

and closing Opening Windows with Isospin-Violating Dark Matter

Jason Kumar University of Hawaii w/ Danny Marfatia, Ningqiang Song PLB 851 (2024) 138576 (2312.11365)

direct detection with large $\boldsymbol{\sigma}$

- deep underground dir. detection exps. have a sensitivity ceiling
 - if σ is large enough, DM scatters multiple times in overburden
 - may lose a lot of energy
 - E deposited in detector below threshold
- to raise ceiling, use detectors with less overburden
 - surface runs
 - balloons, sounding rockets
 - impact on cosmology observables
- are there open windows?

Mack, Beacom, Bertone 0705.4298

isospin-violating dark matter

- we often assume DM couples equally to protons and neutrons
- simple, but need not be true
- couplings could be unequal, and could partially cancel
- can weaken sensitivity by reducing scattering in detector
- can strengthen sensitivity by reducing scattering in overburden
- can we open some windows, or close others?

for spin-independent, velocity-independent scattering

$$\begin{split} \frac{d\sigma}{dE_{R}} &= \frac{m_{A}}{2\mu_{N}^{2}v^{2}}\sigma_{0} f_{IV}^{2} F^{2}(E_{R}) \\ f_{IV} &= f_{p}Z + f_{n}(A - Z) \\ \sigma_{j} &\propto \frac{\mu_{A_{j}}^{2}}{\mu_{N}^{2}} f_{IV}^{2} \sigma_{0} \end{split}$$

take $f_p = 1, \sigma_0 = \sigma_p$, or $f_n = 1, \sigma_0 = \sigma_n$

low-mass

- we focus on $m_{\chi} < 10 \text{ GeV}$
- direct detection experiments tend to have reduced sensitivity
- changes to sensitivity have a larger effect
- focus on
 - CRESST-surface (AL_2O_3)
 - CRESST-III (CaWO₄)
 - XQC sounding rocket (Si)
 - CMB DM scattering off baryons
 - couples DM to plasma

CRESST-surface → CRESST collaboration 1707.06749 CRESST-III → CRESST collaboration 1904.00498 XQC → Erickeck, Steinhard,McCammon, McGuire 0704.0794 CMB → Gluscevic, Boddy 1712.07133

effect of IVDM - detector

- assume single scatter in detector
 - repurpose single scatter analysis
- low mass DM, so momentum transfer relatively small
- $F(E_R) \sim 1$
- R_D = roughly detector rate suppression, compared to f_n = f_p
- include isotope content
- for heavier target elements, trough at smaller |f_n / f_p|

effect of IVDM - overburden

- multiple scattering relevant
- simplify with SLA (qualitative)
- $\Phi \propto$ fractional energy loss per length
- $R_0 =$ suppression of Φ from IVDM
- roughly, keeping R₀ σ₀ fixed keeps impact of overburden fixed
- experiments dominated by crust or atmosphere
- overburden dominated by lighter elements (trough near f_n / f_p = -1)

DM velocity distribution

- SLA (straight line approx.) may not be great for low mass DM
 - DM changes direction during scattering
- use DMprop (Cappiello 2301.07728)
 - "flat-earth" approx.
 - DM can change direction (isotropic in Earth frame)
 - include probability for scattering
 - modified to include IVDM
- compared to SLA
 - reduced flux
 - but tail of high-v particles from fluctuations in scattering

velocity distribution at CRESST-III (1.4km underground , $f_n / f_p = 1$)

direct detection sensitivity

- only care about the ceiling and floor of sensitivity
 - don't need velocity distribution in interior
- at floor, overburden irrelevant
 - almost all events come from particles scattering only in detector
- at ceiling, can assume DM is downward going
 - increasing path length gives an exponential suppression
 - so "flat-earth" approximation will be reasonable
 - for low-mass DM, scattering close to isotropic in Earth frame
- DMprop should give a good approximation

direct detection event rate

- $N_{events} \propto R_D \times \sigma_0 \times \eta$
- $\eta = \int dv_f f(v_f) / v_f$
 - weighted flux of detectable events
- at small σ_0 , rate $\propto \sigma_0$
- drops because of overburden
 - get ceiling and floor
- DMprop shows suppression of flux due to reflection
- but for small detection rate, SLA and DMprop match up
 - basically, find σ₀ where almost nothing gets through
- won't match if rate higher, so we use DMprop

results

future directions

- so far, we have only been interested in sensitivity for detection
 - only need the ceiling and floor
- with a future detector, might have enough events to be in the interior of sensitivity region
- could explore daily modulation with a directional detector
- but sensitive to how the velocity distribution is distorted by the overburden
- if you need to go beyond flat-Earth approximation, much more computationally intensive

conclusion

- dark matter direct detection exps. have a sensitivity ceiling and floor
- isospin-violation can open some sensitivity windows, while closing others
- competing effects from reduction of scattering in the detector, and reduction of scattering in overburden

interesting effects, especially at low mass

Backup Slides

DMprop algorithm

- flux of particles at detector: start with
 - incoming flux
 - − $P_0(z)$ → probability of reaching depth z without scattering
 - − P(z-z') → probability of reaching z from z' without scattering
- successively convolve to get $P_n(z) \rightarrow probability$ of reaching depth z after n scatters
- sum on n
- energy distribution at detector: start with
 - initial energy distribution
 - energy distribution after one scatter (assuming isotropic scattering in Earth frame)
 - successively convolve to get energy distribution after n scatters
 - sum over n, weighting energy distribution by $P_n(z)$
- doesn't account for correlation of energy with depth