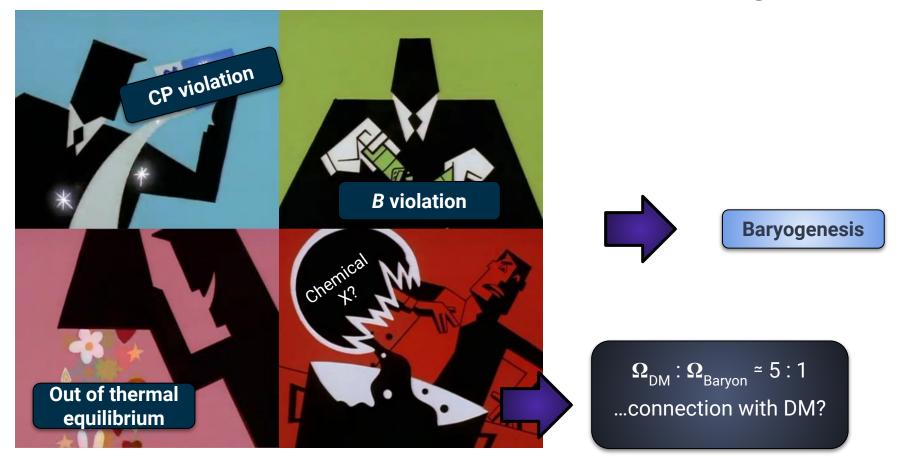
Baryon Number Violation in Neutron Stars and the Lab

<u>Adrian Thompson</u> (Northwestern), Mohammadreza Zakeri (U of Kentucky), & Rouzbeh Allahverdi (U of New Mexico)

2024


Mitchell Conference on Collider, Dark Matter, and Neutrino Physics

Adrian Thompson

(Northwestern U.)

Baryon number violation, Sakharov conditions and baryogenesis

Baryon number violating phenomenology below $\Lambda_{ m QCD}$

- Inspired by:
 - B-Mesogenesis

scenarios

- Hyperon decays to dark sector particles
- neutron anomaly
- <u>Typical setup</u>: Heavy scalar(s) mediator & GeV-scale dark sector particle(s)
- B-violation with chiral perturbation theory

Baryon $\rightarrow \psi \gamma$ and other Rare Decays

Alonso-Álvarez, Elor, Escudero, Fornal, Grinstein, Camalich [2111.12712] also: Davoudiasl, Morrissey, Sigurdson, Tulin [1106.4320]

Nuclei + e⁻

n, p, e⁻, μ^{-}

Berryman, Gardner, Zakeri [2305.13377] [2311.13649] [2201.02637]

Adrian Thompson (N

(Northwestern U.)

Specific Model: A Majorana fermion + color-triplet scalar

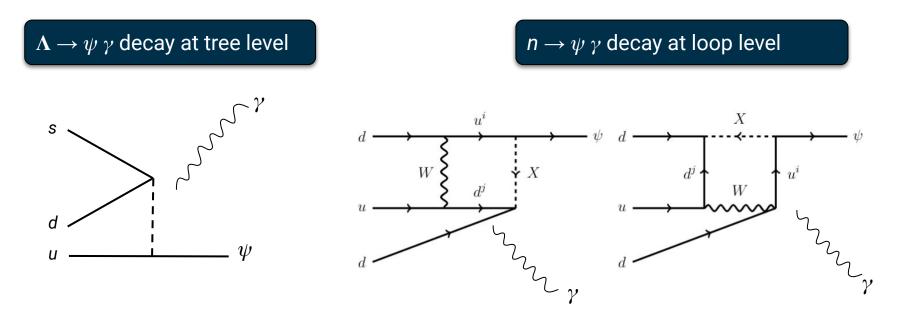

	$ \mathrm{SU}(3)_c $	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$
$X^{1,2}$	3	1	+4/3
ψ	1	1	0

$$\mathcal{L} \supset \lambda_i \left(X \bar{\boldsymbol{u}}_i P_L \boldsymbol{\psi} + X^* \bar{\boldsymbol{\psi}} P_R \boldsymbol{u}_i \right) + \lambda'_{ij} \left(X^* \bar{\boldsymbol{d}}_i P_L \boldsymbol{d}_j^c + X \bar{\boldsymbol{d}}_j^c P_R \boldsymbol{d}_i \right)$$

- If $X^{1,2}$ have CP-violating phases, baryon asymmetry can be explained
- If $(m_p m_e) < m_{\psi} < (m_p + m_e) \psi$ can be the DM, proton stable
- $\lambda'=0$ for i=j
- $m_{\psi} \sim 1 \text{ GeV}$
- $m_{\chi} \gtrsim 1 \text{ TeV}$

See e.g.: Allahverdi, Dev, Dutta[<u>1712.02713</u>] Dev, Mohapatra [<u>1504.07196</u>] Allahverdi, Dutta, Sinha [<u>1005.2804</u>]

Decays of the Baryons to ψ and a Photon ($\Delta B=1$)

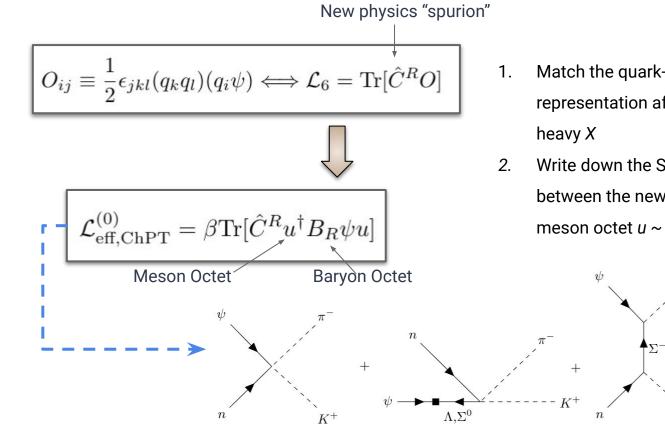

ds-u coupling or $\lambda_1 \lambda'_{12}$

All higher-generational couplings: $\lambda_k \lambda'_{ij}$

Adrian Thompson (North

(Northwestern U.)

Decays of the Baryons to ψ and a Photon ($\Delta B=1$)



ds-u coupling or $\lambda_1 \lambda'_{12}$

All higher-generational couplings: $\lambda_k \lambda'_{ij}$

(Northwestern U.)

Operator Matching to the ChiPT Lagrangian (*d*-*s*-*u* coupling)

- . Match the quark-level operator to the SU(3) representation after integrating out the heavy *X*
- 2. Write down the SU(3)-invariant interactions between the new physics spurion C^R and the meson octet $u \sim e^{\phi/f}$ and baryon octet B

 K^+

(Northwestern U.)

Mitchell Conference 2024

7

The new physics spurion terms

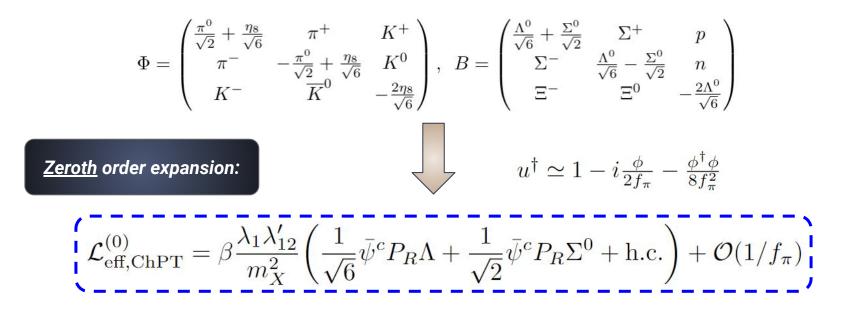
Integrating out X and matching the operator $dsu\psi$ gives rise to the spurion C^R :

$$\hat{C}^{R}[(ds)u] = \frac{\lambda_{12}'\lambda_{1}}{m_{X}^{2}} \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

For the higher generational couplings, the spurion term depends on a loop factor and CKM matrix elements:

$$\hat{C}^{R}[(ds)u] = \frac{G_{F}\sqrt{3}}{8\pi^{2} m_{W}^{2}} \sum_{i,j\neq 1,l\neq k} \lambda_{i}\lambda_{kj}^{\prime}V_{il}V_{1j}^{*}m_{d_{j}}m_{u_{i}}F(x_{d_{j}}, x_{u_{i}}, x_{X}) \times \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$
$$\hat{C}^{R}[(dd)u] = \frac{G_{F}\sqrt{3}}{8\pi^{2} m_{W}^{2}} \sum_{i}\sum_{j\neq 1} \lambda_{i}\lambda_{1j}^{\prime}V_{i1}V_{1j}^{*}m_{d_{j}}m_{u_{i}}F(x_{d_{j}}, x_{u_{i}}, x_{X}) \times \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 1 & 0 \end{pmatrix}$$

Adrian Thompson (Northwe

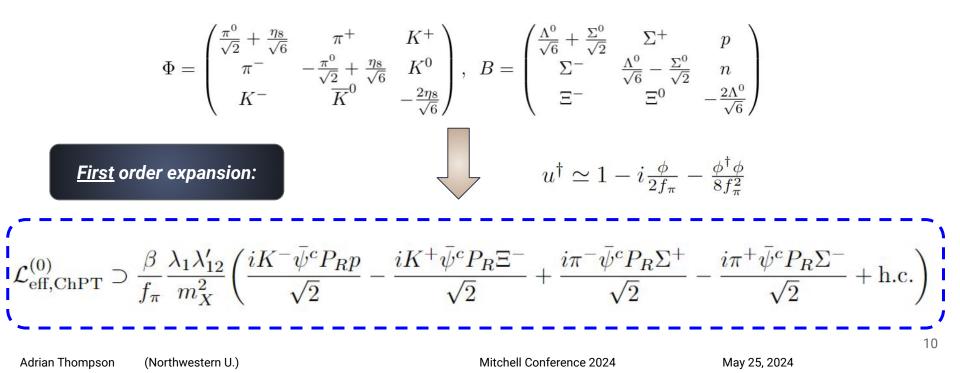

(Northwestern U.)

Mitchell Conference 2024

May 25, 2024

Expansion of the ChiPT New Physics Lagrangian: Zeroth order

$$\mathcal{L}_{\text{eff,ChPT}}^{(0)} = \beta \text{Tr}[\hat{C}^R u^{\dagger} B_R \psi u] \qquad \qquad b_R^{\dagger} \left[-i\sigma^2\right] \psi_R^* = \bar{b} P_L \psi^c \text{ and } u = e^{i\Phi/f_{\pi}}$$

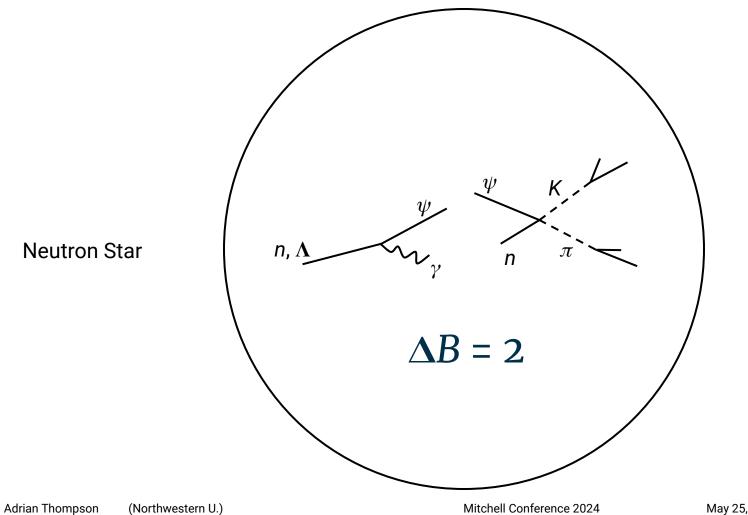


Adrian Thompson

(Northwestern U.)

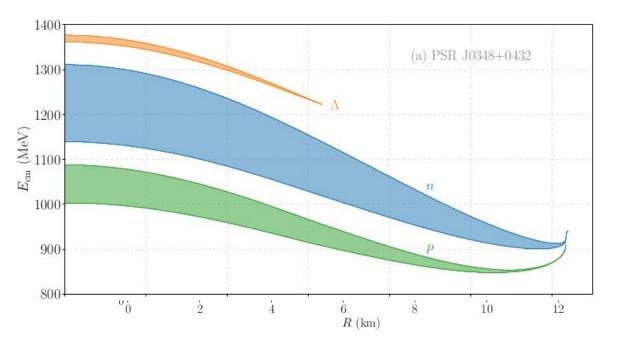
Expansion of the ChiPT New Physics Lagrangian: First order in $1/f_{\pi}$

$$\mathcal{L}_{\text{eff,ChPT}}^{(0)} = \beta \text{Tr}[\hat{C}^R u^{\dagger} B_R \psi u] \qquad \qquad b_R^{\dagger} \left[-i\sigma^2\right] \psi_R^* = \bar{b} P_L \psi^c \text{ and } u = e^{i\Phi/f_{\pi}}$$


Expansion of the ChiPT New Physics Lagrangian: Second order in $1/f_{\pi}^2$

$$\mathcal{L}_{\text{eff,ChPT}}^{(0)} = \beta \operatorname{Tr}[\hat{C}^{R}u^{\dagger}B_{R}\psi u] \qquad b_{R}^{\dagger}\left[-i\sigma^{2}\right]\psi_{R}^{*} = \bar{b}P_{L}\psi^{c} \text{ and } u = e^{i\Phi/f_{\pi}}$$

$$u^{\dagger} \simeq 1 - i\frac{\phi}{2f_{\pi}} - \frac{\phi^{\dagger}\phi}{8f_{\pi}^{2}}$$


$$\mathcal{L}_{\text{eff,ChPT}}^{(0)} \supset \frac{\beta}{f_{\pi}^{2}}\frac{\lambda_{1}\lambda_{12}'}{m_{X}^{2}} \left(-\sqrt{\frac{3}{8}}K^{-}K^{+}\bar{\psi}^{c}P_{R}\Lambda - \frac{K^{-}K^{+}\bar{\psi}^{c}P_{R}\Sigma^{0}}{2\sqrt{2}} + \frac{\pi^{+}K^{-}\bar{\psi}^{c}P_{R}n}{2} + \sqrt{\frac{3}{2}}\frac{\eta^{8}K^{-}\bar{\psi}^{c}P_{R}p}{4} + \frac{\pi^{0}K^{-}\bar{\psi}^{c}P_{R}p}{4\sqrt{2}} + \sqrt{\frac{3}{2}}\frac{\eta^{8}K^{+}\bar{\psi}^{c}P_{R}\Xi^{-}}{4F^{2}} + \frac{\pi^{0}K^{+}\bar{\psi}^{c}P_{R}\Xi^{0}}{2\sqrt{2}} + \frac{\pi^{0}K^{+}\bar{\psi}^{c}P_{R}\Xi^{-}}{4\sqrt{2}} - \frac{K^{0}K^{+}\bar{\psi}^{c}P_{R}\Xi^{-}}{4} - \frac{K^{0}K^{-}\bar{\psi}^{c}P_{R}\Sigma^{+}}{4} - \frac{1}{\sqrt{2}}\pi^{-}\pi^{+}\bar{\psi}^{c}P_{R}\Sigma^{0} + \text{h.c.}\right) + \mathcal{O}(1/f_{\pi}^{3})$$

Adrian Thompson (Northwestern U.)

Enhancement of the Baryon CM Energy in Dense Matter

- Dense nuclear matter: baryons get a kinetic mass → lifts the CM frame energy
- Allows us to probe decays that would otherwise be kinematically forbidden in vacuum!
 - → We can decay to ψ with masses up to ~1.4 GeV

Impact of ΔB processes on Binary Pulsars

 M_{c}

Berryman, Gardner, Zakeri [2305.13377] [2311.13649] [2201.02637]

$$\frac{\dot{B}}{4\pi} = -\int e^{\nu(r)} \left[1 - \frac{2M(r)}{r} \right]^{-\frac{1}{2}} \Gamma_{\rm nm}(r) n(r) r^2 dr$$

Adrian Thompson

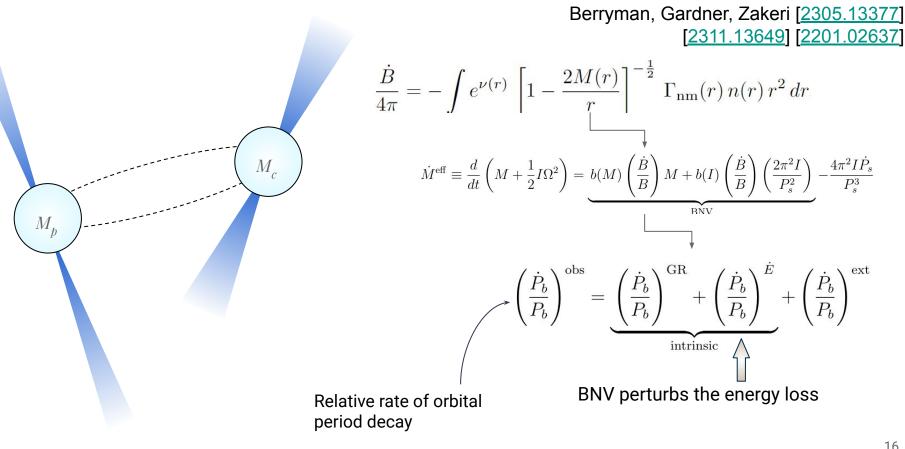
 M_p

(Northwestern U.)

Impact of ΔB processes on Binary Pulsars

 M_{c}

Berryman, Gardner, Zakeri [2305.13377] [2311.13649] [2201.02637]


$$\frac{\dot{B}}{4\pi} = -\int e^{\nu(r)} \left[1 - \frac{2M(r)}{r} \right]^{-\frac{1}{2}} \Gamma_{\rm nm}(r) n(r) r^2 dr$$
$$\dot{M}^{\rm eff} = \left(\partial_{\mathcal{E}_c} M + \left(\frac{\Omega^2}{2}\right) \partial_{\mathcal{E}_c} I \right) \left(\frac{\dot{B}}{\partial_{\mathcal{E}_c} B}\right)$$

Adrian Thompson (Nor

 M_p

(Northwestern U.)

Impact of ΔB processes on Binary Pulsars

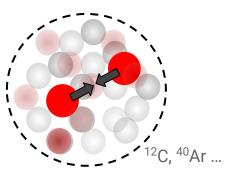

Adrian Thompson

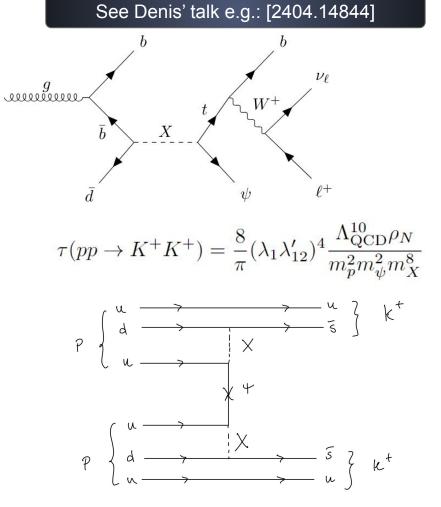
(Northwestern U.)

Systems in this study

M _p	M _c	

Name	J0348+0432	J1614-2230	$\rm J0737{-}3039A/B$
$M_p \left(M_{\odot} \right)$	2.01(4)	1.908(16)	1.338185(+12,-14) [A]
$M_c (M_{\odot})$	0.172(3)	0.493(3)	1.248868(+13,-11) [B]
$ \dot{B}/B _{2\sigma} (\mathrm{yr}^{-1})$	1.8×10^{-10}	2.0×10^{-11}	4.0×10^{-13}

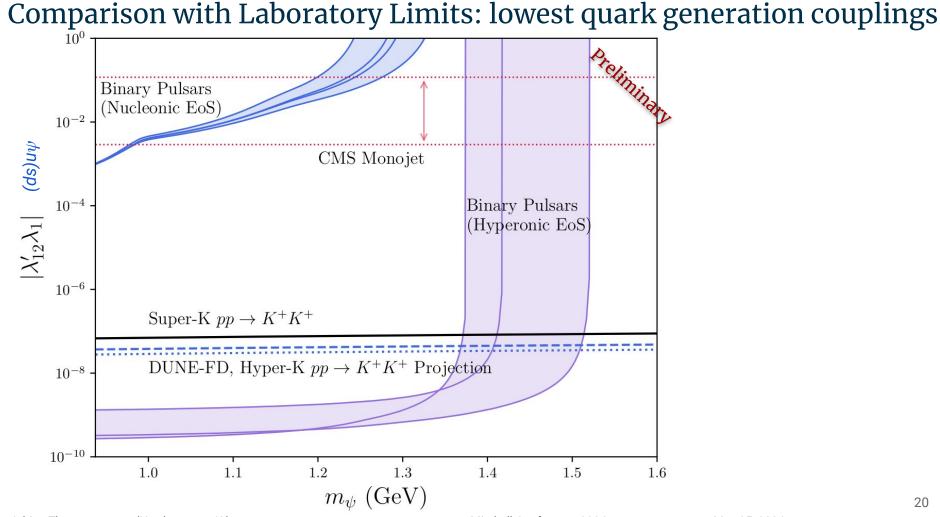

• We looked at constraints on the coupling product


 $|\lambda_k \lambda'_{ij}|$

- We find stringent constraints from binary pulsars down to the 10⁻⁵ level (nucleonic Equation of State or EoS)
- Potentially as low as 10⁻⁹ if we have hyperonic EoS!

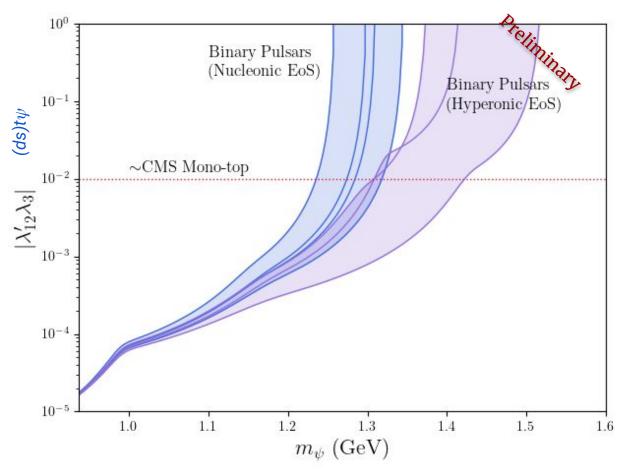
Laboratory Probes

- Collider searches:
 - Monotop, Monojet, and missing energy searches
- BES-III, LHCb: see [2111.12712]
- Di-nucleon decay searches:
 - Super-K: large volume search for spontaneous di-proton decay
 - DUNE-FD? Hyper-K?



Adrian Thompson

(Northwestern U.)


Mitchell Conference 2024

May 25, 2024

Adrian Thompson (Northwestern U.)

Comparison with Laboratory Limits: Higher generational couplings

- Di-nucleon decays pp→K⁺K⁺ highly suppressed for higher generational couplings (<u>CKM +</u> <u>loop suppressed</u>)
- Binary pulsar constraints <u>no</u>
 <u>longer benefit from pure</u>

<u>tree-level couplings to Λ -baryons</u>

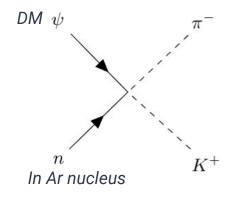
Binary pulsar set leading bounds below m ψ < 1.3 GeV \rightarrow <u>collider</u> <u>searches probe higher masses</u>

Adrian Thompson

What about dark matter laboratory searches?

 ψ can be the dark matter if:

$$m_p - m_e < m_\psi < m_p + m_e$$

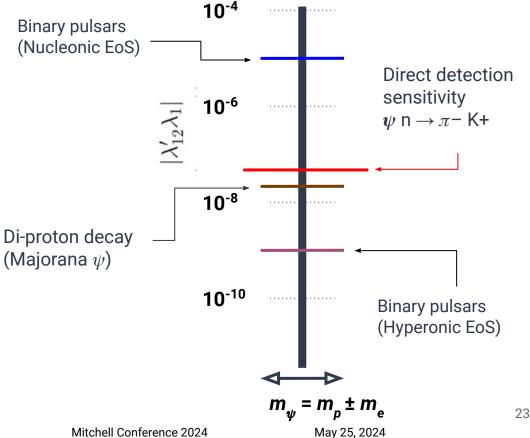

Consider the Earth-captured ambient DM flux through a large detector:

$$f_{\psi}(\vec{v}) = \frac{1}{N_{\rm esc}\pi^{3/2}v_0^3} \exp\left(-\frac{(\vec{v}+\vec{v}_{\oplus})^2}{v_0^2}\right) \Theta(v_{\rm esc} - |\vec{v}+\vec{v}_{\oplus}|)$$

Then look for $\psi n \rightarrow \pi^- K^+$ in the detector; <u>a very</u> <u>unique final state!</u>

E.g. DUNE Far Detector (FD):

$$|\lambda_1 \lambda'_{12}| > 2.69 \times 10^{-7} \left(\frac{m_X}{\text{TeV}}\right)^2$$
 DUNE-FD sensitivity to DM, 90% CL



Adrian Thompson

(Northwestern U.)

What about dark matter laboratory searches?

- Alternatively, ψ could be Dirac with B=+1 and assign $B=-\frac{2}{3}$ for the heavy X mediator
- In this case, B is conserved...but hidden away in the dark sector
- For Dirac ψ , the di-proton decay channel vanishes

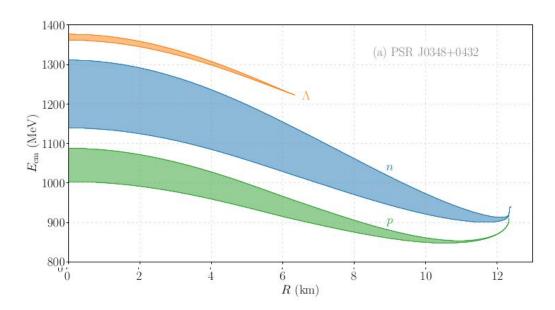
Adrian Thompson (Northwestern U.)

Outlook

- <u>Neutron stars are extremely sensitive probes of baryon number</u> <u>violation</u>; sensitive to TeV scale mediators
- <u>Whether or not NS have hyperonic EoS</u> makes a huge difference a good motivation to study nuclear matter and strange physics!
- Laboratory probes and colliders <u>complimentary to these bounds</u> for larger masses of the Majorana fermion > GeV, <u>and for</u> <u>higher-generational couplings</u>

Backup Deck

Adrian Thompson


(Northwestern U.)

Enhancement of the Baryon CM Energy in Dense Matter

Vector meson self-energy

$$k^{*\mu} \equiv k^{\mu} - \Sigma^{\mu} = \left\{ E^*(k^*), \vec{k} - \vec{\Sigma} \right\}$$

- In the dense nuclear matter, baryons get a kinetic mass which lifts the available energy in the CM frame
- This allows us to probe decays that would otherwise be kinematically forbidden in vacuum!
 - \circ → We can decay to ψ with masses up to ~1.5 GeV

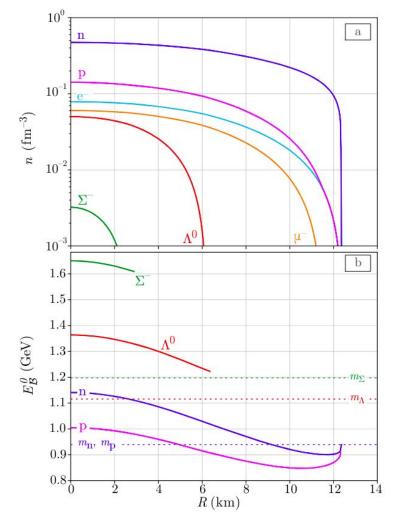
Impact of ΔB processes on the Star's spin rate

Berryman, Gardner, Zakeri [2305.13377] [2311.13649] [2201.02637]

$$\frac{\dot{B}}{4\pi} = -\int e^{\nu(r)} \left[1 - \frac{2M(r)}{r} \right]^{-\frac{1}{2}} \Gamma_{\rm nm}(r) n(r) r^2 dr$$
$$\dot{P}_b^{\dot{E}} = -2 \left(\frac{\dot{M}_1^{\rm eff} + \dot{M}_2^{\rm eff}}{M_1 + M_2} \right) P_b, \qquad \dot{M}^{\rm eff} = \left(\partial_{\mathcal{E}_c} M + \left(\frac{\Omega^2}{2} \right) \partial_{\mathcal{E}_c} I \right) \left(\frac{\dot{B}}{\partial_{\mathcal{E}_c} B} \right)$$

$$\left(\frac{\dot{P}_b}{P_b}\right)^{\text{obs}} = \underbrace{\left(\frac{\dot{P}_b}{P_b}\right)^{\text{GR}} + \left(\frac{\dot{P}_b}{P_b}\right)^{E}}_{\text{intrinsic}} + \left(\frac{\dot{P}_b}{P_b}\right)^{\text{ext}} + \left(\frac{\dot{P}_b}{P_b}\right)^{\text{ext}}$$
Relative rate of orbital period decay

Adrian Thompson


M1

(Northwestern U.)

 M_2

Mitchell Conference 2024

27

Neutron Star Hyperonic EoS

Adrian Thompson (Northwestern U.)