appendix.



free streaming — numerical

with S. Ling (Rice) -i

~ |nitial
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*initial conditions = inhomogeneous gaussian random field



free streaming — numerical

with S. Ling (Rice) -i

mt=3290.0 ; .

— Current
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free streaming — numerical
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free streaming — numerical

JS. Ling

\B

- mi=9950.0

' —'Ini'tiai
— Current

0.005 0.010 0.050 0.100

a;m

0.500

0 (averaged over an axis)




our argument — quantitative

Dark matter density dominated by [sub-Hubble /field modes

\ 4

: — . . . o 1N—2
1. 'white-noise isocurvature excess in isocurvature density pert. Eiev ~= 10™ %k,
a’*Hm

2. suppression in adiabatic density pert. s () = k. In(2am /k,)

1. and 2. not seen for k < kops ~ 10Mpe™'  e.g. |Lya|

¥

m > 1077 eV

Note that we did not need to know k.. !



iIs our bound conservative!?

(£, q) = A(t)

4x 107" eV for {v,a} ={3,3}, sharp UV fall off (our conservative choice)
m><¢1x1072eV for {v,a}={2,1}, gravitational produced dark photons (but better bounds exist)
2x10712eV for {v,a} ={3,1}. axion-like particles with strings (preliminary)



iIs our bound conservative!?

(£, q) = A(t)

4x 107" eV for {v,a} ={3,3}, sharp UV fall off (our conservative choice)
m><¢1x1072eV for {v,a}={2,1}, gravitational produced dark photons (but better bounds exist)

2x10712eV for {v,a} ={3,1}. axion-like particles with strings (preliminary)

(k*)th mpl

(k*)non.th -~ - >1 =m ZJ few x keV thermal warm DM bounds



strengths

“model independent” -- applies to all gravitationally interacting,

non-relativistic fields (scalar, vector, tensor ...)
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“model independent” -- applies to all gravitationally interacting,
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kis < kj ~ avmH = stronger bound

stronger than |eans bound
1072 107! 100 101 102 103 104 & J



strengths

“model independent” -- applies to all gravitationally interacting,

non-relativistic fields (scalar, vector, tensor ...)

100,
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Mbound X kgbs rapid improvement expected!



upcoming

redshift when DM becomes non-relativistic : z,, > 10°

M\

* For MW satellites, only suppression is well constrained

Relativistic + Non-relativistic lattice simulations

with Ling W

* cannot just use CLASS/CAMB from the beginning

* we can explore ICs, free-streaming, eventual self-gravity of “isocurvature”, self-

interactions etc.



including all relevant physics in 3+1 d lattice sims.

crowth from gravitational infall

adiabatic flat 4+ isocurvature peak . .
free-streaming suppression

— |nitial 3
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*opal — provide accurate initial conditions for DM density pert.



Initially we see growth of long
wavelength structure due to
gravitational infall during
radiation domination

Later, in a very sped up movie,
we see free streaming wiping
out the structure.

*WKB solutions used for very late times
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wavelength structure due to

gravitational infall during

radiation domination

Later, in a very sped up movie,
we see free streaming wiping

out the structure.

*WKB solutions used for very late times




summary

Dark matter density dominated by sub-Hubble field modes

—19 ¥ . . . - ,
— m z 10 eV very few ajssumptlons, COHS@IV&JCI.VG, with room for “improvement
— observations + theory + numerics

bound good, detection better

extra small-scale structure

formation of mini-clusters/halos/solitons

some exciting phenomenology related to spin! 2
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