

DEPARTMENT OF ⁵⁶ PHYSICS

A comprehensive analysis of supernova neutrino-dark matter interactions

Deepak Sathyan May 23, 2024

[2406:xxxx] by Bhupal Dev, Doojin Kim, DS, Kuver Sinha, and Yongchao Zhang

Mitchell Conference

Two sectors of interest: Dark Matter and Neutrinos

- What is the nature of dark matter and its interactions?
 - What is its mass?
 - What is its spin?
 - Does it have nongravitational interactions?

Mass scale of dark matter

(not to scale)

Two sectors of interest: Dark Matter and Neutrinos

- Exploring neutrinos lacksquare
 - Majorana vs Dirac?
 - Normal/Inverted ordering?
 - Any non-standard interactions?
- Observed neutrino energy scale can tell us about different kinds of physics

C. Argüelles, A. Diaz, A. Kheirandish, A. Olivares-Del-Campo, I. Safa, A. Vincent [DOI: 10.22323/1.395.0542]

Two sectors of interest: Dark Matter and Neutrinos

Can these two sectors interact, and can we be sensitive to it?

• How do we observe ν -DM interactions?

Opacity
$$\tau = \sigma \int \frac{\rho_{\chi}}{m_{\chi}} d\ell$$

• How do we observe ν -DM interactions?

Opacity
$$\tau = \sigma \int \frac{\rho_{\chi}}{m_{\chi}} d\ell$$

- Modified neutrino flux $\Phi/\Phi_0 \sim e^{-\tau}$

• How do we observe ν -DM interactions?

Opacity
$$\tau = \sigma \int \frac{\rho_{\chi}}{m_{\chi}} d\ell$$

- Modified neutrino flux $\Phi/\Phi_0 \sim e^{-\tau}$
- Large τ obtained from:
 - large number density of DM
 - large distance for neutrinos to travel through DM

• How do we observe ν -DM interactions?

Opacity
$$\tau = \sigma \int \frac{\rho_{\chi}}{m_{\chi}} d\ell$$

- Modified neutrino flux $\Phi/\Phi_0 \sim e^{-\tau}$
- Large τ obtained from:
 - large number density of DM
 - large distance for neutrinos to travel through DM
- Motivates considering astrophysical sources:
 - local supernova
 - diffuse supernova neutrino background
 - high energy astrophysical neutrinos

- Upcoming neutrino experiments sensitive to SN neutrino flux, dominantly at MeV range
 - Can they probe effects of SN neutrinos passing through galactic DM halo?
 - Such a signal prefers higher number density of DM: $m_{\gamma} < 1 \, \text{GeV}$

DEEP UNDERGROUND NEUTRINO EXPERIMENT

- DM mass ranges from keV GeV
- neutrino energy scales ~ MeV

- How do we model such interactions?
 - Focus on light mediators < EW scale to maximize σ

C. Argüelles, A. Diaz, A. Kheirandish, A. Olivares-Del-Campo, I. Safa, A. Vincent [DOI: 10.22323/1.395.0542]

Scales of ν -DM interactions

Modeling ν -DM interactions

- Categorize models into DM, mediator types \bullet
- Three mediator types:
 - Scalar mediator
 - Fermion mediator
 - Vector mediator

- Secondary categorization is t-channel or s&u-channel
- Consider different dark matter types as well: scalar, fermion, vector
 - Fermion DM restricts mass scale > keV

S. Tremaine, J.E. Gunn [DOI: 10.1103/PhysRevLett.42.407]

8

Modeling ν -DM interactions

- . For each model, compute $\frac{d\sigma}{d\cos\theta}$ exactly
 - only assumption is non-relativistic DM in the initial state
- Comparing to results in the literature
 - found some inconsistencies with other results
- Scalar mediator cases:

Lagrangian	channels	amp. sq.	[54]	[
(2.7)	t	(<mark>2.8</mark>)	—	
(<mark>2.9</mark>)	DM- ν : u	(2.10)	√*	
	DM- $\bar{\nu}$: s	(2 .11)	—	
(2.9)	s,u	(2.12)	X	
(2.13)	t	(2.14)	—	
(2.15)	t	(2.16)	—	
	Lagrangian (2.7) (2.9) (2.9) (2.13) (2.15)	Lagrangianchannels (2.7) t (2.9) $DM-\nu: u$ $DM-\bar{\nu}: s$ (2.9) s, u (2.13) t (2.15) t	Lagrangianchannelsamp. sq. (2.7) t (2.8) (2.9) $DM-\nu: u$ (2.10) $DM-\bar{\nu}: s$ (2.11) (2.9) s, u (2.12) (2.13) t (2.14) (2.15) t (2.16)	Lagrangianchannelsamp. sq.[54] (2.7) t (2.8) $ (2.9)$ $DM-\nu: u$ (2.10) \checkmark^* $DM-\bar{\nu}: s$ (2.11) $ (2.9)$ s, u (2.12) \checkmark (2.13) t (2.14) $ (2.15)$ t (2.16) $-$

Bounds on \nu-DM interactions

- Three categories for bounds on these interactions:
 - Cosmological
 - Astrophysical
 - Lab
- scalar mediator:

$$\mathscr{L} = -\phi\bar{\nu}\left(g_{\nu s} + ig_{\nu p}\gamma_5\right)\nu - \phi\bar{\chi}\left(g_{\chi s} + ig_{\chi p}\gamma_5\right)\chi$$

Will carefully show each bound for one example model: Dirac fermion DM,

Cosmological bounds:

- Cosmological bounds:
 - BBN: neutrino NSI affects $N_{\rm eff}$

- Cosmological bounds:
 - BBN: neutrino NSI affects $N_{\rm eff}$
 - CMB: neutrino NSI affects phase shift and amplitude in matter power spectrum

- Cosmological bounds:
 - BBN: neutrino NSI affects $N_{\rm eff}$
 - CMB: neutrino NSI affects phase shift and amplitude in matter power spectrum
 - Collisional Damping: upper limit on ν -DM interactions from CMB and LSS

- Cosmological bounds:
 - BBN: neutrino NSI affects $N_{\rm eff}$
 - CMB: neutrino NSI affects phase shift and amplitude in matter power spectrum
 - Collisional Damping: upper limit on ν -DM interactions from CMB and LSS
 - Thermal relic density: annihilation of DM into neutrinos needed to match relic abundance

Astrophysical bounds:

- G. Mangano, A. Melchiorri, P. Serra, A. Cooray, M. Kamionkowski [astro-ph/0606190] M. Markevitch et al. [astro-ph/0309303]
- A. Robertson, R. Massey, V. Eke [1605.04307]

- Astrophysical bounds:
 - SN 1987A
 - Updated calculation of integrated column density
 - $\mathcal{O}(1)$ opacity region excluded

- G. Mangano, A. Melchiorri, P. Serra, A. Cooray, M. Kamionkowski [astro-ph/0606190] M. Markevitch et al. [astro-ph/0309303]
- A. Robertson, R. Massey, V. Eke [1605.04307]

- Astrophysical bounds:
 - SN 1987A
 - Updated calculation of integrated column density
 - $\mathcal{O}(1)$ opacity region excluded
 - Bullet Clustering (SIDM)
 - Only applies to t-channel models

- G. Mangano, A. Melchiorri, P. Serra, A. Cooray, M. Kamionkowski [astro-ph/0606190] M. Markevitch et al. [astro-ph/0309303]
- A. Robertson, R. Massey, V. Eke [1605.04307]

Lab bounds: \bullet

Neutrino Self-Interactions: A White Paper [2203.01955] J. Berryman, A. de Gouvêa, K. Kelly, Y. Zhang [1802.00009] A. de Gouvêa, B. Dev, B. Dutta, T. Ghosh, T. Han, Y. Zhang [1910.01132]

- Lab bounds: \bullet
 - $\beta\beta$ decay: ν NSI effects can be seen in searches

Neutrino Self-Interactions: A White Paper [2203.01955] J. Berryman, A. de Gouvêa, K. Kelly, Y. Zhang [1802.00009] A. de Gouvêa, B. Dev, B. Dutta, T. Ghosh, T. Han, Y. Zhang [1910.01132]

- Lab bounds: ullet
 - $\beta\beta$ decay: ν NSI effects can be seen in searches
 - Invisible Z decays*

Neutrino Self-Interactions: A White Paper [2203.01955] J. Berryman, A. de Gouvêa, K. Kelly, Y. Zhang [1802.00009] A. de Gouvêa, B. Dev, B. Dutta, T. Ghosh, T. Han, Y. Zhang [1910.01132]

- Lab bounds: ullet
 - $\beta\beta$ decay: ν NSI effects can be seen in searches
 - Invisible Z decays*
 - Meson decays*

Neutrino Self-Interactions: A White Paper [2203.01955] J. Berryman, A. de Gouvêa, K. Kelly, Y. Zhang [1802.00009] A. de Gouvêa, B. Dev, B. Dutta, T. Ghosh, T. Han, Y. Zhang [1910.01132]

Bounds on ν -DM interactions Updating bounds

Current Z and Meson decay bounds computed at tree-level

+

Bounds on \nu-DM interactions Updating bounds

- Current Z and Meson decay bounds computed at tree-level
- Adding one loop interference terms cancels the IR divergence

Bounds on ν -DM interactions Updating bounds

 Updated bound for scalar and vector decays

- Updated bound for scalar and vector mediators are relaxed for \boldsymbol{Z} and meson

- Compiling all the bounds for this model:
- τ = 0.1: Opacity of 10 MeV
 neutrinos for SN in Milky Way
 galaxy 10 kpc away
 - improves over 1987A bound
 - but already ruled out by many other constraints for

 $m_{\rm DM} = m_{\rm med}/3$

Bound Plots for Example Models Scalar DM, Fermion mediator

 Now for a fermion mediator, where the process is s&uchannel:

$$\mathscr{L} = -\phi \overline{N}(g_s + ig_p\gamma_5)P_L\nu_L + H.c.$$

- No tree level DM-self interactions, removing SIDM bounds
- Collisional damping bound interpolated for each model

Bound Plots for Example Models Vector DM, Vector mediator

 Lastly, a vector mediator scenario, with real vector DM:

 $\mathscr{L} = Z'_{\mu}\overline{\nu}\left(g_{\nu L}\gamma^{\mu}P_{L} + g_{\nu R}\gamma^{\mu}P_{R}\right)\nu + \left(\frac{1}{2}g_{\chi}\chi^{\mu}\left(\partial_{\mu}\chi^{\nu}\right)Z'_{\nu} + \mathrm{H.c.}\right)$

- Parameter space heavily constrained
- Overall, no sensitivity in unexplored regions of parameter space with galactic SN for $m_{\rm DM} = m_{\rm med}/3$

- What about best case scenario? Consider keV scale DM
- Is there any parameter space available to probe?
- Vector DM, vector mediator scenario:

- What about best case scenario?
 Consider keV scale DM
- Is there any parameter space available to probe?
- Vector DM, vector mediator scenario:

- What about best case scenario?
 Consider keV scale DM
- Is there any parameter space available to probe?
- Vector DM, vector mediator scenario:

- How would the measured neutrino flux at DUNE, Hyper-K, JUNO change?
- Model neutrino flux Φ_0 as a function of energy
- Use cascade equation to calculate attenuated flux Φ

- Model neutrino flux Φ_0 as a function of energy
- Use cascade equation to calculate attenuated flux Φ

How would the measured neutrino flux at DUNE, Hyper-K, JUNO change?

- How would the measured neutrino flux at DUNE, Hyper-K, JUNO change?
- Apply survival rate to observed neutrino flux
 - Charged Current interaction with Argon at DUNE
 - Inverse Beta Decay at Hyper-K/JUNO

- How would the measured neutrino flux at DUNE, Hyper-K, JUNO change? Apply survival rate to observed neutrino flux
- - Charged Current interaction with Argon at DUNE
 - Inverse Beta Decay at Hyper-K/JUNO

Summary and Outlook

- Carried out a comprehensive analysist interactions
 - Inconsistencies in comparisons to results in literature
- Many strong constraints from cosmology, astrophysics, and labs
 - Updated lab bounds, relaxing them for heavier mediators
- Even so, potential opportunities to probe neutrino interactions with light DM
- For each model, show the remaining parameter space, unexplored for > MeV mediator masses
- Other scenarios:
 - axions/ALPs (large number density)
 - HEANs interacting with DM, measured at IceCube

- Carried out a comprehensive analysis of models for general effective ν -DM

Backup Slides

Comparison of DM Profiles

- Einasto, gNFW are cored
- Spike, NFW are cuspy

Event rate plot at DUNE

